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Abstract

Recent positive clinical trials using mechanical thrombectomy proved that endovascular 

recanalization is an effective treatment for patients with acute stroke secondary to large vessel 

occlusions. The trials offer definite evidence that in acute ischemia recanalization is a powerful 

predictor of good outcome. However, even in the era of rapid and effective recanalization using 

endovascular approaches, the percentage of patients with good outcomes varies between 33% and 

71%. In addition, the number of patients who are eligible for endovascular thrombectomy is small 

and usually based on having salvageable tissue on imaging. There is therefore room for 

improvement to both enhance the effectiveness of current practice and expand treatment to a larger 

subset of stroke patients. In this review, we highlight some of the most promising approaches to 

improve endovascular therapy by combining with strategies to enhance collateral perfusion and 

vascular protection.
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 Introduction

Acute ischemic stroke secondary to large vessel occlusion (LVO) is a common and 

devastating condition resulting in death and disability in a high proportion of patients. Over 

the last 2 decades, we progressed from an era of observation and mostly supportive care to 

an era of time- and imaging-guided acute recanalization of the occluded artery by 

endovascular thrombectomy (ET). Using latest generation technology 5 multicenter, 

controlled, randomized, clinical trials (MR CLEAN, ESCAPE, EXTEND IA, SWIFT-

PRIME and REVASCAT) showed superiority of the endovascular approach over medical 

management for acute LVO [1-5]. However, in these trials despite high rates of complete 
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recanalization by ET, there remained a subset of patients that had poor outcome [1-5]. It is 

therefore worth considering novel strategies for improving outcome from LVO in the era of 

rapid and effective ET.

In addition to the progress in acute recanalization, basic science research has made 

considerable progress in unraveling the complexity of pathophysiological events occurring 

after occlusion of a major cerebral artery. In addition, by examining the mechanisms playing 

a role in CBF changes and the ischemic cascade, basic and preclinical studies have revealed 

several promising therapeutic targets for treatment of acute stroke. However, although 

promising, neuroprotective agents have failed in phase II/III clinical trials [6,7]. Because 

neuroprotective agents are not likely to be efficacious without a vascular route needed to 

reach the target tissue, they are not likely to be beneficial in the absence of rapid 

recanalization of the occluded artery. Lack of a vascular route and incomplete reperfusion of 

downstream tissues may be some of the reasons behind the failure of neuroprotection in 

obtaining good outcomes in clinical trials for ischemic stroke in the pre-ET era.

To date, the target of all neuroprotective agents has been the ischemic penumbra, a region of 

constrained blood supply that is potentially salvageable if recanalization occurs rapidly or 

neuroprotective agents are present to prevent cell death [7-9]. However, not all patients have 

salvageable tissue on CT prior to recanalization and are therefore not good candidates for 

ET. In the era of rapid and effective ET, treatment that can prevent collateral failure or even 

open existing collaterals combined with ET-induced reperfusion may open the door to 

treating more patients effectively. In addition, the new generation of devices and advances in 

ET may allow for selective intra-arterial (IA) delivery of drugs or manipulation of CBF in 

relatively small vascular territories. IA treatment with ET may provide promising new 

approaches to improve outcome from LVO by enhancing reperfusion and limiting secondary 

injury such as edema and hemorrhage. The purpose of this review is to discuss the 

advancement in ET for acute stroke treatment and highlight some of the most promising 

potential approaches and targets for improved reperfusion therapies.

 Recanalization as a predictor of good outcome for acute ischemic stroke

The first major clinical step showing that recanalization of the occluded vessel was a 

powerful predictor of good outcome was the NIH/NINDS intravenous (IV) tissue 

plasminogen activator (tPA) trial [10]. The trial confirmed the important concept of time-

sensitive revascularization in acute ischemic stroke. Subsequently, the endovascular 

approach was pioneered as treatment for acute LVO. The first 3 clinical randomized trials of 

endovascular approach in LVO (SYNTHESIS Expansion, IMS III and MR RESCUE) failed 

to demonstrate superiority of the endovascular approach over standard IV tPA therapy 

[11-13]. There were several drawbacks in these trials, in particular the use of first generation 

thrombectomy devices that likely prevented them from showing benefit because of extended 

time needed for revascularization. Using latest generation technology, MR CLEAN, 

ESCAPE, EXTEND IA and SWIFT-PRIME, and REVASCAT, 5 multicenter, controlled, 

randomized, clinical trials showed superiority of the endovascular approach over medical 

management for acute LVO [1-5]. The following is a brief review of the design and outcome 

from the 5 successful ET trials.
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 Multicenter Randomized Clinical Trial of Endo-vascular Treatment for Acute Ischemic 
Stroke in the Netherlands (MR CLEAN)

MR CLEAN was a randomized controlled trial of eligible acute stroke patients to either 

endovascular intervention plus standard medical management versus medical management 

only [1]. Inclusion criteria were patients with a proximal anterior circulation LVO within 6 

hours after symptom onset. Primary outcome was 90 day modified Rankin Scale (mRS). The 

treatment effect was estimated with ordinal logistic regression over the entire range of the 

mRS score (shift analysis). The investigators randomized 500 patients in 16 medical centers, 

233 were randomized to ET and 267 to standard medical care that included IV tPA. 

Retrievable stents were used in 190 of the 233 patients (81.5%) assigned to IA treatment. In 

the endovascular arm, 32.6 % of patients had a mRS ≤ 2 at 90 days compared to 19.1% in 

the medical management arm. In the trial, there was an absolute difference of 13.5 

percentage points (95% CI, 5.9 to 21.2) in the rates of patients with mRS < 2 (0 to 2) in 

favor of the intervention (32.6% vs. 19.1%). With regards to safety, there were no significant 

differences in the rates of symptomatic intracerebral hemorrhage (ICH) or mortality between 

the two groups.

 Endovascular Treatment for Small Core and Anterior Circulation Proximal Occlusion with 
Emphasis on Minimizing CT to Recanalization Times (ESCAPE)

The ESCAPE trial was a multicenter, prospective, randomized, open label, controlled trial 

with blinded outcome evaluation (PROBE design) [2]. Eligible stroke patients were 

randomized 1:1 to receive endovascular treatment or guideline-based care alone (control 

group). Inclusion criteria were patients with a proximal, intracranial, anterior circulation 

LVO within 12 hours after symptom onset. In addition to the clinical inclusion criteria, 

ESCAPE had an imaging component. In fact, patients with a large infarct core assessed by 

the Alberta Stroke Program Early Computed Tomography Score (ASPECTS) score or poor 

collateral circulation on CT angiography were excluded from randomization. Importantly, 

the ESCAPE operators were encouraged to reach pre-determined time targets from CT to 

groin and CT to recanalization. The trial was stopped early because the interim analysis 

demonstrated “overwhelming superiority” of the endovascular approach over medical 

management. In particular, in 22 centers worldwide, the investigators enrolled 316 patients 

of which 238 received IV tPA with 120 included in the endovascular arm and 118 in the 

control arm. In the endovascular arm, median time from CT to first reperfusion was 84 

minutes. Rate of “functional independence” (mRS ≤ 2) was increased by mechanical 

thrombectomy (53.0%, vs. 29.3% in the control group; P<0.001). The median 90-day was 

mRS 2 in the intervention group and 4 in the control group (P<0.001). Mortality was lower 

in patients who underwent mechanical thrombectomy (10.4%, vs. 19.0%; P=0.04).

 Extending the Time for Thrombolysis in Emergency Neurological Deficits — Intra-
Arterial (EXTEND-IA)

EXTEND-IA was a multicenter, prospective, randomized, open-label, with blinded end-

point trial of patients treated with IV tPA as criteria for randomization [3]. In particular, the 

investigators selected acute ischemic stroke patients who received standard 0.9 mg/kg of IV 

tPA within 4.5 hours after symptom onset. These patients were then subsequently 
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randomized to mechanical thrombectomy with stent retriever or IV tPA alone. As inclusion 

criteria EXTEND IA included LVO or anterior circulation occlusions. In addition, the trial 

had as inclusion criteria evidence of ischemic core of less than 70 ml on CT perfusion 

imaging. As primary outcomes, the investigators selected reperfusion at 24 hours and early 

neurologic improvement indicated by ≥8-point reduction on the NIHSS or a score of 0 or 1 

at day 3. Secondary outcomes included the functional score on mRS at 90 days. Similar to 

ESCAPE, EXTEND-IA had an interim analysis triggered by the results of MR CLEAN. 

After analyzing the data, the Data Monitoring Safety Board (DSMB) decided to halt the trial 

for overwhelming efficacy of ET after only 70 patients were randomized.

The percentage of patients who were functionally independent (i.e., mRS ≤ 2 at 90 days) 

was 71% in the endovascular arm. This rate of functional independence was the highest of 

all trials. In addition, early neurologic improvement at 3 days was extremely high in patients 

treated with mechanical thrombectomy compared to IV tPA (80% vs. 37%, P=0.002). With 

regards to perfusion imaging, the ischemic core underwent successful revascularization 

resulting in decrease in the growth of the ischemic core at 24 hours. This was greater in the 

endovascular group compare to the IV tPA group (median, 100% vs. 37%; P<0.001). Similar 

to MR CLEAN and ESCAPE, in EXTEND-IA there were no significant differences in rates 

of death or symptomatic ICH between patients treated with mechanical thrombectomy 

versus standard IV tPA.

 Solitaire with the Intention for Thrombectomy as Primary Endovascular Treatment 
(SWIFT PRIME)

SWIFT PRIME was an international, multicenter, prospective, randomized, open clinical 

trial, that compared acute stroke patients treated with IV t-PA compared to patients treated 

ET in conjunction with IV t-PA [4]. The trial was also stopped early because of efficacy. In 

39 centers, 196 patients underwent randomization. Thrombectomy plus IV t-PA was superior 

to IV tPA alone for disability over the entire range of the mRS at 90 days. In addition, the 

proportion of patients with functional independence (mRS ≤ 2) was higher in the ET group 

compared to controls (60% vs. 35%, P<0.001). With regards to safety, there were no 

significant differences between 90-day mortality (9% vs. 12%, P=0.50) or symptomatic ICH 

between the two groups (0% vs. 3%, P=0.12).

 Randomized Trial of Revascularization with Solitaire FR Device versus Best Medical 
Therapy in the Treatment of Acute Stroke Due to Anterior Circulation Large Vessel 
Occlusion Presenting within Eight Hours of Symptom Onset (REVASCAT)

REVASCAT was a multicenter, prospective, randomized, sequential, open-label phase III 

trial with blinded evaluation [5]. In the trial, the investigators treated patients with acute 

ischemic stroke within 8 hours after the onset of symptoms. Patients received either medical 

therapy (including IV t-PA when eligible) and ET (thrombectomy group) or medical therapy 

alone (control group). Similarly to SWIFT PRIME, ET reduced the severity of disability 

over the range of the mRS. In the trial, ET led to higher rates of functional independence 

(mRS ≤ 2) at 90 days (43.7% vs. 28.2%). In terms of safety, there was no difference in rates 

of symptomatic intracranial hemorrhage and death between the groups.
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 The role of collaterals and the ischemic penumbra in acute stroke 

treatment with ET

The recent positive ET trials described above reinforced the concept that rapid reperfusion of 

the ischemic brain is a powerful predictor of good outcome [1-5]. These trials also highlight 

that the greatest benefit was in those patients that had salvageable tissue on imaging. For 

example, in ESCAPE and EXTEND-IA trials, patients were excluded if they had a large 

ischemic core or poor collateral circulation based on CT angiography. The approach of 

selecting patients with robust collateral circulation as candidates for ET was based a large 

body of literature showing that: 1) the presence of robust collateral circulation has been 

shown to be a strong predictor for good outcomes after recanalization; 2) patients with good 

collaterals at stroke onset have better reperfusion rates, smaller infarcts, and less 

hemorrhagic transformation; and 3) patients with poor collaterals have low recanalization 

rates and poor outcomes even if recanalization is achieved [14,16,18-21].

The importance of collaterals in acute stroke is not just for clinical decision making and is 

not unique to ET. It is generally accepted that the ischemic penumbra is maintained by 

secondary collaterals that connect distal branches of major cerebral artery territories [22,23]. 

After MCA occlusion, the leptomeningeal anastomoses (LMA) between the MCA and 

anterior cerebral artery (ACA) vascular territories can sustain flow enough to keep neurons 

alive sometimes for hours beyond the treatment window of IV tPA [22,23]. Thus, LMA 

vessels are incredibly important in this regard as their size and number directly impact flow 

to the penumbral tissue and therefore slowing the enlargement of the ischemic core [24]. 

Collateral perfusion has been attributed to passive increases in flow from the unobstructed to 

the obstructed vascular territory. However in an isolated vessel preparation it has recently 

been shown that LMAs of chronically hypertensive rats were highly vasoconstricted and 

displayed considerable pressure-induced myogenic tone [25]. This was in contrast to LMAs 

from normotensive rats that were larger and more passive, a state that would be conducive to 

bidirectional flow [25]. The significance of this finding is that chronic hypertension is well-

known to be associated with poor outcome from ischemic stroke due to increased perfusion 

deficit and limited penumbral tissue [26-28]. That pial collaterals are vasoconstricted during 

hypertension - as opposed to structurally smaller - importantly suggests that LMAs can be 

opened to sustain or create penumbral flow to extend the time window for treatment. In 

addition, the potential to open vasoconstricted LMAs in stroke patients with poor collateral 

flow could increase the number of patients eligible for ET.

 Potential targets for collateral opening

One approach to opening vasoconstricted pial collaterals is pharmacologic inhibition of rho-

associated protein kinase (ROCK). ROCK is expressed and active in numerous cell types 

including vascular smooth muscle, endothelium, neurons, glia and immune cells [29]. 

Abnormal activation of ROCK is thought to have a key role in numerous pathologies, 

including hypertension, diabetes and atherosclerosis, conditions known to have poor 

outcome from stroke [30-33]. Stroke injury is also linked to ROCK activation through 

hemodynamic and microvascular dysfunction as well inflammation and oxidative stress 

[34-38]. Numerous animal studies have shown that inhibition of ROCK improves stroke 
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outcome in normal as well as diseased animals, likely through several mechanisms including 

augmenting collateral flow [35-40]. ROCK has also been shown to be involved in myogenic 

vasoconstriction [41], making it a potentially important and unique target to open collaterals.

Other potential targets for opening collaterals are the small- and intermediate-conductance 

calcium-activated potassium (SK and IK) channels. SK and IK channels are expressed only 

in cerebral endothelium and cause vasodilation through endothelium-dependent 

hyperpolarization (EDH) [44]. EDH is not basally active in large pial arteries, but is 

considered a backup vasodilator to nitric oxide (NO) under disease conditions when NO is 

inhibited or bioavailability is decreased [44]. In contrast, brain parenchymal arterioles have 

been shown to constrict in response to SK and IK channel inhibition, suggesting EDH is 

basally active in these small arterioles [25]. Recently, LMAs were shown to constrict to IK 

but not SK channel inhibition, suggesting basal IK channel activity that inhibits tone in pial 

collaterals. Although selective IK channel activation will likely dilate all cerebral arteries 

and arterioles, the sensitivity difference between the small arterioles and large arteries may 

make IK channel activation at low doses an effective means to open collaterals. Activation of 

IK channels as a vascular therapeutic is not a new concept and has been shown to improve 

coronary blood flow in both males and females [45].

NO donors are also potential targets for opening collaterals and are currently being tested in 

clinical trials to extend the time window for ET and tPA treatment. Interestingly, it was 

found that hyperconstricted LMAs from spontaneously hypertensive rats were highly 

unresponsive to dilation by the NO donor sodium nitroprusside [25]. While LMAs from 

normotensive and aged rats dilated 60-80% of maximum, LMAs from hypertensive rats 

dilated only ~20%. If there is a human counterpart to these co-morbid hypertensive rats that 

have LMAs that are relatively unresponsive to NO donors, it suggests a subpopulation of 

stroke patients will not respond either and this approach may be limited. That some animals 

and potentially human stroke patients are unresponsive to certain treatments highlights the 

complexity of stroke conditions and the state of the vasculature prior to and during stroke, 

including collaterals. A greater understanding of the functional state of the vasculature under 

multiple conditions and co-morbid states may help to tailor treatments that are effective in a 

greater number of patients.

 Targeting recanalization and reperfusion as a neuroprotective strategy

In the pre-ET era, recanalization therapies were limited by a short time window for which 

they provided benefit and low rates of reperfusion. Importantly, studies in animals and 

humans have shown that angiographic recanalization does not necessarily lead to complete 

reperfusion in downstream tissues [46-51]. Incomplete reperfusion may be a primary factor 

that increases perfusion deficit, decreases efficacy of early thrombolysis, and limits the 

ability to deliver neuroprotective agents to areas other than the penumbra [48,52-56]. The 

importance of early recanalization was shown in the EXTEND-IA trial where effective 

thrombectomy arrested core expansion. It is currently unclear what factors decrease post-

ischemic reperfusion CBF, but has been attributed to capillary disturbances resulting from 

glial cell swelling [49], clogging of capillaries by microthrombi and immune cells 

[48,50,57,58] and pericyte-induced reductions in diameter [59]. However, it should be noted 
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that the large network of capillaries is not the site of greatest resistance to flow in the brain 

and therefore targeting capillary reductions in flow may not be as beneficial as targeting 

upstream parenchymal arterioles that are high resistance and the bottleneck to flow to the 

brain parenchyma [60-62]. In fact, studies have shown that parenchymal arterioles undergo 

vasoconstriction in response to early post-ischemic reperfusion, a time period important for 

preventing infarct expansion [63].

 Potential targets for vascular protection during reperfusion

An important vascular target during post-ischemic reperfusion may be the hyperconstricted 

parenchymal arterioles that increase small vessel resistance. Parenchymal arterioles undergo 

vasoconstriction in response to early post-ischemic reperfusion due to calcium sensitization 

of the vascular smooth muscle [63]. Parenchymal arterioles are unique vessels in the brain 

and have greater tone at lower pressures than pial arteries due to a lack of influence of the 

large-conductance calcium-activated potassium (BK) channel [64]. In addition, similar to 

LMAs, parenchymal arterioles appear to have basal SK/IK channel activity that counteracts 

vasoconstriction. Thus, SK/IK channel activation may not only increase perfusion to the 

penumbra due to an effect on LMAs, but also improve post-ischemic reperfusion by 

decreasing small vessel resistance. Also similar to LMAs, ROCK inhibition may provide a 

selective target to decrease small vessel resistance during early reperfusion since its 

involvement in myogenic tone is through calcium sensitization of smooth muscle, the 

mechanism by which ischemia and reperfusion are increasing vasoconstriction [41,63].

Post-ischemic reperfusion is also associated with secondary brain injury including edema 

and hemorrhage that is also time-dependent, i.e., the greater delay in reperfusion causes 

greater reperfusion injury [10]. While early reperfusion provided by ET inherently limits 

reperfusion injury due to selection of patients with small core infarctions, good collateral 

status on imaging, and rapid reperfusion, limiting reperfusion injury is a consideration of if 

ET is to be extended to more patients. Hemodynamically, there are several considerations for 

vascular protection with ET that are unique. For example, rapid removal of an occlusion by 

mechanical means may alter hemodynamics during reperfusion compared to slower more 

progressive restoration of flow. Depending on the state of the vasculature, rapid reperfusion 

will produce substantially increased shear stress and hydrostatic pressure on the downstream 

microcirculation, leading to edema and/or hemorrhage [65,66]. Thus, one potential approach 

to limiting reperfusion injury is to more gradually increase flow during ET to limit the high 

hydrostatic pressure that occurs during reperfusion. Other approaches include protection of 

the blood-brain barrier (BBB) with pharmacologic agents on board prior to clot removal to 

prevent its disruption. Numerous agents have been investigated to protect the BBB during 

reperfusion and include protein kinase C inhibition, matrix metalloproteinase inhibition and 

oxidative stress inhibition [67-69]. However, similar to other vascular targets, the BBB is 

more prone to disruption under certain co-morbid states. Diabetes causes tremendous edema 

due to several factors including enhanced protein kinase C activation and higher oxidative 

stress [68]. Similarly, hypertension is associated with increased vascular endothelial growth 

(VEGF) and oxidative stress that can increase both hemorrhage and edema [70,71]. Thus, 

agents on board that inhibit these processes prior to recanalization with ET or IA delivery of 

these agents during ET (see below) could be effective at preventing reperfusion injury.
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 IA treatment and ET

IA treatment includes both delivery of compounds directly into the cerebral circulation as 

well as manipulating blood flow within specific brain regions. There are several advantages 

to IA drug delivery especially when used in combination with ET. First, IA injection can 

deliver a highly concentrated agent that restricts the initial volume of distribution to one 

cerebral hemisphere. Therefore, relatively high arterial concentrations can be achieved in 

low doses, limiting systemic toxicity [72-74]. Second, IA delivery of drugs seems to have a 

higher free drug concentration than systemic injection which further concentrates and 

enhances delivery [75]. Third, IA delivery is rapid and can deliver high concentrations to the 

brain and vasculature. This may be particularly advantageous in preventing reperfusion 

injury that occurs within seconds to minutes of initiating reperfusion [76]. Advancements in 

ET devices make IA delivery and manipulation of CBF feasible, but the practice is limited 

because of a poor understanding of the advantages and disadvantages of this approach, and a 

lack of sufficient research and models to advance the potential for IA treatment of acute 

stroke.

There are several major considerations for IA treatment and delivery of neuroprotective or 

vascular protective compounds. First, anatomic variation in cerebral arteries, most notably 

the circle of Willis collaterals, will influence regional distribution of a compound after intra-

carotid injection. The extent of collateral communication varies significantly in humans that 

can influence segmental vascular resistance and hence flow [77-80]. Second, blood flow can 

change over time and with treatment, affecting the regional concentration of the drug within 

the brain tissue. For example, nicardipine given for vasospasm will initially be high in 

concentration at the site of spasm, but decrease in concentration as vasodilation occurs and 

flow increases. Kinetic modeling of IA drug infusions have been done [72,75,81] but several 

assumptions need to be made, including uniform mixing of the drug in the blood, steady-

state free drug concentrations based on conventional steady-state drug-protein interactions, 

constant clearance over time, constant regional blood flow, and homogeneous distribution 

within the arterial and brain compartments [81].

A major issue for neuroprotective treatment (as opposed to vascular protection) of brain 

tissue with IA delivery is how much drug in plasma is available to cross the blood-brain 

barrier (BBB) that will restrict proteins >400 Daltons due to the presence of complex tight 

junctions [82]. Although the BBB properties are present throughout the brain, the electrical 

resistance of tight junction is less in the larger pial arteries [82,83]. Thus, larger proteins 

may pass into the brain through pial vessels, but the surface area for distribution is 

considerably less than the microcirculation. Whether or not the BBB has increased 

permeability during acute stroke depends on the duration and severity of ischemia and 

reperfusion and the presence of co-morbidities especially diabetes that is associated with 

significant microvascular damage [84-86]. In addition, BBB disruption occurs mostly during 

reperfusion, making IA delivery an attractive approach in combination with ET [87]. 

However, it cannot be assumed that the BBB will be open for delivery of neuroprotective 

drugs since this process is not homogeneous.
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Brain blood flow is also not homogeneous but varies considerably between gray and white 

matter [88-90], and is highly affected during ischemia and reperfusion. Baseline variability 

in CBF can result in differences in drug concentrations after IA injection; however, changes 

in CBF after IA injection in combination with ET is likely unique and will depend on the 

response of the various arterial segments to rapid reperfusion. For example, pial arteries and 

arterioles dilate in response to ischemia and reperfusion whereas parenchymal arterioles 

constrict, likely changing segmental vascular resistance that will influence blood flow and 

drug concentration [63,91,92]. In fact, high resting CBF is disadvantageous during IA drug 

delivery to the brain because it decreases peak drug concentrations due to dilution by the 

arterial blood, decreases drug transit time and augments efflux from the brain [72]. However, 

during ischemia and reperfusion, heterogeneous blood flow and BBB permeability make it 

difficult to determine local concentrations of drug in the brain that will vary depending on 

composition of the compound (size, charge, polarity, lipophilicity, etc.), and blood flow in 

the various brain regions of interest. Although complex, the advantages of IA delivery, 

especially in combination with ET are great: minimizing total dose, decreasing regional and 

systemic toxicity, directly and rapidly treating affected brain and vasculature, and limiting 

reperfusion injury. In this ET era, IA delivery of neuroprotective and vascular protective 

agents should be explored further with appropriate models.

 The need for combined therapies and selective stroke treatment

The recent advances in ET seem to have opened a new page in the treatment of acute 

ischemic stroke. Clearly, in the recent ET trials short time to recanalization, selection of 

patients with small ischemic core volume and good collateral circulation improve the odds 

of a good clinical outcome [2,4]. In particular, the remarkable time dependency in 

revascularization therapy suggests that that any further improvement in devices for ET will 

not translate in a dramatic improvement in patient outcomes. For example, in a recent 

analysis of the The North American SOLITAIRE Acute Stroke (NASA) registry, time to 

recanalization had an estimated 9% increased risk of death within 90 days per 30-minute 

delay from symptom onset to recanalization [93]. The same estimate of a 9% increased risk 

per 30-minute delay was reported in a study of poor outcomes or death following successful 

recanalization [94]. Time dependency of brain ischemia has been extensively reported with 

IV tPA as well [95,96] that is most likely related to delayed time to recanalization and 

therefore futile reperfusion [97,98]. However, the process times for the recent ET trials 

demonstrate that more rapid reperfusion with ET would be difficult to improve upon and 

therefore combined approaches to improve outcome should be explored.

While rapid recanalization with ET is clearly beneficial to stroke outcome, there are still 

patients who do poorly. From an endovascular technology stand-point, advancements in 

devices are already taking place. The aim is first pass recanalization in the highest possible 

number of patients. In addition, there is a direct correlation between speed of recanalization 

and number of patients who will achieve a good outcome. Therefore, improvements in 

system of care will translate in faster times from door to groin puncture and from door to 

recanalization. However, further improvements in either devices or speed to recanalization, 

may not translate in a dramatic improvement in the percentage of patients with 90 days mRS 

≤2, suggesting additional approaches are necessary. In addition, we need to consider that 
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there are the small number of patients that are eligible for ET. Considering all these 

challenges, coupling neuroprotective strategies targeting the collateral circulation and/or the 

ischemic core to effective and fast recanalization may improve both the number of patients 

treated and the number of patients that achieve good outcomes.
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