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Introduction
Tissue microarrays (TMAs) are the perfect tools in pathology 
and beyond to analyze the abundance and spatial distribu-
tion of proteins in well-defined tissue sections by immuno-
histochemical means.1–4 The TMA block can include up to 
many hundred or even more patient samples originating from 
a certain physiological state, eg, a certain tumor subtype and 
progression level. Serial ultrathin sections of this TMA block 
can be stained with different antibodies, and so, many protein 
expression measurements of many samples at a distinct tissue 
localization and state can be collected. Therefore, TMA data 
are perfectly suited for analyzing the cooperative effects in-
between the measured proteins.

The theory for such analysis is based on the structure of 
a biological cell.5 The cell is composed of many different mol-
ecule classes where, eg, the proteins are associated with cel-
lular function, phenotype, and physiological state. This state is 
based on a characteristic pattern of protein expression values, 
which is altered in a specific way in diseases, such as cancer 
and also in-between cancer subentities. Because all these mol-
ecules are building a discrete and ordered cellular system, they 

are indirectly or directly connected by an interaction scheme, 
namely, the biological network.6–8

The major objective in the case of TMAs is to measure 
relative expression (concentration) values of several proteins 
in a certain physiological state and tissue compartment to 
uncover which proteins might work together to form this 
physiological or pathological state and which might be not 
specifically involved. One type of approach to conduct such 
studies are time series experiments9 established for microarray 
or next-generation sequencing studies. These experiments mea-
sure a few different states and deduce network dependencies 
from the differences in-between these (macro) states. In the 
case of the TMA data, the high number of patient samples in 
a certain physiological condition and tissue compartment, but 
with a microvariance in the sample states, opens an alternative 
approach, which we follow in this study.

Up to now, the expression values of TMAs were evaluated 
more or less sophisticated per protein marker,10,11 but every 
maker with all its measurements was solely seen as a Gaussian 
distribution of the expected value and not in a sense of slightly 
different network (micro) states. Some further approaches 
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deal with the modeling of survival probabilities,12 and others 
try to reconstruct tumor expression characteristics from only a 
few tissue cores,13 create the prognostic pattern,14 and develop 
an advanced image analysis algorithm10 or a data mining algo-
rithm for TMA databases,15 but so far no one tried to establish 
a systematic approach to examine cooperative dependencies 
in-between many different protein measurements on serial 
sections of TMAs.

At that point we started from scratch and established a 
combinatorial procedure16 to unravel consistently, the depen-
dencies between several protein measurements evaluated the 
power of the procedure with several cancer data sets.17–19 
The core of this merely assumption-free and data-driven 
approach is that we do not only create simply a proximity 
matrix but also create an order of dependencies by partition-
ing the proteins and optimizing the interdependency order 
of the proteins across these partitions by a generalized linear 
regression approach.

In the following sections, we present an end user suitable 
message passing interface (MPI)/open multiprocessing (OpenMP)-
based implementation of this algorithmic idea together with a 
small ecosystem in R (https://www.r-project.org/) to evaluate 
the results.

Despite that the research is ongoing, the real merit of 
this procedure at its present state is that it extends the scope 
of TMAs remarkably. We open the perspective for a broader 
view of TMAs, away from the focus as a validation tool, 
toward a phenotypic network analysis tool.

Basic Considerations
The combinatorial procedure is introduced already in the 
study by Buerger et  al,16 so we will only highlight the cur-
rent concept here. The idea behind this approach is to analyze 
protein expression dependencies measured on TMAs. The 
observed cooperative effects might be of a direct or indirect 
nature, so not necessarily showing basic regulatory effects but 
systemic effects. The basic premise is that we assume that all 
our single measurements are bound together in a biological 
network, which is integrating all the observed and expressed 
proteins in a systemic context. Because we are analyzing the 
protein expression of a biological cell, this is a well-established 
assumption as we pointed out in the “Introduction” section. 
As a consequence, the small, nonerror-based protein signal 
variance over all patient samples, and over all the different 
proteins, is systematically reflecting the underlying biological 
network activity.

The TMA data source used in this context is a histologi-
cally and clinically well-defined cohort of patient samples defin-
ing a relatively exact physiological state. This state might belong 
to a normal physiological state or characterizes a disease state. 
Besides that the pathologists define cell types, morphological 
features and further clinical aspects according to their classi-
fication guidelines, the cohort will still comprise a microvari-
ance in the physiological states of the samples. To discriminate 

between measurement uncertainty and the specific network 
variance, a specificity test was established (cf., Buerger et al’s.16 
Fig. 6 and Supplementary Fig. 2). The microvariances in the 
physiological states are only measurable, when the measured 
proteins exhibit a considerable interaction among each other. 
This effect is exploited by the presented procedure.

Algorithm
Because we have only a vague idea how biological systems 
are finally regulating their actions, we try to avoid using the 
model-based approaches. As a consequence hereof, we chose 
a combinatorial optimization process that is analyzing the 
complete space of possible interactions. Due to this brute-
force approach, we are limited to a certain number of proteins. 
In contrast to straighter and computationally more efficient 
approaches as a cluster procedure, we can efficiently adjust the 
order by the optimization procedure and additionally are able 
to analyze the properties of all combinatorial states offering 
insight into the architecture of the network.

In brief, as many ultrathin serial sections as necessary are 
cut from the TMA block. The sections, all containing the in 
vivo situation of interest, are immunohistochemically stained 
with antibodies directed against the proteins of interest. The 
imunnohistochemical score values characterizing the cells of 
interest are generated double blind by two pathologists. So, 
for every protein and TMA section, a score vector over all 
samples is generated. At that point, it might be noticed that 
normally mixing of data sources from different TMA block 
series is not allowed, due to the different TMA origins.

The algorithm utilizes the Pearson correlation as a proxim
ity measure; therefore, a normalization in-between the protein 
score vectors is not necessary. The group of proteins is divided 
into two partitions called reference and test partition. Therefore, 
at least five protein measurements are required (2:3), but opti-
mal is 12–16. The test group contains proteins that are finally 
ranked toward their interdependency with each reference group 
member. The proximity values between the two groups are 
calculated. Now for every member of the reference partition, 
all tests to reference correlation coefficients will be calculated. 
With these correlation coefficients, the respective number of 
regression approaches is performed together for each order of 
the test partition. The order of the test configuration will be 
drawn from a complete enumeration of all possible and unique 
test group orders. The sum of squares will be summed up over 
all regressions per order. This will be done on all enumerated 
orders, and the minimum will be selected (Fig. 1).

So, the process exhaustively analyzes systematically all 
possible permutations of the test partition concerning the opti-
mization measure (sum of sum of squares). This measure does 
mark an optimal ranking of the strength of the dependen-
cies of all proteins. Additionally, the measure controls (a) the 
errors resulting from imprecise measurements and even more 
importantly improves (b) the accuracy by comparing different 
situations of dependencies (for each reference member).
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The result can be visualized in a panel of connected 
regression plots and will show an optimal rank order of depen-
dencies of one partition of proteins against a reference parti-
tion. One feature of this rank order is that some few proteins 
added to the ranking partition do not destroy the overall rank-
ing structure instead insert in the ranking due to their inter-
dependency strength.

The algorithm is not limited to TMA data, but appli-
cation to other types of expression data or even more gen-
eralized to any data describing systemic changes has to be 
carefully examined.

Implementation of the Algorithm
The software is available for download in an OpenMP variant 
and a MPI variant, therefore nicely scaling by CPU core and 
computer number. Both program types are also functional on 
single core machines.

The command line binaries are compiled for Linux. Addi-
tionally, the Fortran sources are available and can be compiled 
by either the GNU compiler collection (4.6.3) or the Intel 
Fortan compiler (Intel parallel studio XE 2013 update 1) for 
Linux and newer versions thereof. The code does not include 
any specific dependencies except that for the MPI packages. 
The MPI versions for 2 and more cores are therefore dependent 
on the MPI framework (MPICH 3.0.2–3.1.4 are tested). For 
the binaries, we utilized the compiler option -static to pack 

all the essential libraries into the executables to make them 
largely independent.

The procedure takes relative score values of proteins 
immunohistologically measured on a TMA generated 
according to established scoring schemes. These score values 
should be positive or scaled to be positive due to the used 
proximity measure (Pearson correlation). In the rare cases 
where the return values of the correlation measure are inde-
termined, the smallest nonzero values will be taken. Nor-
mally, these cases are rare and might only happen if constant 
integer vectors are used or if the numerical limits of the 
program are touched (4 byte; decimal fraction of 10 digits). 
Nevertheless, these cases are reported in the report file (.log) 
to raise attention. Overall, the impact of this issue on the 
results is low, until the variance in all of the data is as low. 
So the preanalytical procedures should include some testing 
of the (statistical) data properties to exclude such situations. 
After the run, the log file will contain all run-specific details 
and the used amount of time. The result file will host the 
minimum sum of squares (ssqg) value and the correspond-
ing ranking (a vector representing the new order of the test 
proteins). If the number of protein measurements in the test 
partition exceeds 14, the computational time to calculate all 
permutations explodes (Fig. 2A and B). At the moment, the 
workaround to deal with such a situation is to divide the 
analysis into multiple approaches. This can be realized by 
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Figure 1. Algorithm – searching for the optimal order explaining best all connected reference situations. The graph describes the core functionality of 
the algorithm. Top panel: as an example, a set of eight proteins named A–H was measured. Middle panel: the set of proteins is partitioned in two sets 
also called test and reference. The two groups can be interchanged, but normally the test group will collect less well-characterized proteins, while the 
reference groups might comprise well-characterized proteins, marking different equilibrium states of a biological system, eg, contrasting differentiation 
end points, such as CK 5/6 and CK 8/18, in basal and luminal cells in the mammalian gland. Bottom panel: The space of a complete enumeration of all 
test string permutations of partition 1 is searched for a minimal sum of squares resulting from the generalized regression. The regression is based on the 
Pearson correlation coefficients of, eg, A–B to A–H.  
Note: The red character C should be a visual marker to recognize different orders in the string.
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analyzing overlapping chunks of the test partition versus a 
constant reference partition.

A detailed description on input and output data for-
mats and further information is given in a tutorial file at the 

download location. Additionally, some R scripts are provided 
to import this data format into the R platform for statistical 
computing (https://www.r-project.org/) for further analysis 
and visualization.
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Figure 2. Software performance. (A–C) The run time determining step for larger calculations, the computation of the permutations of the test partition is 
illustrated. The results of the factorial function used to calculate the number of permutations are given for the test partition size from 1 to 17. (A and B) It 
can be clearly seen that for larger partition sizes, the combinatorial space grows dramatically. (A) A logarithmic scale while (B) shows the linear situation. 
For the purposes of comparison, a logarithmic growth (green) and a linear growth (blue) are also given. (C) The computational run time as a consequence 
thereof for the parallelization technology MPI and OpenMP. (D) The computational cost for the tool tins_mpi/omp (all combinations) in dependency from 
CPU core or pipeline number and parallelization technology. (E–H) The performance values of the tool tins_s_mpi/omp (best order) are presented in 
dependency from CPU core or pipeline number, resampling number and parallelization technology.
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Performance Aspects of the Software
The most time consuming step of the algorithm is the analysis 
of all permutations of the test partition. To get some insight 
into the behavior and time dependency of the tools under 
certain load conditions, we run several performance checks. 
The test computer was a typical workstation with a 4 core CPU 
(Intel Xeon E3–1200 “Ivy-Bridge” CPU up to 3.6 GHz), each 
owning two pipelines (eight CPU threads in total) and 32 GB 
ECC-RAM. The main memory was no limiting factor. The 
used random data set was based on 20 proteins with each hav-
ing 600 observations.

Figure 2A and B illustrates how fast the number of com-
putations is growing when the test partition size increases. The 
computational time for this process is shown in Figure 2C. It 

can be easily seen that PCs and workstations are limited to a 
test partition size of 15, while super computers might go until 
a size of 19. Therefore, this direct approach is limited to a small 
size of the test partition and different approaches or approxi-
mate solutions needed to be established to reach bigger sizes. 
Nevertheless, many interesting experimental situations can be 
perfectly addressed.

In Figure 2D, the performance behavior of the software 
tool calculating all combinations is given (the reference parti-
tion size of 6 and the test partition size of 10). Only a very weak 
dependency from the parallelization technology can be seen, 
and the software is scaling well across the cores. Additionally, 
it can be noted that using the second CPU core thread does 
not really improve the overall performance. This result might 
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be compared with Supplementary Figure  3  in the study by 
Buerger et al.16

Figure 2E–H presents results of the main software tool 
calculating the best dependency order of a selected pair of par-
titions while also be able to estimate the stability of the result 
by a resampling approach. We see that without any resam-
pling, the use of multiple cores is counterproductive (Fig. 2E, 
using again a partition size of 6 and 10, respectively). In the 
resampling situation (Fig. 2F–H), we see the same savings of 
computing time as in Figure 2D.

The parallelization technology does not differ much on 
one workstation but indeed this will change on a computing 
cluster.

Example of Use
The core elements of the workflow are illustrated in Figure 3. 
The algorithm was already applied on several different cancer 
TMAs with a varying number of samples. Several examples of 
use are already published.16–19

A step-by-step tutorial including a fully functional test 
example is available in the download section. Some important 
aspects are also exemplified in the following paragraphs.

If the number of samples is low or only molecules with 
the same regulatory behavior will be analyzed, the algo-
rithm might not show remarkable results. The latter one is 
a constitutive problem and can only be solved by introduc-
ing antagonistic molecular player in the reference partition. 
In a noisy environment, it might be helpful to increase the 
number of samples beyond the guiding value of approximately 
150–200 samples. The appropriate values should be estimated 
according to the quality plots given in the study by Buerger 
et al.16 (cf., Fig. 6 and Supplementary Fig. 2 in that publica-
tion). The impact of these limits has to be evaluated for each 
specific situation.

According to Figure 3, the data have to be a tab sepa-
rated text format (end of line marker: Linux style). The data 
are organized in columns per protein measurement. The 
rows depict samples. A header and sample identifier column 
is advised. Names should be simple and without blanks. 
The partitioning scheme is a single line with tab-separated 
entries. The order and length count. The first block con-
sists of two characters, followed by a reference block and 
a test block. Every number in the second and third blocks 
is a pointer to the column position in the data matrix. The 
length of the reference block is defined by a command 
line parameter.

There are two different command line tools. The primary 
one tins_s_mpi/omp is searching for an optimal interdepen-
dency solution for the selected partitions. This tool is also able 
to test in the same run the quality of the solution by creat-
ing shuffling or bootstrap controls. In our context, shuffling 
means that the whole order of the raw data matrix is ran-
domized, while bootstrap refers to the bootstrap algorithm,20 
and samples will be drawn with replacement on each raw 

protein measurement vector separately. So, both resampling 
approaches address different levels of randomization.

The second tool tins_mpi/omp explores all partitions 
of a certain size. At this point, we get insight in the distri-
bution of minimal sum of squares values. This tool is of 
interest if properties of the combinatorial space should be 
analyzed. Both tools are available in the MPI (mpi) and  
OpenMP (omp) technology.

Conclusion
The established procedure analyzes protein dependencies in 
TMA data and fills a gap in this field. Beyond that, it is a 
combinatorial procedure that tries to decipher system states 
in a noisy environment. The already published results docu-
ment the gain for the TMA-based research in pathology and 
molecular pathology. The now published tool allows a broader 
scientific audience to utilize this approach autonomously for 
their own research.

Availability and Requirements
Project name: TMAinspiration
Project home page: http://complex-systems.uni-muenster.de/
tma_inspiration.html
Operating system(s): Binaries: Linux, source code: any
Programming language: Fortran 95 (and up), R scripts
Other requirements: none
License: GNU GPL
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