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Abstract

Purpose—To present a constrained optimal-control (OC) framework for designing large-flip-

angle parallel-transmit (pTx) pulses satisfying hardware peak-power as well as regulatory local 

and global specific-absorption-rate (SAR) limits. The application is 2D and 3D spatial-selective 

90° and 180° pulses.

Theory and Methods—The OC gradient-ascent-pulse-engineering method with exact gradients 

and the limited-memory Broyden-Fletcher-Goldfarb-Shanno method is proposed. Local SAR is 

constrained by the virtual-observation-points method. Two numerical models facilitated the 

optimizations, a torso at 3 T and a head at 7 T, both in eight-channel pTx coils and acceleration-

factors up to 4.

Results—The proposed approach yielded excellent flip-angle distributions. Enforcing the local-

SAR constraint, as opposed to peak power alone, reduced the local SAR 7 and 5-fold with the 2D 

torso excitation and inversion pulse, respectively. The root-mean-square errors of the 

magnetization profiles increased less than 5% with the acceleration factor of 4.

Conclusion—A local and global SAR, and peak-power constrained OC large-flip-angle pTx 

pulse design was presented, and numerically validated for 2D and 3D spatial-selective 90° and 

180° pulses at 3 T and 7 T.
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INTRODUCTION

MRI with parallel-transmit (pTx) (1,2) coils and pulses have been designed and used in 

recent years for accelerated 2D (3–5) and 3D (6) spatial-selective excitations, slice selective 

slice shimming using “spoke” pulses (4), water-selective imaging (7), nonselective 

excitations of uniform 3D volumes for 3D imaging (8,9), and simultaneous multislice 

imaging (10). It is known, however, that with pTx the subject in the scanner is potentially at 

risk of local hot-spots of temperature elevations due to the highly nonhomogeneous 

distribution of specific absorption rate (SAR). The SAR distribution depends on the 

geometry and electrical properties of the conductive tissues of the subject, the coil geometry, 

and the radiofrequency (RF) pulses.

For this reason, current patient safety guidelines include strict SAR limitations that must be 

enforced for every patient (11–13). Both global SAR (i.e., average of SAR over the whole 

part of the body exposed to the RF coil) and local SAR (i.e., SAR at a specific location in 

space, but averaged in a 10-g tissue volume) are regulated. The distribution of SAR in 

individual patients is best captured by 3D maps that contain hundreds of thousands of 

voxels. Each voxel is represented by a C × C matrix (C is the number of pTx coils) 

describing the local interaction between the electric fields created by the pTx coils (14). For 

pulse optimization, these SAR matrices can be incorporated as constraints to enforce the 

regulatory SAR limits (12,15,16). Doing so without compression of the set of SAR matrices 

in the body model would result in hundreds of thousands of SAR constraints, which is 

computationally too demanding for most algorithms and the time constraints of the pulse 

calculation.

Instead, Eichfelder and Gebhardt (14) have proposed a compression scheme called the 

virtual-observation-point (VOP), that clusters the SAR matrices such that it suffices to 

satisfy the SAR limitations for one matrix per cluster, i.e., the VOP matrix. The compression 

factor depends on a user-defined SAR overestimation tolerance (14,17), but exploiting VOPs 

dramatically reduces the number of SAR constraints. In relatively new usages of VOPs, 

Boulant et al. (18) showed a physiologically relevant Temperature-VOP algorithm for 

constraining temperature-rise rather than SAR, and Pendse and Rutt (19) simulated localized 

RF hyper-thermia using VOPs.

Many pulse designs use (magnitude) least-squares ((M)LS) optimizations (17,20–24). 

Recently, Hoyos-Idrobo et al. (25) made a comprehensive comparison on different strategies 

to solve MLS problems incorporating efficient local SAR and power constraints. They 

investigated kT-point (9,26) pulses in both the small-tip-angle (STA) and large-tip-angle 

(LTA) regimes, and used graphical-processing-units (GPUs) to faster simulate the Bloch 

equations facilitating the LTA MLS optimizations.

In this study, we propose optimal control (OC) (27) as another method to compute LTA 

pulses under local-SAR, global-SAR, and peak-power constraints for safe, multidimensional 

RF pulse designs.

For such a pulse-design, a rough distinction between OC and, say, (M)LS methods is that 

OC considers all the dynamical information of the magnetization vector during a given 
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pulse, e.g., through a Bloch simulation. The (M)LS methods typically incorporate the 

dynamics into a system matrix and compare the resulting magnetization a given pulse yields 

with the target (or as in Hoyos-Idrobo et al. (25) for LTA pulses, use a Bloch simulation 

instead of the system matrix approach).

The LS problem is magnetization-phase selective, but the MLS problem, which is not, has 

shown advantages regarding flip-angle uniformity of spoke-pulses (28). Thus, to exploit the 

extended degrees of freedom with MLS and retrieving a specific magnetization phase certain 

actions need to be taken (17,25). The OC problems are typically formulated as 

magnetization phase-selective (29–31), but there are also other examples (30,32).

In the linear STA regime, the family of LS methods is very robust and fast for most 

applications because there are efficient ways to propagate, for example, by conjugate-

gradient methods (33,34). When attempting to design LTA pulses, it is well known that STA 

pulse-design methods and even the linear-class LTA method (35) may produce nonideal 

pulses compared with, e.g., pulses derived using the Bloch equation (5,25,32) or the 

Shinnar-Le Roux algorithm (36). OC excels when having hundreds to thousands of free 

parameters, e.g., the amplitude and phase of several millisecond-long pTx pulses and time-

steps of the order of microseconds. Therefor OC is efficient for pulse-designs of advanced 

pulse-shapes, as opposed to optimization of the amplitude and phase of fixed shapes, e.g., 

spokes-pulses. Albeit presenting a wealth of interesting applications, previous OC MRI 

pulse-design methods have considered power regularization (5,32,31,37–43), but not strict 

local-SAR constraints. Despite pulse power is associated with SAR, average- and peak-

power regularization or constraints alone cannot guarantee elimination of local hot-spots and 

local-SAR control needs to be enforced separately. Second to that, regularization of pulse 

power is usually performed by modification of the cost functional (5,31,32,37–43). 

However, the regularization level needs to be optimized as well, e.g., by the L-curve method, 

which is time consuming.

In this work, we incorporate strict peak-power, global SAR and VOP-based local-SAR 

control similar to Guérin et al. and Hoyos-Idrobo et al. (17,25) in an OC pulse-design 

strategy. This work is built upon our previous OC pulse designs described in Vinding et al. 

(31) and will be available at nmr.au.dk. Based on Bloch-equation evaluations, our software is 

general for designing multidimensional, pTx, and arbitrary flip-angle pulses. We 

demonstrate the principle with optimizations of 2D and 3D spiral-based spatial-selective RF 

pulses, with the individual hard constraints investigated separately.

THEORY

We follow the notation of Xu et al. (5) for the description of multidimensional pTx RF 

pulses that we design with our OC approach. In a given location r = [x, y, z]T, the time-

dependent magnetization vector M(r, t) = [Mx(r, t), My(r, t), Mz(r, t)]T has a motion 

described by Bloch’s equations. The superscript T refers to a transposed vector or matrix. 

Ignoring relaxation effects, we have:
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[1]

where the · signifies a time-derivative, and

[2]

The multidimensional capabilities adhere to the time-varying field gradient G(t) = [Gx(t), 
Gy(t), Gz(t)]T and the net, resonant RF-field components ωx(r, t) and ωy(r, t), which are 

superpositions of the field components from C separate pTx coils. The c’th coil has a 

complex transmit sensitivity . The complex RF pulse executed 

on this coil is noted uc(t) + ivc(t). Hence, the net RF-field components are given as (5):

[3]

and

[4]

In the given OC approach, the goal is to compute the optimal waveforms  and 

achieving the target magnetization profiles within the shortest excitation time.

In this work, we consider the field gradient waveform G(t) fixed throughout the RF 

optimization. We use a decaying, oscillating waveform with a duration T that forms a spiral 

in the excitation k-space.

We discretize time (index n) and space (index p) such that there are N time steps of duration 

Δt, i.e., T = NΔt, and P locations. Hence, the magnetization vector will be recast as Mp,n 

understanding that there are N + 1 states for every spatial point because the n’th set of 

controls transfers Mp,n−1 to Mp,n. Other variables will adopt the same notation.

We choose to optimize the performance J-metric (projection of the final magnetization 

vector onto the target magnetization vector) defined as:
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[5]

where normalization ensures that the optimal pulse solution is achieved when J = 1.

In this approach, we exclude the regularized RF power penalty term (5,31). Instead, we 

introduce hard constraints on local SAR (Llim) and global SAR (Glim):

[6]

[7]

where xn is the vertical concatenation of the complex RF waveforms executed on each pTx 

channel and expressed in Volt. Local-SAR constraints in Eq. [6] are computed by the VOPs 

(Vv) of index v (14,17). The global-SAR limit, Eq. [7], is imposed through a single global-

SAR matrix, G(2). A peak-power constraint is enforced through a built-in capacity of the 

solver we use (in our case MATLAB’s nonlinear programming solver fmincon). The SAR 

constraints and their gradients with respect to the controls are supplied analytically by means 

of a script that fmincon makes calls to.

For OC procedure to address Eq. [5], we use the gradient-ascent-pulse-engineering 

(GRAPE) (44) algorithm with second-order derivative information using the limited-

memory (45,46), Broyden (47), Fletcher (48), Goldfarb (49), Shanno (50) (L-BFGS) quasi-

Newton method. The BFGS method is one method that overcomes the difficulty of 

expressing an analytical (inverse) Hessian matrix. Instead, the inverse Hessian matrix is 

estimated iteratively using only the knowledge of the first-order derivatives, i.e., the 

gradients. In memory-intensive problems, it may, furthermore, be beneficial to use the L-

BFGS method that approximates and replaces the dense inverse Hessian matrix by a few 

vectors instead.

As shown by de Fouquieres et al. (51), this combined GRAPE-(L-)BFGS method provides 

faster convergence than GRAPE alone. However, (L-)BFGS requires exact gradient 

expressions as opposed to gradients precise to first order. Otherwise, approximation errors 

accumulate in the estimated Hessian matrix, which dramatically degrades convergence. 

Therefore, we replace the first-order gradient expression in the traditional implementation of 

GRAPE by an exact expression (51).

Following the procedure of Vinding et al. (31), an implicit gradient expression for the 

optimization problem in Eq. [5] is
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[8]

and

[9]

where Lp,n is the Lagrange multiplier introduced to adjoin Eq. [5] with Eq. [1] through 

principles of calculus-of-variations. It is noted that the final state for the Lagrange multiplier 

in this two-point boundary-value problem (32) is equal to the target magnetization vector. 

The matrices  and  are derivative operators for the uc,n and vc,n controls, 

respectively. They can be derived analytically either by solving the left-hand side of Eqs. [8] 

and [9] or by following the approach of Floether et al. (52). The latter involves forming the 

following block matrix,

[10]

The left-hand side of Eq. [10] shows that the block matrix is composed of the Bloch 

dynamics matrix, Ωp,n, from Eq. [1] on the diagonal and in the upper right a control 

operation matrix, , given as

[11]

where  and  if j = u, and  and  if j = v. The matrix exponential 

of this block matrix multiplied by the time-step, Δt, yields another block matrix as shown on 

the right-hand side of Eq. [10]. Here, the diagonal matrices are, essentially, the rotation 

matrices that can also be retrieved from solving the Bloch equation, Eq. [1], for a known 

initial condition. That is (31),

[12]

with

Vinding et al. Page 6

Magn Reson Med. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[13]

But of interest, the upper right of the right-hand side of Eq. [10], , is an exact 

derivative operator with respect to the controls. Thus, numerically calculating the left-hand 

side of Eq. [10] readily provides  that can substitute  in Eqs. [8] and [9], and 

thereby provide exact gradients with respect to the controls, uc,n and vc,n. These gradients 

are then used to take the controls to the next step either through the BFGS or L-BFGS 

method.

Because the gradients according to Eqs. [8] and [9] also comprise the magnetization and 

Lagrange vectors at the given time and space point, these will be calculated before the 

derivative operators. This involves a forward propagation from  to  using the 

iteration k’th set of controls,  and , and Eq. [12]; and a time-reversed backward 

propagation from  to  also using  and  and Eq. [12] (with  replacing 

). Having stored each array of  and  for every time and space point, renders 

the gradient calculation possible and the controls can be updated as explained above. A 

subsequent forward and backward propagation takes place with the updated controls. If the 

magnetization vector appearing from the forward propagation is sufficiently close to the 

target, the algorithm stops. Otherwise, the gradient is calculated anew and used to update the 

controls for a new iteration.

The GRAPE-L-BFGS-OC algorithm described above and its hard-constraints in Eqs. [6] and 

[7] were numerically implemented in the MATLAB-based blOCh software (31). As 

mentioned above, we used MATLAB’s fmincon solver that efficiently runs the L-BFGS 

method with the user-supplied gradients and maintains the algorithmic housekeeping by 

means of the interior-point-method (53) that maintains the constraints.

Majewski and Ritter (54) have recently made a thorough study on how to calculate first- and 

second-order derivatives for the MLS problem in the quaternion frame. They give a detailed 

analysis of the vast number of floating-point operations needed to compute the analytical 

first- and second-order derivatives. The approach we follow, is computationally intensive as 

well, but is simple because it involves a matrix exponential (left-hand side of Eq. [10]), 

which can be computed numerically in multiple ways (55,56). Various implementations in 

our MATLAB scripts are publicly available at nmr.au.dk.

METHODS

We assessed the performance of our SAR-constrained OC pulse design approach using 

numerical simulations of a 3T body coil and a 7T head coil. Both eight-channel pTx coils 

were loaded with the Ansys (Ansys, Canonsburg, PA) adult male model, which contains 33 

tissue types. B1,+ maps (Figs. 1a,c), electrical fields, and VOPs (1289 and 361 for the 3T and 

7T systems, respectively) were computed as described by Guérin et al. (17). For the 3T 
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simulation of the torso region, pulses were designed with the following SAR/power limits: 

local SAR, Llim = 8 W/kg, global SAR, Glim = 4 W/kg, and peak power, Plim = 5 kW. For 

the 7T simulation, these limits were: Llim = 8 W/kg, Glim = 3 W/kg, and Plim = 1 kW. We 

used the SAR limits set by the U.S. Food and Drug Administration (57). A 10% dutycycle, 

which effectively scales the SAR limits in Eqs. [6] and [7], was used in all pulse 

optimizations.

The OC algorithm was configured to calculate multidimensional spiral-based spatial-

selective pulses for 90° excitation and 180° inversion all with a time-discretization Δt = 10 

μs.

The OC algorithm was implemented such that any of the constraints (local SAR, global 

SAR, and peak power) could be switched on or off independently. To investigate the 

influence of each constraint type, a total of eight different optimizations, see Figure 2, were 

performed for each pulse type.

A. Torso, 90° Excitation

The 2D target Mx-magnetization profile, a square region-of-interest (ROI) is shown Figure 

1b and was described on a 64 × 64 grid, where the torso region added up to P = 1604 points. 

The nominal field-of-excitation (FOX) was 40 × 40 cm2, however, the pulses were optimized 

with an under-sampling, acceleration factor (AF) of 4 as available by pTx systems under the 

convention described in Grissom et al. (3). The spiral trajectory and gradient waveform, see 

Figures 3a,f, was calculated as described by Lustig et al. (58) with limits on the gradient 

amplitude (Gmax) and slewrate (Smax) set to Gmax = 40 mT/m, Smax = 150 T/m/s. This 

resulted in a pulse duration T = 1.6 ms. To investigate the impact of the trajectory 

acceleration, we also optimized the fully constrained pulses with AF = 1, 2, and 3 

(trajectories not shown) with T = 5.5, 2.9, and 2.0 ms, respectively.

B. Torso, 180° Inversion

We used the same ROI and FOX as in A, but the grid size was 32 × 32 (P = 390) to 

demonstrate the performance of a low resolution pulse, e.g., aimed for coarse volume-

suppression. We did not under-sample the k-space. We, furthermore, increased the pulse 

duration to 4.1 ms by lowering the gradient slewrate limit to 25%, see Figures 3b,g.

C. Head, 90° Excitation

The 2D target magnetization profile was the ROI shown in Figure 1d, the grid size was 64 × 

64 (P = 2214), Gmax = 40 mT/m, Smax = 150 T/m/s, and the nominal FOX was 25 × 25 cm2. 

The pulses were optimized with AF = 4, see Figures 3c,h, and the fully constrained pulses 

were also optimized with AF = 1, 2, and 3 (trajectories not shown). The pulse durations were 

T = 6.5, 3.4, 2.3, and 1.9 ms for the AF = 1, 2, 3, and 4, respectively.

D. Head, 180° Inversion

We used the same ROI and FOX as in C, but the grid size was 45 × 45 (P = 1078). We did 

not accelerate the spiral trajectory or reduce the slewrate. The duration was 4.3 ms, see 

Figure 3d,i.
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E. Head, 90° 3D Excitation

To demonstrate a 3D excitation, we optimized a pulse for exciting the cube shown in Figure 

1e, described on a 21 × 21 × 21 grid (P = 4144). We used the spherically-shaped stacked-

spiral trajectory analyzed by Asslander et al. (59) using scripts kindly provided by the 

authors, see Figures 3e,j. We optimized a fully constrained pulse (AF = 4, T = 3.75 ms).

F. Initial Guesses

Every optimization mentioned above was initiated with an up-scaled 30°-pulse designed by 

the LS algorithm of Guérin et al. (17). The LS optimizations were run with the same 

constraint scenarios as the OC optimizations except the peak power was always constrained 

to avoid excessive pulse amplitudes that would otherwise severely hamper the next stage. 

The constraints were downscaled such that the concurrent up-scaling of the final pulse to 

either 90° or 180° did not cause a constraint violation. The LS optimizations were given an 

opportunity to use 105 iterations with a convergence threshold of 1 × 10−4.

G. Optimizations

The OC framework, blOCh, we present can run parallel computations in several modes. We 

parallelized the gradient computation because the time-steps are independent, whenever the 

full forward and backward state propagations are accomplished. Every 2D OC optimization 

was run with up to 105 iterations to assure convergence to the threshold of 1 × 10−4 and 

refinement of the initial guess. The 3D OC optimization had a smaller convergence threshold 

of 3 × 10−6 due to the substantially larger grid size.

The optimizations were run on a busy computer cluster with a variety of CPU types and 

memory capacities. Due to MATLAB parallel computation and license issues, we were not 

able to run all optimizations on the fastest 2.8-GHz Intel-Ivy-Bridge 20-core CPUs (128 GB 

RAM). Instead the majority of the optimizations were run nonparallel on older 2.3-GHz 

AMD-Opteron CPUs (16 GB RAM). However, to estimate optimization times, we optimized 

a range of fully unconstrained and constrained examples with 20 iterations each and a 

varying number of activated CPU cores (NC = 1, 2, 4, 8, 12, and 20), and for AF = 1, 2, 3, 

and 4. Besides the 20-iterations limit, the settings were the same as in A to D. Auxiliary 

optimizations with modified parameters, e.g., the convergence threshold, were done to 

enlighten the interpretation of our results.

RESULTS

Figure 4 shows the results for 2D spatial-selective pulses. The four rows constitute the main 

outcome of the four cases described in Methods section A to D. The five panels in each row 

display the numerical values of the J-metric, root-mean-square error (RMSE) improvement 

(as compared to the initial state), local SAR, global SAR, and peak power. The eight 

positions in each panel correspond to the eight constraint scenarios shown in Figure 2. 

Horizontal lines show the constraint limits. The corresponding magnetization profiles are 

shown in Figure 5.
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H. Torso, 90° Excitation, 180° Inversion, and Head, 90° Excitation

It is evident from Figure 4 that a constraint being active always forces the corresponding bar 

to be less than or equal to the limit, whereas when the constraint was deactivated enables a 

value above the limit. Bar graphs of the optimization metrics, J, show that the completely 

unconstrained cases (bars far left) return the highest performance. The local-SAR constraint 

has the highest impact on the performance, for example, J decreases by approximately 1.4% 

(3T, 90°), 3% (3T, 180°), and 4‰ (7T, 90°).

In the completely unconstrained cases, local-SAR values are (relative to the 8 W/kg limit) 

from approximately 47 × (7T, 90°) to more than 816 × (3T, 90°). The global-SAR and peak-

power values are in these unconstrained cases also overshooting the limit. Adding either 

global-SAR or peak-power constraints or both, the local-SAR violations reduce to levels 

between 3× and 12×. The local-SAR constraint has a relatively high effect on both the 

global-SAR and peak-power levels. In the head case, however, the peak power was always 

under the limit.

The RMSE improvement taken as the RMSE of the final pulse compared with the initial 

guess (the up-scaled STA pulse) shows the advantage of applying the OC algorithm in every 

case. In the fully constrained torso cases the improvement range from 5 to 10%. In the head 

case the improvement is 1 to 2%.

Figure 6 shows the RMSE values as a function of the acceleration factor for the fully 

constrained excitation cases as well as the corresponding magnetization profiles. To enhance 

the RMSE improvement of the head case (AF = 4) further, we ran the same optimization, 

however, with a lower convergence tolerance (1 × 10−5). That led to an RMSE improvement 

of more than 1% (similar to AF = 1, 2, and 3) for the expense of 62 iterations (20 min, 

estimated) rather than 41 iterations (11 min).

I. Head, 180° Inversion

The inversion pulses for the head converged to the threshold of 1 × 10−4 with relatively low 

values of local SAR, global SAR and peak power. In fact, the completely unconstrained case 

did not violate any of these parameters. We optimized the same eight cases with a lower 

convergence threshold (5 × 10−6), which did lead to better results (approximately 1% extra 

RMSE improvements) and similar tendencies for the local-SAR, global-SAR, and peak-

power values as the other cases described in the previous section.

J. Head, 90° 3D Excitation

Figure 7 shows a 3D rendering of the magnetization profile from the 3D 90° excitation of a 

cube in the brain. The optimization time was 1 h for 59 iterations. Similar to the 2D, head, 

inversion pulse the resulting local-SAR, global-SAR and peak-power levels were far from 

the limit at iteration 59 (local SAR relatively highest at 50%). Again, an auxiliary 

optimization with a threshold of 1 × 10−7 made the local-SAR value saturate, but only for a 

modest increase of fidelity.
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K. Time-per-Iteration

Figure 8 displays the time-per-iteration (TPI) values obtained as described in the Methods 

section G. Table 1 lists the iteration numbers and optimization times. Our variety of 

optimizations differ in the number of VOPs, the number of spatial points, P, and the number 

of free parameters, which is the product of the number of time-steps, N, the number of pTx 

channels, C, and 2 (x- and y-amplitudes). How the TPI is affected by these parameters is, 

therefore, impractical to deduce from the given dataset. We noticed, however, the estimated 

TPIs should be taken with care for around 50 iterations or more. The TPI increases and is 

longest in the end of an optimization where the fmincon-optimizer struggles to find the next 

step.

DISCUSSION

We have proposed an optimization framework for the design of large-flip-angle pulses 

subject to SAR and peak-power constraints. The constraints were as in Guérin et al. and 

Hoyos-Idrobo et al. (17,25) implemented as hard constraints rather than as regularization. 

Regularization suggests a trade-off between pulse performance and the SAR/power metrics 

to be constrained, and inapt regularization does not guarantee that the constraints are not 

violated. Thus, regularization requires careful optimization, for example, through the L-

curve method.

Excellent spatial-selective 90° and 180° flip-angle distributions were obtained while 

constraining the local and global SAR to regulatory levels, as well as the system dependent 

peak power. We considered two distinct simulations, the difficult torso model in an eight-

channel body coil at 3T and the easier head model in an eight-channel head coil at 7T. Both 

simulations were subject to every possible constraint scenario to investigate the influence of 

each individual constraint on the pulse performance. The 90° pulses were, furthermore, 

optimized with acceleration factors up to 4.

An important conclusion of this work is that when not constraining local SAR, its level 

increases in most cases far beyond the tolerable limit. This echoes the conclusion of the 

work of Guérin et al. (17) but extends it to the large-flip-angle regime (we studied 90° and 

180° pulses in this work). As expected, the local SAR violations when only controlling peak 

power (i.e., no local SAR constraints) are much more dramatic in the LTA regime than in the 

STA regime. With LTA, we found that local SAR hot-spots could be as high as 740% 

(425%) of the tolerated limit with the torso at 3T (head at 7T) using only peak power 

constraints. Constraining local SAR came at the cost of slightly decreased excitation quality 

(as measured by the J-metric and RMSE). For the 90°/180° torso pulses, J decreased only by 

a few percent, which corresponds to RMSEs increasing 5 to 10%. For the 90°/180° head 

pulses, J decreased only by a few parts per thousand, which corresponds to RMSEs 

increasing only a few percent.

As concluded in Guérin et al. (17), a local-SAR constraint may help to limit global SAR, but 

the opposite may not be true. In our study, the global-SAR constraint was never capable of 

limiting the local SAR sufficiently, when the unconstrained local SAR was approaching a 

high level. This was observed both with and without the peak-power constraint. The local-
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SAR constraint, however, did a good job constraining the global SAR to benign levels. 

Another finding was that the enforced local-SAR constraint in the head simulation actually 

yielded peak-power levels well below the 1-kW limit. However, in the torso excitation case, 

the peak power needed constraining even though the local-SAR constraint was enforced. 

The peak-power constraint is not computationally demanding or difficult to comply with, 

and we therefore suggest constraining the peak power in general. Unconstrained local-SAR 

levels were in total higher in the torso model than in the head model. This is due to the fact 

that the torso model had a much more complicated electrical field pattern than the head 

model because of the increased complexity of the torso geometry. Hence, the risk of 

generating local hot-spots is higher even at lower power levels. This means that the local 

SAR level cannot be controlled efficiently in a model with this complex electrical field 

pattern. The head model has more uniform electrical field patterns thus making the local 

SAR more coupled to power metrics. However, as mentioned, the peak-power or global-

SAR control is not always enough to limit local SAR even in the head model for the pulses 

that we have investigated.

Our convergence thresholds were based on experience. We saw that lowering the thresholds, 

i.e., to improve the pulse performances slightly through additional iterations, enforced the 

SAR and peak-power values to increase to their limits or possibly to unpredictable high 

levels if not limited. However, the global-SAR values still remained benign whenever the 

local-SAR constraint was enforced.

We observed a poor performance, e.g., for the 3T, torso, 90° pulses in Figure 5b, position 5 

and 7, whenever the local-SAR and the peak-power constraints were activated and 

deactivated, respectively. We reason this as a competition internally in the algorithm 

between the opposite-directed local-SAR and peak-power metrics. The problem seems to 

vanish for longer pulse durations, where higher amplitudes depraving the local SAR are not 

anticipated to the same extend.

Previous work by Vinding et al. (31) was committed to thorough investigations of fast MRI 

OC procedures including GRAPE-BFGS with gradients precise to first order, i.e., 

computationally fast, but suboptimal as the inverse-Hessian matrix estimation indeed was 

corrupted by the approximated gradients. However, Maximov et al. (37) later showed 

satisfactory in vivo results with the first-order GRAPE-BFGS. In this study, we checked if 

the first-order gradients could replace the exact gradients, but when, e.g., the local-SAR 

constraints was activated we observed convergence to infeasible points. Hoyos-Idrobo et al. 

(25) efficiently applied finite-difference gradients for their LTA MLS problem. Finite-

difference gradients are inexpensive to compute in OC as well, as they only (depending on 

precision) require few extra state-propagations. Hence, brute-force estimation can be 

avoided (51). However, the BFGS approach performs even better with exact gradients than 

with fourth-order finite-difference gradients (51) why it was implemented here as in Floether 

et al. (52).

We compared GRAPE-BFGS with GRAPE-L-BFGS and found the latter to be few percent 

faster for the same performance, probably because the number of free parameters is 

sufficiently low for BFGS to work properly (51). We also chose the L-BFGS variant to avoid 
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potential memory conflicts, because the local-SAR and the exact-gradient computations do 

indeed occupy large memory portions.

We have shown that dramatic reductions in optimization times can be accomplished by using 

4 CPU cores or more, which is becoming more and more available. Further time savings 

may be achieved by using GPUs for fast computations as done, e.g., in Ref. (25). We did not 

have GPUs readily available for the current study. However, we intend to apply GPUs in 

future versions of blOCh as we expect significant improvements. This lift is indeed needed 

for, say, 3D excitation pulses.

CONCLUSIONS

An OC framework for designing multidimensional, multichannel, large-tip-angle pulses 

handling hard constraints of local SAR, global SAR, and peak power has been presented. We 

simulated two eight-channel systems loaded with a numerical phantom, a torso in a 3T body 

coil, and a head in 7T head coil. The presented numerical data clearly demonstrates a large-

flip-angle pulse design with the ability to constrain local SAR by means of VOPs and global 

SAR to within guidelines for a duty-cycle of 10%, while at the same time limiting the peak 

power to hardware tolerated levels.
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FIG. 1. 
The eight-channel B1+ magnitude map simulations shown for the 3T, torso (a) and 7T, head 

(c) simulations. b,d,e: The target magnetization profiles for those simulations.
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FIG. 2. 
The eight constraint scenarios, denoted 1 to 8, evaluated in this work for each simulation and 

corresponding to turning on and off a subset of all constraints.
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FIG. 3. 
Gradient waveforms (a–e) and k-space trajectories (f–j) used for 3T, torso and 7T, head 

simulations and optimizations.

Vinding et al. Page 19

Magn Reson Med. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 4. 
Bar plots of the performance, RMSE improvement, local SAR, global SAR, and peak power 

retrieved from the 2D 90° excitation (AF = 4) and 180° inversion (AF = 1) pulses computed 

for different constraint scenarios in the torso at 3T (a,b) and the head at 7T (c,d). The tables 

below each column correspond to the constraint scenarios from Figure 2.
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FIG. 5. 
Simulations of the 3T, torso, 90° (a), 3T, torso, 180° (b), 7T, head, 90° (c), and 7T, head, 

180° (d) 2D-pulses. The numbers above each simulation correspond to the performance J-

metric and the RMSE percentage in brackets. The table below corresponds to the constraint 

scenarios from Figure 2.
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FIG. 6. 
a: Plot of the RMSE values versus the AF for the 2D (blue) 3T, torso, 90°, (red) 7T, head, 

90° pulses. The full and dashed lines correspond to the final OC pulses and the initial-guess, 

up-scaled STA pulses from the LS optimization, respectively. The corresponding 

magnetization simulations are shown for 3T, torso (b) and 7T, head (c) of the final OC 

pulses.
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FIG. 7. 
Rendering of the magnetization profile from the fully constrained (AF = 4) 3D pulse.
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FIG. 8. 
Time-per-iteration (TPI) of the 20-iteration optimizations for AF = 1, 2, 3, and 4, and the 

number of active CPU cores NC = 1, 2, 4, 8, 12, and 20. The TPI for the completely 

unconstrained (a–d) and constrained (e–h) optimizations, respectively.
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