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Abstract

GenomeC wide gene expression quantitative trait loci (eQTL) mapping have been focused on 

single nucleotide polymorphisms and have helped interpret findings from diseases mapping 

studies. The functional effect of structure variants, especially short insertions and deletions (indel) 

has not been well investigated. Here we imputed 1,380,133 indels based on the latest 1000 

Genomes Project panel into 3 eQTL datasets from multiple tissues. Imputation of indels increased 

9.9% power and identified indel specific eQTLs for 325 genes. We found introns and vicinities of 

UTRs were more enriched of indel eQTLs and 3.6 (singleC tissue)C 9.2%(multiC tissue) of 

previous identified eSNPs were taggers of eindels. Functional analyses identified epigenetics 

marks, gene ontology categories and disease GWAS loci affected by SNPs and indels eQTLs 

showing tissueC consistent or tissueC specific effects. This study provides new insights into the 

underlying genetic architecture of gene expression across tissues and new resource to interpret 

function of diseases and traits associated structure variants.

*Corresponding author: Liming Liang, Ph.D., Departments of Epidemiology and Biostatistics, Harvard School of Public Health, 
Building 2, Room 211A, 655 Huntington Ave, Boston, Massachusetts 02115, Tel: 617-432-5896, Fax: 617-432-1722, 
lliang@hsph.harvard.edu. 

Online resources
On our website (http://eqtl.rc.fas.harvard.edu/indeleQTL/), we provided flat tables (csv files) for all eQTL results with meta-analysis 
FDR<0.05.
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 Introduction

In the past decade, most common single nucleotide polymorphism (SNP) with allele 

frequency >5% have been identified and genomeC wide association studies (GWAS) have 

been focusing on these common variants. As of February 2014,1785 studies have detected 

disease susceptibility loci at genomeC wide significant level (www.genome.gov/

GWAStudies). However, discovery has only explained a modest portion of disease risk. The 

undetected variants could be due to common SNPs but without sufficiently large effect, 

structure variants such as short insertion and deletion (indel), or low frequency SNP not 

covered by genotyping platforms or imputation, based on previous releases of the HapMap

and the 1000 Genomes pilot projects.

The latest release (phase 1) of the 1000 Genomes Project haplotypes consists of 39.7 million 

genetic markers including 1.4 million indels. By applying genotype imputation techniques,

on this high quality reference panel from the 1000 Genomes Project (1000G), we can assess 

the genetic effect of indels as well as low frequency SNPs on disease phenotypes and gene 

expression. Indels are the second most abundant category of genetic variants and are widely 

distributed in the human genome. Comparing to SNPs, it is still unknown whether this type 

of structural variant has a larger causal effect on traits of interest, or serves as better tags of 

the causal genetic variants. A recent study based on 179 sequenced samples from the 1000 

Genomes Project has shown that indels are generally subject to stronger purifying selection 

than SNPs and they are enriched in associations with gene expression. Imputation of these 

newly identified genetic variants into existing genomeC wide association studies may help 

identifying novel disease loci not discovered by previous genotyping platforms and 

imputation. But it is not known how much unidentified disease heritability is due to indels 

and to what extent previously identified disease associated SNPs are due to linkage 

disequilibrium with indels of bigger impact on disease phenotype.

InterC individual variation in gene expression levels has a significant heritable component, 

and studies have mapped individual genetic variants associated with gene expression levels, 

known as expression quantitative trait locus (eQTL), in diverse cell types,. Large scale gene 

expression data, which provide complex traits with full spectrum of heritability and genetic 

architecture, is ideal for evaluation of the power of association study using imputation of the 

newly identified indels. This information will be useful to the research community as to 

what should be expected from the imputation of indels and guide the design of genotyping 

platforms for next generation association studies.

Functional annotations generated from eQTL mapping, most of which available to the 

public, is an important resource to interpret variants of human genome. It is well known that 

eQTLs can be a useful tool to characterize the function of a diseaseC associated variant and 

point to the underlying biological pathways.With the available 1000G indel reference panel, 

existing genomeC wide association studies are doing imputation on these indels. Once 

diseaseC associated indels are identified, their functional interpretation will become 

essential. We expect that indel eQTL will be a useful tool to characterize the findings of 

GWAS based on indels, either by imputation or genotyping experiments.
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TissueC specific effects of small insertions and deletions on gene expression have not been 

examined before. Whether the tissue specificity of eQTL effects shows different patterns in 

SNPs and structure variants is unknown. In this study, we used 1000G imputed indels from 

718 samples of multiple tissue types to answer the above questions and discussed their 

implication for disease mapping studies.

 Results

 Indel imputation

We collected tissue gene expression data from 3 studies (1) gene expression in 

lymphoblastoid cell lines from the MRCA family panel of 206 siblings of British descent. A 

total of 368 children were genotyped using the Illumina Sentrix HumanHap300 BeadChip 

(ILMN300K) and the Illumina Sentrix HumanC 1 Genotyping BeadChip (ILMN100K); (2) 

gene expression in peripheral blood mononuclear cells (PBMC) from 47 Germany eczema 

nuclear families. A total of 240 individuals (107 children, 133 parents) were genotyped 

using Affy500K and Affy 6.0 SNP array; (3) Normal skin tissues of 57 unrelated healthy 

controls and unaffected skin of 53 patients from a Psoriasis GWAS. A total of 110 

individuals were genotyped with Perlegen 400K array. Gene expression was measured using 

the Affymetrix HGC U133 Plus 2.0 GeneChip. After quality control on genotypes and 

expression, 376,877 SNPs from the LCL expression dataset, 687,364 from the PBMC 

expression dataset, 433,964 from the skin expression dataset, as well as 51,190 gene 

expression probe sets remain for downstream analysis (see Methods for details).

A total of 39.7 million genetic markers including 1.4 million indels from the phase 1 release 

of 1000 Genomes Project were imputed3 into these three datasets, separately. Among these 

variants, 814,715 indels and 10,129,531 SNPs have high quality score (imputation R2 >0.3 

in all 3 studies). Across the entire allele frequency spectrum, indel imputation quality was 

generally comparable to that of SNPs but showed a slightly smaller fraction with extremely 

high imputation score (R2>0.95, for common variants, Supplementary Fig. S1). Imputation 

quality for both SNPs and indels were similar across studies based on different genotype 

platforms (Pearson correlation between quality score (MACH Rsq) from PBMC and skin 

datasets were 0.727 (SNP) and 0.811 (indel); 0.696 (SNP) and 0.786 (indel) between PBMC 

and LCL datasets; 0.736 (SNP) and 0.814 (indel) between LCL and skin datasets). All 

downstream analyses were based on SNPs and indels with imputation quality R2>0.3 across 

all 3 studies.

 eQTL metat analysis

Within each individual study, we tested for association between gene expression and 

imputed SNPs and indels using MERLIN package, accounting for family relatedness and 

including sex and expression principal components in the model. The number of expression 

principal components was chosen to maximize the number of transcription probes that can 

be mapped by a variant within 1Mb of the probe set with FDR<5%. Results from individual 

studies were then combined using weighted z-score meta-analysis with sample size and 

imputation R2 as weights. We corrected for multiple testing using the Benjamini-Hochberg 

false discovery rate, (FDR) accounting for all probe set-variant pairs ((814715 indel 
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+ 10129531 SNP)*51190 probe set). At FDR < 5%, a total of 5,898 unique genes 

(corresponding to 10,364 unique probe sets) were mapped by both SNP and indel; 325 

unique genes (428 unique probe sets) can only be mapped by indels and 3,186 unique genes 

(6,663 unique probe sets) can only be mapped by SNPs (Figure 1A). Of the 9,409 genes 

mapped by SNPs or indels or both, 3,024 (32.1%) genes have indel as the most significant 

eQTL. We summarized our results based on the eQTLs that passed the > 5% FDR threshold. 

For genes that have both significant SNP and indel, the heritability explained by the eQTL is 

apparently larger than the genes mapped by only SNP or indel (Figure 1B).

Previous studies have shown that the power to detect eQTL increases with total additive 

heritability of gene expression estimated from pedigree data. In Figure 1C, we compared the 

power to detect association (FDR<5%) across different strategies. The overall heritability is 

the narrow sense heritability estimated based on previous study using the MRCA family 

panel. Within each heritability bin, the red bar shows the percent of expression probes 

mapped by using the MRCA LCL data alone with imputation of the 1000G pilot release (8 

million SNPs). Using the same MRCA sample but with imputation of the 1000G phase1 

SNPs and indels (green bars), we observed that 9.90% more probes were mapped at the 

same FDR (green bars vs. red bars). By combining results from multiple tissues, we 

observed that 41.9% more probe sets can be mapped by at least one genetic variant (orange 

bars vs. red bars).

Disease or trait associated genetic variants identified from genomeC wide association studies 

were usually not the causal variants but markers in linkage disequilibrium with the causal 

variants. Almost all genomeC wide association studies used SNPs as genetic markers to tag 

underlying causal genetic variants of the disease or trait of interest. By contracting the 

results based on different imputation strategies, we estimated how many previously 

identified associations might be tagging the association between the trait and indel. The blue 

bar in Figure 1C shows the percent of probes mapped by 1000G phase1 SNPs after 

removing the probes with indel as the top eQTL. Comparing the red and the blue bars we 

found that 3.62% of previously identified SNP QTL (eSNP) in LCL were likely to be 

tagging the indel eQTL (eindel) of the same gene in LCL. The dash bar on top of the blue 

bar shows the percent of probes mapped by 1000G phase1 SNPs before removing the probes 

with indel as the top eQTL, indicating a small gain of power by using the phase 1 SNPs. 

After combining multiple tissues to increase sample size, this difference increased to 9.20% 

(purple vs. orange) indicating that indels are more likely to be the causal genetic variants for 

these genes.

 Comparison of SNP and indel eQTLs

To better understand the eQTLs due to SNP and indel effect, we sought to characterize the 

difference in indel eQTL and SNP eQTL by effect size, allele frequency spectrum and 

genomic distribution. We first tested whether indel were enriched with eQTL by randomly 

selecting 100,000 SNP and 100,000 indel with high imputation quality (R2>0.3) from the 

1000 Genomes reference. There were 7,987 eSNPs and 11,386 eindels in the selected set of 

SNPs and indels. The enrichment of eQTLs in indels was significantly more than among 

SNPs (ChiC squared test for homogeneity, pC value < 2.2*10C ).
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Of the 5,898 genes mapped by both SNPs and indel that passed the 5% FDR threshold, the 

effect size (H2 explained by the variant) of eindel was similar to eSNP (mean difference=C 

0.007, Standard deviation=0.048, Figure 2A).

Among all eSNPs and eindels that passed 5% FDR, allele frequency of eindels were higher 

than eSNPs (mean MAF of eindel=0.25, mean MAF of eSNP=0.21, Figure 2B, main panel). 

This difference is not due to the distribution of SNPs and indels with good imputation 

quality, where most low frequency indels were not eQTL (Figure 2B, small panel).

Next we examined the genomic distribution of eSNPs and eindels by focusing on the peak 

eQTL (either SNP or indel, cis or trans) for each probe set with at least one significant eQTL 

(5% FDR) and divided the genome into 11 regions: upstream TSS >100kb (cis->100k), 

upstream TSS <100kb (cis-<100k), intron between TSS and translation start sites (tx-/

intron), exon between TSS and translation start sites (tx-/exon), intron in translation 

region(coding/intron), exon in translation region (coding/exon), intron between translation 

stop sites and TES (tx+/intron), exon between translation stop sites and TES (tx+/exon), 

downstream of TES <100kb (cis+ <100k), the downstream TES >100kb (cis+ >100k) and 

on different chromosomes (trans). We found that eindels were significantly enriched in 

intron in translation region, upstream 5′ UTR (cis-<100K) and downstream 3′UTR (cis+ 

<100K) of the associated gene, and were depleted in exon, distal cis effect (cis->100K and 

cis+ >100K, Figure 2C). This pattern did not change after restricting to common SNPs and 

indels. (Supplementary Fig. S2 panel A) and eindels seem to show larger effect size and 

more significant evidence (larger LOD score) than eSNPs in these three regions 

(Supplementary Fig. S2 panel B and C). Except for the well known depletion of indel in 

exons, the enrichment and depletion in other regions cannot be explained by genomic 

distribution of available SNPs and indels with high imputation quality (Supplementary Table 

1). We hypothesized that eindel are more likely to be causal eQTLs in intron in translation 

region and regions close to 5′ UTR and 3′UTR, but this remains to be confirmed by 

experiments.

 Tissue specific eQTLs

For a particular SNPC probe set pair, the eQTL effect may present (coded as 1) in a 

particular tissue or not (coded as 0). For 3 tissues we studied, this resulted in 8 possible 

scenarios (from not being an eQTL in any tissues 000 to being eQTL in all 3 tissues 111, 

corresponding to the order of LCL, PBMC and SKIN). We investigated tissue-specific eQTL 

effects for each SNP-probe set pair by estimating the posterior probability of each of the 8 

possible scenarios (see methods for detail). We denoted P111 as the posterior probability that 

the eQTL effect presented in all 3 tissues and Ptissue specific eQTL (tse) = 1-P000-P111 as the 

probability that eQTL effect presented in at least one but not all tissues. We found that for 

cis eQTLs (defined as SNP/indel and probe set are within 1Mb of each other), the mean of 

Ptse across all 930,775 SNP-probe set pairs from meta-analysis (<5% FDR) were 0.448 (s.d. 

0.369), the mean of P111 were 0.552 (s.d. 0.369) and the mean of P000 was 6.15*10−5. This 

suggests that cis eQTLs are more likely to be shared between tissues but still many were 

tissue-specific. On the contrary, the mean PTSE for trans eQTLs (defined as SNP and probe 

set being either on different chromosomes or >500Kb apart) was 0.806 (s.d. 0.121), and the 
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mean of P111 was 0.192 (s.d. 0.121) (Supplementary Fig. S3 A–D). Results for eindels were 

similar (Supplementary Fig. S3 E–H). This clearly showed that trans eQTLs are much less 

likely to be shared between tissues.

Genes with shared genetic regulators across tissues might have different functions than 

genes with tissue-specific regulators. Characterizing gene pathways and functional groups 

by tissue-sharing of genetic regulators would help understanding the underlying regulation 

of such pathways and help prioritizing genetic studies using related tissues. We used Gene 

Ontology (GO) biological process to characterize the functions of genes based on annotation 

information downloaded from the manufactures website. For each scenario of eQTL sharing 

(P000, …, P111) both Z-score and permutation-based P-values were used to assess 

significance. For each GO category, we focused on the peak eQTL on the same chromosome 

of the probes belonging to genes in this category. We then asked whether eQTLs for this GO 

category showed significant high level of posterior probability for each of the 8 sharing 

scenarios, respectively. Accounting for 199 GO terms (number of genes>20) and a 5% 

family-wise false-positive rate, the Bonferroni correction gave a significant P-value 

threshold of 2.5 × 10−4 (Supplemental table 2). We found that genetic regulators for genes 

involved in “translation”(p< 1.62 × 10−5), “oxidation-reduction” (p<1.65 × 10−4), and 

“proton transport” (p<2.89 × 10−4) were likely shared between all three tissues (P111). Genes 

involved in “response to protein stimulus” (p<6.57 × 10−7) were likely sharing similar 

genetic regulation in PBMC and skin (P011). Genes involved in “oxidation-reduction” 

(p<2.29 × 10−7) and “metabolic process” (p<4.18 × 10−6) were likely sharing similar genetic 

regulation in LCL and skin (P101). “tRNA processing” (p<6.30 × 10−4) were marginal 

significantly shared between LCL and PBMC (P110) (Supplementary Table 2).

 Potential epigenetic driving factors for eQTLs

Genetic regulatory variants may affect gene expression level by different functional 

mechanisms. To identify the potential functional role of eQTLs, functional elements 

predicted by using ENCODE data were downloaded from UCSC genome browser (hg19). 

We pooled the annotation data from the tracks for skin(NHEK) and blood(GM12878) for 

mapping and analysis of chromatin state dynamics of peak eQTLs (either eSNPs or eindels 

in cis or trans) identified from this study. This strategy has been shown to be a powerful way 

to interpret the function of eQTLs and generate specific hypothesis for gene expression 

regulation, as demonstrated in the Crohns disease and PEGER4 gene eQTL example.

We divided the peak eSNPs and eindels into three groups according to minor allele 

frequency: MAF<0.05, 0.05≤MAF<0.10 and 0.10≤MAF≤0.50, and examined the overlap 

with each available functional element. Across all three MAF groups, we found that both 

types of eQTLs (eSNP and eindel) were significantly enriched (pvalue < 10−4by permutation 

test comparing to MAF-matched and distance-to-gene-matched SNPs and indels chosen 

from 1000Genomes Project) in functional elements, including Active Promoter, Weak 
Promoter, Transcriptional Elongation and Weak Transcribed (Figure 3 B–D). They were 

both significantly depleted in Heterochromatin marks (Figure 3, A). Both types of eQTLs 

showed non-significant overlap with functional elements for Inactive/poised Promoter, 
Insulator, Polycomb-repressed and common Copy Number Variation (Figure 3 B–D), and 
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were marginally significant for rare CNVs (p=0.0012 for both eSNP and eindel). For Strong 
Enhancer and Weak/poised Enhancer, common eQTLs were enriched in these two functional 

elements while rare eQTLs were marginally significantly enriched (p ranges from 0.0011 to 

0.0015). Finally, for Transcriptional Transition, both common and low frequent eindels were 

enriched but only common eSNPs (MAF>5%) were enriched in this functional element (rare 

eSNP pvalue=0.58). To compare between indels and SNPs, we found that transcriptional 
elongation and weak transcribed were significant different between indels and SNPs (P value 

< 1 × 103 ). Active Promoter was significantly different in common eSNPs (MAF>5%) (P 

value < 1 × 103 ). Transcriptional transition was significantly different in rare eSNPs 

(MAF<10%) (P value < 1 × 103 ). P value was calculated using simulation by randomly 

selected SNPs or indels from the same MAF category and genome within +/C 500Kb of any 

genes. These functional annotations for individual peak eQTLs that passed the 5% FDR 

threshold are available in supplementary Table 3. Association results (effect size, LOD 

score, pvalue, etc) for these eQTLs were also provided in this table.

 Comparison of eQTLs with known GWAS loci

SNP eQTLs have been widely used to characterize the function of a diseaseC associated 

variant and point to the underlying biological pathways. The newly identified eSNPs and in 

particular eindels may continue to help interpret function of GWAS loci that could not be 

explained before. We examined the disease and trait associated loci from the NHGRI GWAS 

category (downloaded from http://www.genome.gov/GWAStudies/ on March 15, 2013). 

Considering the diseases and traits with more than 10 reported genes (Supplemental table 4) 

and all cis and trans eQTLs that passed the 5% FDR threshold, we found that top diseases or 

traits enriching genes with significant eSNPs include mean corpuscular hemoglobin 
concentration, response to amphetamines and red blood cell count, while top diseases or 

traits enriching genes with significant eindelS include tonometry, IgE levels, mean 
corpuscular hemoglobin concentratio, celiac disease and rheumatoid arthritis. We also 

examined tissue specific eQTLs among GWAS variants and found that tonometry was 

among the top list with ≥50% trait associated genes were regulated by tissue specific 

eindelS, while temperament (bipolar disorder), adiponectin levels and glycated hemoglobin 
levels were among the top list with ≥60% disease or trait associated genes regulated by 

tissue specific eSNPs.

 Discussion

This is the first study to impute short insertion and deletion (indel) genomeC wide in eQTL 

mapping study, which provided unique opportunities to answer several important questions. 

Our results suggested that imputation of indels can increase power of genomeC wide 

association studies for complex traits by about 10%. Although this was an estimate based on 

gene expression traits with complex genetic architecture and full spectrum of heritability, the 

power gain for particular disease or traits would vary by their specific genetic background. 

After the completion of the 1000 Genomes Project, many more high quality indels will be 

available for imputation and the reference panel will be increased from the current 1092 

subjects to 2500 subjects. We expected that the power gain by imputation of indel will be 

even larger.
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Our results also suggested that a substantial fraction of previous identified disease and trait 

associated SNPs were markers in linkage disequilibrium of indels with larger effect. 

Imputation of indels into GWAS would help fine map the causal variants that were tagged by 

previous studies. As seen in our study, this fraction of SNPs tagged by indel would increase 

as power increases. In our case, it increases from 3.62% to 9.20% as sample size increases 

from 368 to 718.

Previous studies and this study has shown that SNP eQTLs were enriched in intron and 

regions closed to UTRs, our study is the first time to show that indel eQTLs were even more 

enriched in these three regions (defined as intron in translation region, 100kb upstream of 5′ 

UTR and 100kb of downstream of 3′ UTR). We hypothesized that this is because indel is 

more likely to be causal regulator as they are more likely to destruct splice sites and 

promoter regions but further experiments are required to validate these hypotheses.

Finally this study showed that cis eQTLs were more likely to be shared across tissues, while 

trans eQTLs were more likely to be tissue specific. This is consistent with previous findings. 

Indel eQTLs and SNP eQTLs showed similar pattern for tissue specificity for cis and trans. 

It suggested that the tissue differentiated genetic regulation is not related to the size of the 

genetic variants.

All significant SNP and indel eQTLs identified from this study are freely accessible to the 

public. We expect that it will be an important resource for GWAS to interpret function of 

genetic variants for complex diseases and traits, particular for structure variants.

 Methods

 Data resources

This study includes data from three former studies: (1) MRCA contained 206 siblings of 

British descent. A total of 368 children were genotyped using the Illumina Sentrix 

HumanHap300 BeadChip (ILMN300K) or the Illumina Sentrix HumanC 1 Genotyping 

BeadChip (ILMN100K) or both. Global gene expression in lymphoblastoid cell lines 

(LCLs) was measured using Affymetrix HGC U133 Plus 2.0 GeneChip (including 54,675 

transcript probes). (2) 240 individuals from 47 Germany eczama families were genotyped 

with Affy500K and Affy 6.0 SNP array. The gene expression level of their peripheral blood 

mononuclear cells was evaluated with Affymetrix U133 Plus 2.0 GeneChip. (3) Normal skin 

tissues of 110 subjects from a former Psoriasis GWAS were genotyped with Perlegen 400K 

array and the RNA expression level was evaluated with the same Affymetrix GeneChip. 

3,423 probe set which can be mapped to multiple genome position (based on HG U133 

Plus_2 annotations file, release 34) and 62 Affymetrix control probes were removed in our 

analysis.

 SNP quality control and imputation

SNPs were excluded from further analysis with the following criteria: (1) The SNP has more 

than 2 alleles; (2) The SNP is not presented in the 1000 Genomes Project phase 1 release; 

(3) The SNPs were genotyped in less than 95% samples; (4) The Hardy-Weinbergtestis 

significant with P-value<10−6; (5) The minor allele frequency of the SNP <0.01. SNPs and 
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indels from the 1000 Genomes Project phase 1 release (2012-03-14 haplotypes) were 

imputed using MINIMAC. A total of 814,715 indels and 10,129,531 SNPs had high quality 

score (Rsquare > 0.3 in three studies).

 Meta analysis

We used a weighted-z score in meta-analysis. To account for different imputation qualities 

and sample sizes in the three studies, we used a weighted scheme:  and 

here the weight is a combination of sample size and imputation quality: , where 

 is as defined in Li et al 2010. To control for multiple testing, a cut-off of FDR<0.05 

accounting for all SNP/indel-probe set pairs were used, corresponding to p-value < 

2.58*10−6.

 Inference of tissue specific effect

Following Wakefield 2007, we used y to denote the observed data and H1 the alternative 

hypothesis, then for the quantitative trait: y = xTγ + Zθ, where β = (γ,θ) are parameters 

corresponding to the effects of covariates x and SNP z. According to Wakefield 2007, when 

calculating Asymptotic Bayesian factor (ABF), we only need to consider the sampling 

distribution of the MLE:  and the prior for θ ~.N(0, W), which gives:

(1)

An advantage of using ABF is that the calculation only involves  and its standard error from 

individual studies. And from the above we can calculate ABF1, ABF2 and ABF3 for the 

three tissues, respectively. We defined all possible scenarios for tissue sharing as in table 1. 

Then the posterior probability of each scenario can be calculated.

We defined probability of being tissue-specific eQTL (Ptse) as:

(2)

Here P111 is the posterior probability of sharing eQTLs across all three tissues, while P000 is 

the probability that the eQTL does not occur in any tissue. Bayesian factor for each scenario 

in table 1 can be computed based on Bayesian factors from individual studies, for example 

BFc1 is given in formula.

(3)

Then the posterior probability of P111 is calculated as:
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assuming equal prior probabilities πi = 1/8, i=000 to 111. The posterior probability of the 

other 7 scenarios can be computed in a similar way.

 GO enrichment analysis

The Affymetrix expression probes were grouped into GO categories using annotation 

information downloaded from the manufacturer’s website. For each GO category, we 

focused on the peak eQTL (FDR<5%) on the same chromosome of the probes belonging to 

genes in this category and calculated the mean of P(000), …, P(111) of these eQTLs, 

denoted as Gi for the ith GO category for each of the 8 scenarios, respectively. The Z-score 

for the ith GO category is , where μ is the overall mean of P(000), …, P(111) for 

all probes annotated to the 9,409 genes, respectively, σ is the corresponding standard 

deviation, and ni is the number of probes for the ith GO category that mapped by eQTL. The 

P-value is computed by comparing the Z-score with a standard normal distribution for one 

sided test.

We also computed the permutation based P-value by shuffling the correspondence between 

probes and GO categories while maintaining the same number of genes for each GO term. 

From 10,000 permutations, we counted how many times (Mi) the Gi based on permutated 

data were larger than Gi based on observed data. The permutation based P-value is Mi/

10000.

 Genomic distribution of SNP and indel eQTLs

Genome annotation was obtained from the UCSC genome browser (hg19). To examine the 

distribution of the physical location of cis and trans eSNPs and eindels, we focused on peak 

eQTLs (cis or trans) for each probe set. For a particular SNP-probe pair or indel-probe pair, 

we divided the genome into 11 regions related to the gene: upstream TSS >100kb (cis-

>100k), upstream TSS <100kb (cis-<100k), intron between TSS and translation start sites 

(tx-/intron), exon between TSS and translation start sites (tx-/exon), intron in translation 

region(coding/intron), exon in translation region (coding/exon), intron between translation 

stop sites and TES (tx+/intron), exon between translation stop sites and TES (tx+/exon), 

downstream of TES <100kb (cis+ <100k), the downstream TES >100kb (cis+ >100k) and 

on different chromosomes (trans). We then assigned the peak eSNP or eindel into one of 

these categories, respectively for SNP and indel, and reported the percentage of peak eSNP 

or eindel fell into each category.

 Distribution of SNP and indel eQTLs related to epigenetic factors

Functional elements predicted by using ENCODE data were downloaded from UCSC 

genome browser (hg19). We pooled the data from the skin(NHEK) and blood(GM12878) 

tracks for mapping and analysis of chromatin state dynamics. SNPs and indels located 
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within these functional elements were considered as related to epigenetic factors. For this 

analysis we focused on peak eQTLs (either eSNPs or eindels in cis or trans). For each minor 

allele frequency category (MAF ≤ 0.05, 0.05 < MAF ≤ 0.1, 0.1 < MAF ≤ 0.5), we calculated 

the fraction of eSNPs or eindels fell into each functional element category. The significance 

of enrichment was determined by randomly selecting the same number of SNPs or indels 

from the same MAF category and computed the fraction of random SNPs or indels fell into 

these functional regulatory regions. We counted how many times (M) the fraction of random 

SNP or indel were larger than the fraction based on eSNPs or eindels. Enrichment P-value 

(Figure 3, B–D) was calculated as M/10,000 for 10,000 permutations. Depletion P-value 

(Figure 3, A) was calculated as 1−M/10,000.

 Overlapping with known GWAS reported genes

GWAS results were obtained from the NHGRI GWAS database (downloaded from http://

www.genome.gov/admin/gwascatalog.txt on January 10, 2014). GWAS reported genes were 

obtained from the “Reported Gene” column in gwascatalog.txt file. For each disease or trait, 

we calculated the percent of reported genes associated with at least one SNP or indel, 

respectively. We also calculated the percent of reported genes associated with eSNP or 

eindel showed tissue specific effects (Ptse>0.5)

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Meta-analysis result for association between gene expression and imputed indels and 
SNPs
A: Venn diagram for unique number of genes only mapped by SNP or indel or both.

B: Density curve of heritability of gene expression (H2) explained by the top SNP and indel. 

Red: H2 of the top indel for the 5898 genes in panel A. Green: H2 of the top indel for the 

325 genes in panel A. Blue: H2 of the top SNP for the 5898 genes in panel A. Purple: H2 of 

the top SNP for the 3168 genes in panel A.

C: Percent of probes mapped by eQTL (<5% FDR) by total narrow sense heritability for 

51,190 transcription probes. Probes were categorized by total narrow sense heritability 

previously estimated based on the MRCA family panel. The red bar shows the percent of 

probes mapped by eQTL using the MRCA LCL data alone with imputation of the 1000G 

pilot releases. The blue bar shows the percent of probes mapped using imputation of 1000G 

phase 1 variants in MRCA dataset excluding probes with indel as the top eQTL. The desh 

box on top of the blue bar indicates the percent of mapped probes before excluding probes 

with indel as top eQTL. The green bar shows the percent of probes mapped using imputation 

of 1000G phase 1 variants in MRCA dataset. The purple bar shows the percent of probes 

mapped using meta-analysis across three tissues excluding the probes with indel as the top 

associated variants. The orange bar shows the percent of probes mapped using meta-analysis 

across three tissues. The numbers on top of each group of bars are the number of probes in 

each heritability category.
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Figure 2. Comparison of eSNP and eindel
A: Histogram of the effect size (heritability explained by the individual eSNP or eindel) 

difference between eindel and eSNP.

B: Histogram of minor allele frequency for eindel (blue) and eSNP (red). Top right small 

histogram shows minor allele frequency distribution for all indel (blue) and SNP (red) with 

good imputation quality (Rsquare>0.3).

C: Genomic distribution of peak eQTLs (cis or trans) related to associated gene. For a 

particular SNP-probe pair or indel-probe pair, we divided the genome into 11 regions related 

to the gene: upstream TSS >100kb (cis->100k), upstream TSS <100kb (cis-<100k), intron 

between TSS and translation start sites (tx-/intron), exon between TSS and translation start 

sites (tx-/exon), intron in translation region(coding/intron), exon in translation region 

(coding/exon), intron between translation stop sites and TES (tx+/intron), exon between 

translation stop sites and TES (tx+/exon), downstream of TES <100kb (cis+ <100k), the 
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downstream TES >100kb (cis+ >100k) and on different chromosomes (trans). We then 

assigned the peak eSNP or eindel into one of these categories, respectively for SNP and 

indel, and reported the percentage of total peak eSNP or eindel fell into each category. A star 

on the top of bar indicates significant difference between eSNP and eindel (p<10−4).

Huang et al. Page 16

Nat Commun. Author manuscript; available in PMC 2016 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Distribution of peak eQTLs in functional regulator elements based on ENCODE data
A: The fraction of eindel (red bars) and eindel (blue bars) within Heterochromatin marks 

(Ernst et al 2011 Nature) by different ranges of minor allele frequency (MAF < 0.05, 0.05 ≤ 

MAF < 0.1, 0.1 ≤ MAF ≤ 0.5). A star on the top of bar indicates significant depletion 

(p<10−4, Bonferroni correction for 12*3 categories is 0.05/36=1.39*10−3)

B,C,D: The fraction of eindel (red bars) and eindel (blue bars) in functional elements (Ernst 

et al 2011 Nature) by different ranges of minor allele frequency (B: MAF < 0.05, C: 0.05 ≤ 

MAF < 0.1, D: 0.1 ≤ MAF ≤ 0.5) compared with randomly selected SNPs from the same 

MAF category and genome within +/−500Kb of any genes (grey color). Statistically 

different between eindels and eSNPs are also compared. A star on the top of bar indicates 

significant enrichment (p<10−4, Bonferroni correction for 12*3 categories is 
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0.05/36=1.39*10−3). A star with solid lines connecting the SNP and indel bars indicates 

significant difference between the SNP and indel categories (p<10−4).
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Table 1

Definition of all different tissue specific eQTLs.

Case LCL PBMC SKIN Prob

C1 0 0 0 P(000)

C2 1 0 0 P(100)

C3 0 1 0 P(010)

C4 0 0 1 P(001)

C5 1 1 0 P(110)

C6 1 0 1 P(101)

C7 0 1 1 P(011)

C8 1 1 1 P(111)

Note: Here we use “1” to indicate the eQTL is present in the corresponding tissue, and “0” to indicate eQTL is absent in that tissue.
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