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Abstract
Mitochondria and NADPH oxidase are important sources of reactive oxygen species in par-

ticular the superoxide radical (ROS) in pancreatic islets. These molecules derived from

molecular oxygen are involved in pancreatic β-cells signaling and control of insulin secre-

tion. We examined the involvement of ROS produced through NADPH oxidase in the leu-

cine- and/or glucose-induced insulin secretion by pancreatic islets from fed or 48-hour

fasted rats. Glucose-stimulated insulin secretion (GSIS) in isolated islets was evaluated at

low (2.8 mM) or high (16.7 mM) glucose concentrations in the presence or absence of leu-

cine (20 mM) and/or NADPH oxidase inhibitors (VAS2870–20 μM or diphenylene iodonium

—DPI—5 μM). ROS production was determined in islets treated with dihydroethidium

(DHE) or MitoSOX Red reagent for 20 min and dispersed for fluorescence measurement by

flow cytometry. NADPH content variation was examined in INS-1E cells (an insulin secret-

ing cell line) after incubation in the presence of glucose (2.8 or 16.7 mM) and leucine (20

mM). At 2.8 mM glucose, VAS2870 and DPI reduced net ROS production (by 30%) and

increased GSIS (by 70%) in a negative correlation manner (r = -0.93). At 16.7 mM glucose

or 20 mM leucine, both NADPH oxidase inhibitors did not alter insulin secretion neither net

ROS production. Pentose phosphate pathway inhibition by treatment with DHEA (75 μM) at

low glucose led to an increase in net ROS production in pancreatic islets from fed rats (by

40%) and induced a marked increase (by 144%) in islets from 48-hour fasted rats. The

NADPH/NADP+ ratio was increased when INS-1E cells were exposed to high glucose (by

4.3-fold) or leucine (by 3-fold). In conclusion, increased ROS production through NADPH

oxidase prevents the occurrence of hypoglycemia in fasting conditions, however, in the

presence of high glucose or high leucine levels, the increased production of NADPH and

the consequent enhancement of the activity of the antioxidant defenses mitigate the excess

of ROS production and allow the secretory process of insulin to take place.
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Introduction
Our group has shown [1] that isolated rat pancreatic islets express a neutrophil-like nicotin-
amide adenine dinucleotide phosphate oxidase (NADPH oxidase), an enzyme complex that
forms superoxide (•O2

-) utilizing NADPH as electron donor [2, 3]. This enzyme complex is an
important source of superoxide during the process of insulin secretion induced by glucose
(GSIS), interleukins (e.g. IL-1β) or fatty acids (e.g palmitic acid, oleic acid, linoleic acid and γ-
linolenic acid) [4–10]. Alteration in the NADPH oxidase activity does impair the process of
GSIS by insulin secreting cell lines and pancreatic islets obtained from mice and rats [3–7].
Cytosolic superoxide dismutase (SOD1) converts •O2

- into hydrogen peroxide (H2O2) [11].
The H2O2 formed is removed by the action of other antioxidant enzymes (such as glutathione
peroxidase-GPx), which activity is dependent on NADPHmainly produced through the pen-
tose-phosphate pathway (PPP) [12–15]. Decreases in reactive oxygen species (ROS) content by
scavenging system occurs with increase in glucose utilization by pancreatic β-cells in a dose
and time-dependent manner [14]. Hydrogen peroxide inhibits glucose decarboxylation and
insulin secretion by isolated rat pancreatic islets as we previously reported [16]. In fact, isolated
islets show high net production of superoxide radical when exposed to low glucose concentra-
tion (2.8 mM).

The involvement of superoxide radical in insulin release under low and high glucose levels
in vivo remains unclarified. During fasting, pancreatic islets are exposed to low blood glucose
concentration that affects β-cell metabolism and insulin secretion and content. GSIS is
impaired in pancreas isolated from rodents after fasting for 16 [17], 24 [18, 19], 48 [17, 19–24],
72 [19, 25, 26], 96 ([24, 27], and 192 hours [27]. Changes in pancreatic islet secretory machin-
ery (e.g. decrease in pancreatic content of mRNAs for insulin and GLUT-2) [28] are involved
in the impairment of GSIS induced by fasting [22–24, 29]. The 48-hour period exhibits all
marked changes reported on insulin secretion and so it is not necessary to submit the animal to
longer periods of fasting. On the other hand, shorter periods may jeopardize the fasting conse-
quences due to the gastrointestinal transit and coprophagy.

In the present study, pancreatic islets from rats submitted to 48-hour fasting were used to
examine the control of insulin secretion by ROS, in particular superoxide radical, in a more
physiological way. We evaluated productions of ROS and insulin secretion in pancreatic islets
isolated from fed and 48-hour fasted rats. The islet incubation was performed in the presence of
glucose (2.8 or 16.7 mM), leucine (20 mM), NADPH oxidase inhibitors (3-benzyl-7-(2-benzox-
azolyl)thio-1,2,3-triazolo(4,5-d)pyrimidine—VAS2870, 20 μM; and diphenylene iodonium—

DPI, 5 μM), and an inhibitor of the pentose-phosphate pathway (dehydroepiandrosterone—
DHEA). Changes in the NADPH/NADP+ ratio associated with ROS production were evaluated
in INS-1E cells cultivated in the presence of glucose (2.8 or 16.7 mM) and leucine (20 mM).

Material and Methods

Ethical approval
Ethical Committee on Animal Research of the Institute of Biomedical Sciences of the Univer-
sity of São Paulo (CEUA) and Brazilian Society of Science in Laboratory Animals (SBCAL)
approved the experimental protocols of this study including that involved in the use of 48-hour
fasted rats. The approved protocol number is 080 as stated in the sheet 130 of the book 02.

Experimental protocols
Protocol 1. Pancreatic islets from fed rats were incubated for 120 minutes in the presence

of 2.8 or 16.7 mM glucose. Kinetic cytosolic ROS production was measured every 5 minutes.
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Protocol 2. Pancreatic islets from fed rats were incubated for 120 minutes in the presence
of 2.8 mM glucose or for 60 minutes with 2.8 mM glucose that was replaced by 16.7 mM glu-
cose and then maintained for another 60-minute period incubation. Kinetic cytosolic ROS pro-
duction was measured every 5 minutes.

Protocol 3. Pancreatic islets from fed rats were incubated for 60 minutes in the presence
of 2.8 or 16.7 mM glucose with or without addition of leucine (20 mM). Cytosolic ROS produc-
tion was measured at the end of the incubation period.

Protocol 4. Pancreatic islets from fed or 48-hour fasted rats were incubated for 60 minutes
in the presence of 2.8 mM glucose with or without addition of VAS2870 (20 μM) or DPI
(5 μM), associated or not with leucine (20 mM). Cytosolic and mitochondrial ROS production
and insulin secretion were measured at the end of the incubation period.

Protocol 5. Pancreatic islets from fed or 48-hour fasted rats were incubated for 60 minutes
in the presence of 2.8 mM glucose with or without addition of DHEA (75 μM). Cytosolic ROS
production was measured at the end of the incubation period.

Protocol 6. INS-1E cells were incubated for 60 minutes in the presence of 2.8 or 16.7 mM
glucose with or without addition of leucine (20 mM). NADPH/NADP+ ratio was measured at
the end of the incubation period.

Animals
Female Wistar rats aged 2–3 months with 250 ± 20 gram body weight were housed in cages
with five animals each in a room with constant temperature of 23 ± 2° Celsius on a 12-hour
light/dark cycle. Fed rats had free access to water and standard diet (Nuvilab, São Paulo, SP,
Brazil) whereas fasted rats had free access to water but were submitted to food deprivation
from 09:00 a.m. until to the time of the experiments after 48 hours. Preliminary experiments
showed marked effects of fasting on pancreatic islets only after 48 hours.

Isolation of pancreatic islets
Isolation of pancreatic islets was carried out by the method of exocrine pancreas digestion
using collagenase [30]. The rats were euthanized and a midline laparotomy was performed.
The bile duct was clamped at its distal end where a needle was introduced to inject 20 mL of
collagenase solution (0.68 mg/mL—Sigma-Aldrich, St. Louis, MO, USA). The pancreas was
dissected, placed in a bath at 37°C for 25 minutes and shaken by hand for 1 minute for exocrine
pancreas digestion. The sample was washed three times to remove exocrine pancreas and pan-
creatic islets were collected in a Petri dish using a micropipette and a stereoscope. Similar pro-
cedure was used in our previous studies [8, 31–33].

Static insulin secretion
Groups of 5 islets isolated from fed or fasted Wistar rats were placed in a microtube and pre-
incubated for 30 minutes in Krebs-Henseleit buffer containing 0.1% albumin and 5.6 mM glu-
cose and then incubated for 1 hour at 37°C with 2.8 or 16.7 mM glucose associated or not with
20 mM leucine, VAS2870 (20 μM) or DPI (5 μM). After incubation, 300 μL of the supernatant
were stored at -20°C for determination of secreted insulin. The islets were disrupted for mea-
surement of intracellular insulin content. The amounts of secreted and intracellular insulin
were determined by radioimmunoassay (RIA) [34].

Control of Insulin Secretion by Reactive Oxygen Species

PLOS ONE | DOI:10.1371/journal.pone.0158166 June 30, 2016 3 / 17



Measurement of net cytosolic ROS production
Groups of 20 islets isolated from fed or fasted Wistar rats were placed in a microtube and pre-
incubated for 30 minutes in Krebs-Henseleit buffer containing 5.6 mM glucose and 0.1% albu-
min, followed by 1 hour incubation at 37°C with: a) 2.8 or 16.7 mM glucose associated or not
with 20 mM leucine; b) 2.8 mM glucose associated or not with 20 mM leucine, VAS2870
(20 μM) or DPI (5 μM); c) 2.8 mM glucose associated or not with the inhibitor of the pentose-
phosphate pathway dehydroepiandrosterone (DHEA-75 μM). Afterwards, the samples were
kept at room temperature for 20 minutes with 50 μM dihydroethidium (DHE– Life Technolo-
gies, Eugene, Oregon, EUA) [35].

The incubation solution was removed and islets were treated with 300 μL trypsin for 2 min-
utes at 37°C. Afterwards, 600 μL RPMI-1640 culture medium were added to the tubes for tryp-
sin inactivation. The supernatant was discarded and the islets homogenized in 200 μL RPMI-
1640 culture medium for complete cell dispersion. The samples were placed in a 96 well plate
and analyzed by flow cytometry (Guava EasyCyte 8HT—Millipore, Billerica, MA, USA).

DHE is a redox sensitive probe that has been used to label live cells and to measure produc-
tion of ROS in particular superoxide. DHE is oxidized by reactive oxygen and nitrogen species
(e.g. superoxide, hydrogen peroxide, hydroxyl radical, and peroxynitrite) and forms ethidium.
DHE oxidation by superoxide only generates 2-hydroxyethidium. Both eithidium and
2-hydroxyethidium bind to DNA and stain the cells in a cumulative way (excitation 535 nm,
emission 610 nm) [36–40] despite the short half-life of superoxide radical. Therefore, we mea-
sured herein the net production of ROS in particular superoxide.

Measurement of net mitochondrial ROS production
The same protocol described above was used, except that MitoSOX Red reagent (Life Technol-
ogies, Eugene, Oregon, USA—5 μM) substituted DHE. MitoSOX Red reagent is a fluorogenic
dye ethidium-based probe specifically targeted to mitochondria. MitoSOX was developed by
conjugating methyltriphenylphosphonium ion, a lipophilic cation that accumulates in ener-
gized mitochondria [41], to DHE. The accumulation of red fluorescence (excitation 510 nm,
emission 580 nm) indicates the net production of ROS in the mitochondria as described above
for cytosol [42–46].

Kinetic measurement of net cytosolic ROS production
Groups of 20 islets isolated fromWistar rats were pre-incubated for 30 minutes in 500 μL
Krebs-Henseleit buffer containing 5.6 mM glucose and 0.1% bovine serum albumin. Islets were
treated with 100 μL trypsin at 37°C for 3 minutes, inactivated with 100 μL RPMI 1640 culture
medium, transferred to 1.5 mL tubes and centrifuged during 3 minutes at room temperature.
The supernatant was discarded and the islets homogenized in 200 μL RPMI-1640 culture
medium for complete cell dispersion. The samples were then transferred to 96 well plates with
200 μL Krebs-Henseleit buffer containing DHE (50 μM) and: a) 2.8 mM or 16.7 mM glucose
for 120 minutes; b) 2.8 or 2.8 replaced by 16.7 mM glucose after 60 minutes and maintained
for another period of 60 minutes. Fluorescence was read each 5-minute period (Multi-Detec-
tion Microplate Reader—BioTek) during 120 minutes.

Measurement of the NADPH/NADP+ ratio in INS-1E cells
The measurement of NADPH was not performed in isolated islets since it would require too
many islets and consequently too many animals. The measurement of the NADPH/NADP+

ratio was then carried out in INS-1E cells by using the NADPH/NADP+ Quantification Kit
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(Sigma-Aldrich, St. Louis, MO, USA). The INS-1E insulin secreting cells were pre-incubated
for 30 minutes in Krebs-Henseleit-buffer containing 0.1% albumin and 5.6 mM glucose and
then incubated for 1 hour at 37°C with 2.8 or 16.7 mM glucose associated or not with 20 mM
leucine. After incubation, the supernatant was discarded and 150 μL extraction buffer were
added. Sonicated and deproteinized samples were then placed in a 96 well plate along with
100 μL NADP cycling buffer and NADP cycling enzyme mix, and were incubated for 5 minutes
at room temperature. Ten μL of NADPH developer were added to each well and after 2 hours,
the samples were analyzed by fluorometry (Synergy™H1 Hybrid Multi-Mode Microplate
Reader—BioTek).

Statistical analysis
Results are expressed as mean ± standard error of the mean. Student’s t-test or analysis of vari-
ance (ANOVA) followed by Dunnett´s post-test was used when appropriate as indicated.
Comparisons were considered as significantly different for p<0.05. The GraphPad Prism 5
software was used for the analysis.

Results

Glucose control of net ROS production by pancreatic islets from fed rats
ROS production by pancreatic islets was significantly higher after 120-minute incubation in
the presence of 2.8 mM as compared to 16.7 mM glucose (Fig 1A and 1B), as indicated by the
lower area under the curve (33%) at high glucose level. The replacement of 2.8 mM by 16.7
mM glucose in the medium led to a significant decrease in net ROS production by pancreatic
islets (Fig 2A and 2B) as indicated by a significant lower area under the curve (29%) at high glu-
cose level.

Net ROS production by pancreatic islets from fed rats in the presence of
20 mM leucine and 2.8 or 16.7 mM glucose
Net ROS production by pancreatic islets was significantly lower after one-hour incubation in
the presence of 20 mM leucine with 2.8 mM glucose as compared to 2.8 mM glucose only (Fig
3). However, in the presence of 16.7 mM glucose, leucine (20 mM) did not change net ROS
production in comparison with 16.7 mM glucose only.

ROS production and insulin secretion by pancreatic islets from fed and
fasted rats in the presence of 2.8 mM glucose with 20 mM leucine and
NADPH oxidase inhibitors
Net ROS production in the presence of 2.8 mM glucose by pancreatic islets obtained from
48-hour fasted rats was significantly higher (by 123%) compared with those from fed rats (Fig
4A). Insulin secretion in the presence of 2.8 mM glucose by isolated islets obtained from
48-hour fasted rats was significantly lower (by 69%) compared with fed rats. This effect did not
occur in the presence of 20 mM leucine (Fig 4B) despite the decrease in net ROS production.
The additions of VAS and DPI reduced net ROS production and caused an increase of insulin
secretion in pancreatic islets isolated from 48-hour fasted rats. The inverse correlation between
insulin secretion and net production of ROS under the treatments with VAS and DPI is indi-
cated in the graphs. Correlation, however, was not observed when pancreatic islets were treated
with 2.8 mM glucose plus 20 mM leucine. Under this latter condition, insulin secretion was
enhanced as compared to 2.8 mM glucose only but net ROS production remained unchanged.

Control of Insulin Secretion by Reactive Oxygen Species
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Treatment with both NADPH oxidase pharmacological inhibitors caused a significant
decrease in net ROS production at 2.8 mM glucose and an increase of insulin secretion by pan-
creatic islets obtained from fed rats in an inverse (r = −0.93) correlation manner. The same was
observed (r = -0.86) in pancreatic islets obtained from fasted rats (Fig 4C).

Fig 1. Kinetic measurement of net cytosolic ROS production. (A)Mean fluorescence intensity (MFI—arbitrary units) by pancreatic islets
isolated from fed rats, treated with dihydroethidium (DHE), and measured every 5 minutes during 120-minute incubation in the presence of 2.8
or 16.7 mM glucose—experimental protocol 1. (B) The corresponding areas under the curves were then calculated. The results are presented
as mean ± SEM of four cell preparations for each group. * p <0.05 as compared to 2.8 mM glucose and indicated by the Student’s t-test.

doi:10.1371/journal.pone.0158166.g001
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Fig 2. Kinetic measurement of net cytosolic ROS production. (A)Mean fluorescence intensity (MFI—arbitrary units) by pancreatic islets
isolated from fed rats, treated with dihydroethidium (DHE), and incubated with 2.8 mM glucose for 120 minutes or for 60 minutes with 2.8 mM
glucose that was replaced by 16.7 mM glucose and then maintained for another 60-minute period incubation—experimental protocol 2. (B) The
corresponding areas under the curves were then calculated. The results are presented as mean ± SEM of five cell preparations for each group.
*p <0.05 as compared to 2.8 mM glucose and indicated by the Student’s t-test.

doi:10.1371/journal.pone.0158166.g002
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Changes in ROS production by pentose phosphate pathway inhibition
Increasing concentrations of dehydroepiandrosterone (DHEA), an inhibitor of the pentose
phosphate pathway (PPP), raised net ROS production by pancreatic islets from fed rats in the
presence of 2.8 mM glucose. Islets isolated from 48-hour fasted rats, however, showed
increased net production of ROS and the treatment with DHEA (75 μM) caused an additional
increment (Fig 5).

Changes of NADPH/NADP+ ratio in INS-1E cells cultivated in the
presence of 20 mM leucine and 2.8 or 16.7 mM glucose
The NADPH/NADP+ ratio was increased after treatment with leucine or higher glucose con-
centration (16.7 mM) when compared to 2.8 mM glucose (Fig 6).

Mitochondrial ROS measurement
There was no significant difference in net mitochondrial ROS production by isolated islets
obtained from fed or 48-hour fasted rats in all conditions studied (Fig 7).

Discussion
The increases in glucose concentration reduced net ROS production (Figs 1–3) by pancreatic
islets. These findings confirm previous reports glucose loading decreases net production of
•O2

- [47] and H2O2 parallel with an increase in NADPH concentrations in insulin secreting
cells [4, 16, 48–50]. Pancreatic β-cells show low antioxidant enzyme activities compared to
other tissues, in particular glutathione peroxidase (GPx), the only enzyme present in the cyto-
sol, which can inactivate H2O2 generated through SOD1 action [51]. The maintenance of the
redox state at high glucose concentration is achieved mainly through activation of the pentose
phosphate pathway (PPP) and production of NADPH [12, 13, 49, 50]. Despite low antioxidant
defense activity, pancreatic β-cell machinery can handle with increased production of oxidant
molecules through an efficient production of NADPH in healthy conditions. This does not

Fig 3. Net ROS production by pancreatic islets from fed rats in the presence of 20 mM leucine and 2.8
or 16.7 mM glucose.Mean fluorescence intensity (MFI—arbitrary units) by pancreatic islets from fed rats,
treated with dihydroethidium (DHE), and incubated for 60 minutes in the presence of 2.8 or 16.7 mM glucose
with or without addition of leucine (LEU—20 mM)–experimental protocol 3. The results are presented as
mean ± SEM of four cell preparations for each group. *p <0.05 as compared to 2.8 mM glucose only and
indicated by one-way ANOVA and Dunnett's post test.

doi:10.1371/journal.pone.0158166.g003
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apply to conditions associated to unbalanced antioxidant enzyme activities that results in oxi-
dative stress [52].

Our group [14] showed that DHEA, an inhibitor of glucose-6-phosphate dehydrogenase
(G6PDH), the rate-limiting enzyme of the PPP [53], leads to an increase in net ROS production
and markedly decreases glucose-stimulated insulin secretion. The DHEA effect is abolished
by treatments with antioxidant agents such as N-acetyl-L-cysteine (NAC) and catalase (PEG-
CAT) [14]. The protective effect of NAC on MIN6 pancreatic tumor cell lines abolishing

Fig 4. ROS production and insulin secretion by pancreatic islets from fed and fasted rats in the presence of 20 mM leucine and 2.8 or
16.7 mM glucose. (A)Mean fluorescence intensity (MFI—arbitrary units) and (B) insulin secretion by pancreatic islets from fed (CT) or
48-hour fasted (48h) rats, treated with dihydroethidium (DHE), and incubated for 60 minutes in the presence of 2.8 mM glucose with or without
addition of VAS2870 (20 μM) or DPI (5 μM), associated or not with leucine (LEU—20 mM)–experimental protocol 4. The results are presented
as mean ± SEM of four different cell preparations for each group * p <0.05 compared to fed control (CT) under the same conditions as
indicated by the Student t-test. (C) Inverse correlation between MFI and insulin secretion in the presence of 2.8 mM glucose with or without
addition of VAS2870 (20 μM) or DPI (5 μM) in pancreatic islets isolated from fed or 48-hour fasted rats as indicated by the correlation test
using the GraphPad Prism 5.

doi:10.1371/journal.pone.0158166.g004
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oxidative stress and apoptosis induced by aldosterone has been reported [54]. NAC provides
cysteine for the formation of reduced glutathione (GSH) increasing the GSH/GSSG ratio and
so antioxidant cell defense systems. Diabetes-associated clinical features such as glucose intol-
erance, loss of pancreatic β-cell mass and increased oxidative stress are then attenuated [54].

Fig 5. Changes in ROS production induced by pentose phosphate pathway inhibition.Mean
fluorescence intensity (MFI—arbitrary units) by pancreatic islets from fed (CT) or 48-hour fasted (48h) rats,
treated with dihydroethidium (DHE), and incubated for 60 minutes in the presence of 2.8 mM glucose with or
without addition of dehydroepiandrosterone (DHEA—75 μM)–experimental protocol 5. The results are
presented as mean ± SEM of five different cell preparations for each group. * p <0.05 compared to fed control
(CT) under the same conditions as indicated by the Student t-test.

doi:10.1371/journal.pone.0158166.g005

Fig 6. Changes of NADPH/NADP+ ratio in INS-1E cells cultivated in the presence of 20 mM leucine and
2.8 or 16.7 mM glucose.NADPH/NADP+ ratio in INS-1E cells incubated for 60 minutes in the presence of
2.8 or 16.7 mM glucose with or without addition of leucine (LEU—20 mM)–experimental protocol 6. The
results are presented as mean ± SEM of three different cell preparations for each group. *p <0.05 compared
to 2.8 mM glucose as indicated by the Student t-test.

doi:10.1371/journal.pone.0158166.g006
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DHEA (75 μM) in the presence of 2.8 mM glucose caused a 44% increase in net ROS pro-
duction by pancreatic islets obtained from 48-hour fasted rats compared with islets obtained
from fed rats (Fig 5). These results confirm the observation that activation of the PPP promotes
a decrease of net ROS production by pancreatic β-cells possibly by supplying NADPH for
reduced glutathione formation [49]. Although NADPH oxidase uses NADPH to generate •O2

-

[50] (Fig 8), in the presence of high glucose levels this nucleotide is deviated to production of
antioxidant molecules that remove ROS and prevent oxidative stress [49]. In addition to
NADPH oxidase, mitochondria also generate superoxide radical as byproducts of mitochon-
drial electron transport chain. Islets from fasted rats showed similar net ROS production in
mitochondria compared with those from fed rats (Fig 7).

The low net ROS production by pancreatic islets in the presence of 2.8 mM glucose plus 20
mM leucine as compared to 2.8 mM glucose only (Fig 3) can be explained by metabolism of
leucine through the Krebs cycle. Leucine leads to an increase in citrate production that in
association with ATP inhibits phosphofructokinase activity, the most important regulatory
enzymes in the glycolytic pathway that catalyzes the conversion of fructose 6-phosphate and
ATP to fructose 1,6-bisphosphate and ADP [55, 56]. The increase in acetyl-CoA formation,
also as a product of leucine metabolism, inhibits pyruvate dehydrogenase activity, resulting in
accumulation of pyruvate. These metabolic changes promote inhibition of glycolysis facilitat-
ing the deviation of the flux of substrates from glycolysis to the PPP and so the increase in
NADPH production [49].

Furthermore, leucine metabolism also leads to formation of α-ketoisocaproic acid (α-KIC)
and glutamate. α-KIC enters the Krebs cycle and is metabolized to acetyl-CoA. Glutamate is
deaminated by glutamate dehydrogenase forming 2-oxoglutarate with subsequent formation of
NADPH (Fig 8). Leucine metabolism leads to an increase in 2-oxoglutarate and intermediates
of the citric acid cycle, such as citrate, which, in turn, when in high concentration, migrates to
cytosol through translocase tricarboxylate, where it is converted to oxaloacetate and acetyl-
CoA by citrate lyase. Oxaloacetate is converted to malate that in turn is oxidized to pyruvate by
malic enzyme forming NADPH. Citrate is converted to isocitrate that through the cytosolic
isocitrate dehydrogenase also generates NADPH (Fig 8).

Fig 7. Mitochondrial ROSmeasurement.Mean fluorescence intensity (MFI—arbitrary units) by pancreatic islets from fed (CT) or 48-hour
fasted (48h) rats. The islets were treated with MitoSOX Red reagent and incubated for 60 minutes in the presence of 2.8 or 16.7 mM glucose
with or without addition of VAS2870 (20 μM) or DPI (5 μM) associated or not with leucine (LEU—20 mM)—experimental protocol 4. The
results are presented as mean ± SEM of four cell preparations for each group as indicated by one-way ANOVA and Dunnett's post test.

doi:10.1371/journal.pone.0158166.g007
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Fig 8. Metabolic pathways associated to NADPH production from glucose and leucine oxidation in pancreatic
islets. The sites indicated are: the pentose phosphate pathway and reactions involving intermediates of the Krebs
cycle. ACO, aconitase; CYT, cytosol; DHEA, dehydroepiandrosterone; G3P, glyceraldehyde-3-phosphate
dehydrogenase; GDH, glutamate dehydrogenase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH,
reduced glutathione; GSSG, oxidized glutathione; IDH, isocitrate dehydrogenase; ME, malic enzyme; MIT,
mitochondria; PDH, pyruvate dehydrogenase; PPP, pentose phosphate pathway; SOD1, superoxide dismutase 1;
2OG, 2-oxoglutarate; α-KIC, α-ketoisocaproic acid.

doi:10.1371/journal.pone.0158166.g008
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The decrease in net ROS production (about 30%) through NADPH oxidase inhibition in
the presence of VAS2870 or DPI by pancreatic islets exposed to 2.8 mM glucose (Fig 4) con-
firms the participation of this enzyme complex in the maintenance of the pancreatic β-cells
redox state [2, 57]. The effects of NADPH oxidase inhibitors and leucine reported for 2.8 mM
glucose were not observed at 16.7 mM glucose (S8 Fig). This latter observation was probably
due to optimally activated state of the antioxidant defense systems in high glucose levels and/or
leucine metabolism as described above.

Another ROS H2O2 has been shown to inhibit glyceraldehyde-3-phosphate dehydrogenase
(glycolytic pathway) and aconitase (Krebs cycle) activities and insulin secretion [14–16, 58,
59]. Herein, an inverse correlation (Fig 4C) was found between the decrease in the net ROS
production induced by the inhibitors of NADPH oxidase and the elevation in insulin secretion
at 2.8 mM glucose.

The net production of ROS was increased whereas insulin secretion was decreased in pan-
creatic islets from 48-hour fasted as compared to fed rats. This is an in vivo evidence for the
suppressing effect of ROS on insulin secretion reported in vitro [14]. In fact, the fasting condi-
tion pronounced the inverse correlation between the mean fluorescence intensity (MFI) and
insulin secretion observed in pancreatic islets from fed animals (Fig 4C). Possible circulating
factors associated with the changes observed in insulin secretion and oxidative stress in pancre-
atic β-cells from 48-hour fasted rats remain to be investigated.

VAS2870 and DPI also decreased net ROS production by pancreatic islets in a negative cor-
relation manner with insulin secretion being an additional evidence for the participation of
NADPH oxidase and radical superoxide in this secretory process (Fig 4). In spite of the fact
that leucine, at 2.8 mM glucose, decreased net production of ROS by pancreatic islets, insulin
secretion was raised under this condition. This effect was probably due to elevation of ATP/
ADP ratio as a consequence of leucine metabolism through the Krebs cycle (Fig 8).

Conclusions
The present work shows that increased ROS in particular superoxide radical production
through NADPH oxidase may contribute to avoid the occurrence of hypoglycemia in fasting
conditions.
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