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Image Quality Ranking Method for 
Microscopy
Sami Koho1, Elnaz Fazeli1, John E. Eriksson2,3 & Pekka E. Hänninen1

Automated analysis of microscope images is necessitated by the increased need for high-resolution 
follow up of events in time. Manually finding the right images to be analyzed, or eliminated from data 
analysis are common day-to-day problems in microscopy research today, and the constantly growing 
size of image datasets does not help the matter. We propose a simple method and a software tool for 
sorting images within a dataset, according to their relative quality. We demonstrate the applicability 
of our method in finding good quality images in a STED microscope sample preparation optimization 
image dataset. The results are validated by comparisons to subjective opinion scores, as well as five 
state-of-the-art blind image quality assessment methods. We also show how our method can be 
applied to eliminate useless out-of-focus images in a High-Content-Screening experiment. We further 
evaluate the ability of our image quality ranking method to detect out-of-focus images, by extensive 
simulations, and by comparing its performance against previously published, well-established 
microscopy autofocus metrics.

Microscopists today have to deal with ever-growing image datasets. During a typical microscopy imaging ses-
sion, tens or hundreds of images are regularly generated and (automatically) saved. Often only a handful of those 
images are useful for further analysis, and thus a lot of time is spent on searching for representative images. A sin-
gle experiment on an automated High-Content-Screening (HCS) instrument may produce thousands of images. 
The results from such experiments need often to be converted straight into quantitative statistical measures; the 
quality of such measures strongly depends on the quality of the original data – outliers (e.g. out-of-focus images), 
may significantly compromise the results. There would thus, in our view, be a demand for a simple way to sort the 
images based on their qualitative content. Applications of such tool in imaging are almost endless: medical imag-
ing, automated inspection, aerial and satellite imagery and bioimaging being just a couple of examples – not to 
forget the plethora of pictures and videos people capture and share online every day. It is therefore not a surprise, 
that computer-based objective image quality assessment is a rather popular research topic. Only a small number 
of publications however can be found on microscopy applications1–3, and to our knowledge, currently there are 
no applicable, easily accessible image quality assessment tools available for microscopy. Quantitative microscopy 
image analysis tools are being developed4–7, but for some reason, image quality assessment does not seem to be of 
great concern. This is rather surprising, because today’s microscopy techniques allow the realization of very ambi-
tious experiments8–10, and sifting through terabytes of data manually is not really possible. The lack of such tools, 
in our view, can to a large part be explained by the fact that Bioimage informatics, the branch of Bioinformatics 
dealing with microscopy images, is still a rather nascent field – and many of the tools available in other disciplines 
e.g. Medical imaging, have not yet been realized for microscopy11–13.

Image quality assessment methods can be divided in several categories by their functionality. Often the quality 
of an image is estimated in relation to a reference image. These so-called full reference methods14,15 are used to esti-
mate e.g. the performance of image compression methods, but they are of limited use in microscopy applications, 
as typically there is no reference image to be found. Reduced reference16,17 methods require knowledge of some 
characteristics of a good quality image. No-Reference18,19 methods try to estimate the image quality without a 
reference image or a priori standards – this would be the ideal setting for most practical applications, but it is also 
the most difficult from the point of the algorithm development. Many image quality estimation methods try to 
mimic the Human Visual System (HVS) by implementing complex mathematical models18,19. Machine-learning 
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algorithms have also been implemented, in which before using the quality metric, the algorithm is first trained to 
recognize each distortion type in a training dataset that simulates the actual imaging situation20–22.

We propose an image quality ranking method, with no complicated mathematical model, no method train-
ing and no reference image. We show that practical image quality measures can be extracted from basic global 
statistics, in spatial and frequency domains. Furthermore, in our view, in many applications, rather than trying 
to estimate an absolute numerical value for image quality, it is sufficient to sort images within a given dataset 
according to their relative quality – hence the term image quality ranking. The purpose of such a ranking method 
is not to mimic human vision, but simply to aid in decision-making. While the definition of a good quality image 
is very application-specific and even subjective, there are some common characteristics that in our view, all good 
microscopy images should have, regardless of the application. A good fluorescent microscopy image should have 
contrast, bright details and dark background; ideally the whole dynamic range of the data acquisition device 
should be taken advantage of. A good quality image should also be properly focused.

In our ranking method, the image histogram is used to quantify image contrast, whereas details and blurriness 
are quantified with simple power-spectrum measures (such as mean, standard-deviation (STD) & skewness). The 
frequency domain measures are calculated from the high-frequency tail of the power-spectrum, in order to focus 
exclusively on finer image details, and to filter out the contribution of large spatial structures that can vary signif-
icantly from image-to-image; the frequency threshold value can be tuned to adjust the sensitivity of the spectral 
measures. Our concept of image quality ranking is based on simply taking one or e.g. average of several of the 
calculated statistical measures, and ordering the images based on its value. In order to make the different meas-
ures comparable, they were normalized, by dividing each measure by its maximum value within the processed 
dataset – all the measures thus got values between zero and one in any given dataset. With signed measures, 
such as skewness, absolute values were used. It should also be noted that blur should decrease the power spectral 
measures, whereas noise should do the opposite. Thus the measures should be inverted, when noise is of interest; 
in case the dataset consists both noisy and blurred images, the ranking should be run twice, once each way. This 
means that our method can be tuned to look for specific types of distortions (details) by choosing the appropriate 
measures and using them the right way.

From the results it can be seen that two image quality ranking measures can be combined to find images 
with good contrast and details, in a STED-microscopy dataset, derived from a sample preparation optimization 
experiment for labeling vimentin in BHK21 cells. The results are validated by comparisons to subjective opinion 
scores that were obtained by requesting microscopy experts to grade images, according to how good contrast and 
filamentous vimentin structure they have. In addition we compare the performance of our method against five 
state-of-the-art blind image quality assessment methods. We also show how our method can be applied to detect 
out-of-focus images within High-Content Screening (HCS) automated microscopy datasets. We further validate 
our results by comparing the blur detection ability of our image quality ranking method against previously pub-
lished autofocus metrics, both with simulated data and with the real HCS image datasets.

Results
Investigating the power spectrum threshold.  Focusing on the high-frequency tail of the image power 
spectrum, should make it possible to calculate simple image quality related measures that are not sensitive to the 
large spatial structures, which change from one image to the next. In order to determine a suitable threshold value 
we investigated the power spectra of various kinds of un-processed as well as blurred microscope images and pho-
tographs. In (Fig. 1a) the power spectra of six very different microscope images are shown (Supplementary Fig. 4).  
As could be expected, the large spatial structures garble the different spectra at low frequencies, but at around 
40% of the maximum frequency, it appears that the power spectra start to settle around a relatively fixed mean 
value and become quite clearly separable. Noisy images and images with abundant fine details seem to have a large 
amount of power at high frequencies, as could be expected. This observation is confirmed in (Fig. 1b) in which 
power spectra of five images (Supplementary Fig. 4) from the STED sample preparation optimization experiment 
are shown. Once again, there is significant variation at low frequencies, but after approximately 40% of the maxi-
mum frequency, the power spectra are clearly separate. Images with abundant fine details have a large amount of 
power at the high frequencies, whereas somewhat soft (blurred) images settle around a lower power value. Similar 
behavior can be observed in photographs (Fig. 1c), although the power spectra do not appear to settle around a 
mean value, but rather continue in a downward slope, up until the highest frequencies. Once again, at about 40% 
of the maximum frequency, the effect of the large spatial structures seems to disappear. In (Fig. 1d) the power 
spectra of Gaussian blurred versions (radii 0–10) of a single fluorescent nanoparticle image (Supplementary Fig. 4)  
are shown. Because each image is a version of a single base image, there is no mixing at low frequencies; it is also 
evident that in such case the images are easier to separate at the low frequencies, rather than high ones, and thus 
a low threshold value should be used. It also appears that it should not be necessary to calculate the whole power 
spectrum to separate the images, but rather a single bin near the zero frequency should suffice to separate the 
images. In blurred photographs (Fig. 1e,f) very similar behavior can be seen. Even a small amount of blur strongly 
affects the power spectrum tail. For this reason in-focus images, even from a mixture of different photographs 
(Fig. 1f) appear to be rather clearly separable from the blurred ones. Based on these observations, at approxi-
mately 40% of the maximum frequency of microscope images and photographs, it should be possible to calculate 
image quality ranking measures that are not affected by the variations of large spatial structures. Also, at the same 
threshold, the measures should be extremely sensitive to blur and noise. In autofocusing applications, it might be 
beneficial to decrease the threshold in order to increase the dynamic range of the blur detection.

Detecting good quality images in a STED sample preparation optimization image data-
set.  The ability of our method to recognize good quality images was tested by analyzing a STED micros-
copy dataset, containing images from a sample preparation optimization experiment for vimentin intermediate 
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filaments in BHK21 cell-line (Supplementary Protocol 1). The aim was to devise a method for finding images 
with high contrast, low un-specific background signal and well visible, continuous spatial structure. To this end, 
the image ranking was performed, by averaging two measures: spatial entropy and inverse of the power spectrum 
STD (invSTD). The spatial entropy favors images with high contrast, whereas the invSTD measure should favor 

Figure 1.  In (a) the power spectra of various kinds of microscopic images are shown. In (b) the power spectra 
of five images extracted from the STED sample preparation optimization dataset are shown. In (c) the power 
spectra of several regular photographs are shown. In (d) the power spectra are shown for a confocal image 
of fluorescent nanoparticles, Gaussian blurred with radii 0–10. In (e) the power spectra are shown of a single 
photograph, Gaussian blurred with radii 0–2. In (f) the similar spectra are shown of several photographs. All 
the photographs were selected form the simulation dataset, shown in (Supplementary Fig. 3). In all the sub-
graphs Power denotes the normalized amount of signal power at a given frequency, whereas Frequency denotes 
the fraction of the maximum frequency in any given image.



www.nature.com/scientificreports/

4Scientific Reports | 6:28962 | DOI: 10.1038/srep28962

non-noisy images, as the dotty details that are typical to images from samples with less than optimal labeling, 
should amplify the power spectrum tail (Fig. 1b). In order to validate the ranking results, the performance of 
our method was compared against subjective opinion scores that were generated by microscope experts, who 
were asked to grade images with good contrast and filamentous vimentin structure on a scale 1–5. Moreover, the 
performance of our image quality ranking method was compared against five state-of-the art blind image quality 
assessment methods DIIVINE23, BRISQUE24, BLIINDS225, NIQE26 & BIBLE27. As shown in (Fig. 2), both the 
Entropy and the invSTD measures correlate well with the observed image quality. However, as shown in (Fig. 2 
image IV) the simple ranking measures cannot separate good filamentous vimentin structure, from dense and 
continuous structure not showing clear filaments. It is also evident that the subjective score of (Fig. 2 image IV), 
when seen side-by-side with images (Fig. 2 image V–VIII) appears rather severe. One can assume that the micros-
copy experts did not see filamentous structure, and thus gave a very low score to an otherwise good quality image; 
also, they were not allowed to view images side-by-side, but one at a time.

In (Fig. 3) the correlation of the different image quality measures with the subjective scores is shown, in a 
subset of the STED image dataset that contains only STED images. The corresponding results for the complete 
dataset, containing a mixture of STED and confocal images, can be seen in (Supplementary Fig. 1). Both the 
invSTD and Entropy measures, as well as their combined Average correlate quite well with the subjective scores; 
the Average measure seems to be the best of the three. Subjective scores 2–5 match well with the ranking meas-
ures. However, there are several images that get a high ranking score, but a low subjective score – this can be 
attributed to the phenomenon shown in (Fig. 2): there are a lot of good quality images in the dataset that were 
given a very low subjective score, because they do not have evident filamentous vimentin structure. Separation 
of such images would require the implementation of structure-specific measures; one could e.g. look into the 
directionality of image gradients, which should be significantly different for dotty and filamentous images. Of the 
comparison methods, only BIBLE, BLIINDS2 and NIQE appear to correlate in any way with the subjective scores, 
BIBLE being clearly the best of the three. The same observations can be made with both the STED image subset 
and the complete dataset. In (Supplementary Fig. 2) the Average measure of our ranking method is compared 
against the five image quality assessment methods: BIBLE and BLIINDS2 correlate very nicely, NIQE to an extent, 
DIIVINE and BRISQUE not at all. It is probable that the natural image statistics that they estimate are not valid 
for microscopic images.

Ranking blurred photographs.  A simulation dataset was created from a series of photographs 
(Supplementary Fig. 3), by applying Gaussian blur kernel of radii 0–2 to each of the images; the complete 

Figure 2.  Four images both from the top and the bottom of the image quality ranking results of the STED 
microscopy dataset are shown . The masked spatial entropy (Entropy) measure correlates well with the image 
contrast, and the inverse of the frequency domain STD (invSTD) clearly favors images with good, non-dotty 
structures, as expected.
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Figure 3.  In (a–c) the correlation of various image quality ranking measures with subjective image quality 
scores are shown, when considering only STED images in the sample preparation optimization dataset. The 
term Average in (a) denotes the average of the invSTD & Entropy measures. In (d–f) corresponding plots are 
shown for each of the comparison image quality metrics. In the graphs the circles denote individual images and 
the red line is a linear regression fit of the data points. The quality of the linear model fit and Pearson correlation 
score is reported for each measure and metric.
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dataset is a mixture of all the images. Three frequency domain measures, spectral domain mean (fMean), 
standard-deviation (fSTD) and bin mean (MeanBin), of our ranking method were evaluated. MeanBin is the 
average power, calculated in a tiny five-sample-wide bin, starting from the selected threshold frequency, which 
was set to 40% from maximum, because it should make the measures very sensitive to blur, as suggested by the 
power spectra in (Fig. 1). As shown in (Fig. 4a–c), each measure responds rather aggressively to blur, making 
it possible to separate blurred images from originals, even in a mixed dataset such as this. fSTD and MeanBin 
produce the best separation, whereas fMean measure produces somewhat similar scores for Gaussian radii 1–2. It 
is quite impressive that the MeanBin measure manages to separate the mixed images well, by considering only a 
tiny subset of the power spectrum. We also compared the performance of our method against the five blind image 
quality assessment methods. Each of the five methods was developed to work on photographs, which should give 
them an advantage; surprisingly this is not so. DIIVINE and BLIINDS2 do not reliably separate original from 
even r =​ 2 blurred images. BRISQUE, NIQE and BIBLE all produce rather good results, BIBLE being clearly the 
best of the lot.

Comparison of blur detection performance with autofocus metrics.  Autofocus metrics in auto-
mated microscopy28 can be considered to be image quality ranking methods, but their use is typically limited 
to comparing differently blurred versions of the same image, whereas most microscopy datasets contain images 
from several positions on the sample object(s). We compared the blur detection performance of our image qual-
ity ranking method against two previously published, robust automatic microscopy autofocus metrics: the fre-
quency domain based Spectral Moments metric28 and the spatial domain based Brenner metric29, which were 
both found excellent in simulations and with real images in28. The comparison was done on five different image 
datasets, each of which contain Gaussian blurred versions (radii 0–29) of four different microscope images: a 
phase contrast wide-field image (Phase Contrast), a high magnification confocal fluorescence image of interme-
diate filaments (Vimentin), a confocal fluorescence nanoparticle image (Beads) and a low-magnification image 
of rounded Butterfly cells (Butterfly). Several different images were used, in order to exclude the possibility that 
the measures react to some given spatial structure. The original images are shown in (Supplementary Fig. 4). Two 
different threshold values 40% and 2% were used in order to demonstrate the possibility to adjust the blur detec-
tion dynamic range in our ranking method. The same three ranking measures fSTD, fMean and MeanBin were 
used as with the photographs. In (Fig. 5a) the results from the nanoparticle focus series are shown. As could be 
expected from our power spectral observations (Fig. 1d), at 40% threshold the ranking works reliably only until 
Gaussian radius of approximately five. However, lowering the threshold to 2% completely linearizes the measures. 
At 2% threshold all the three measures clearly outperform the benchmark autofocus metrics; the Brenner metric 
works unreliably with the beads image, whereas Spectral Moments works well, but it does not have a very good 
sensitivity. The same effect is shown for the vimentin image series in (Fig. 5b,c). While in this case the ranking 
works at 40% as well, at 2% threshold the linearity is better. Once again, all the three ranking measures perform as 
well or better than the autofocus metrics. The three quality ranking measures work in a very similar manner with 
Phase contrast and Butterfly cell images as well (Fig. 5d,e), although phase-contrast images seem to be favored 
by all. Only the results for 40% threshold are shown here. The Spectral Moments autofocus metric seems to be 
rather reliable with all the test images, although it seems not to be very sensitive, except for with the Phase con-
trast image series. The Brenner metric appears unreliable with nanoparticle images, and surprisingly also with 
the Butterfly cell image series.

Detecting out-of-focus images in HCS image datasets.  We obtained two image datasets from an 
automated HCS time-course experiment of a 3D co-culture of LNCaP tumor cells together with PF179T stromal 
cells30 – each of the datasets contain a time series from a single well of a 96-well plate. The images were acquired 
in one image per well per hour fashion across the plate, and therefore auto-focusing was repeated for each image. 
In this type of an experiment the failure of autofocus function is one of the main concerns, as out-of-focus images 
corrupt the quantitative results. Our image quality ranking method was used to find the out-of-focus images from 
both of the datasets. The images contained phase-contrast and fluorescence channels, which were split into sep-
arate image series for the ranking. The three spectral domain measures fSTD, fMean and MeanBin that worked 
well in simulations were used here as well. The frequency threshold was set to 40%, because the image content in 
both fluorescent and phase channels varies significantly, and thus the low-frequency contribution needs to be fil-
tered out. We also compared the performance of our ranking method against the two autofocus metrics, Brenner 
and Spectral Moments, which were used in the simulations earlier. Some examples from the ranking results 
are shown in (Fig. 6). Descriptive statistics for the measures were generated by manually browsing through the 
ranking results from one of the two datasets. The last clearly in-focus image was identified, after which the Mean 
and STD for each measure, above and below that point were calculated. The subjective review revealed that the 
fluorescence channel contained a large amount of images that are slightly blurred, although the corresponding 
phase-contrast images appear in focus. For this reason, for fluorescence images two thresholds were identified: 
one for the completely out-of-focus images, and another for these slightly blurred images. In both cases all the 
images below the threshold were identified as out-of-focus. The results are shown in (Table 1). In practical appli-
cations, filtering out the clearly out-of-focus images (Fig. 6 image IV) is the main interest, which means that the 
lower threshold should be used – raising the threshold too high might also cause the elimination of useful images, 
because in a time-course experiment, such as this one, the amount of image content varies significantly during the 
experiment, from nearly empty to detail packed, especially in the fluorescence channel (Fig. 6 images I–III). The 
nearly empty images typically get lower ranking values than the detail packed ones, despite our power spectral 
normalization.

With both of the datasets, using either fluorescence or phase-contrast, all out-of-focus images were found. 
All the three ranking measures worked well, surprisingly even the MeaBin measure. Both of the autofocus 
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metrics worked rather well also. However, the Brenner method, being based on a form of spatial domain deriv-
atives, suffered from the fact that not all the images in the dataset are versions of the one base image; images 

Figure 4.  In (a–c) the values for fSTD, fMean and MeanBin are shown as a function of Gaussian blur radius 
in the photograph simulation dataset. In (d–h) Same kind of plots are shown for the benchmark image quality 
metrics BIBLE, DIIVINE, BLIINDS2, BRISQUE & NIQE. Notice that in (a–c) logarithmic scale is used, 
whereas linear scale is used in (d–h).
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with less content, were mixed with the out-of-focus images in the fluorescence image datasets, whereas in the 
phase-contrast image datasets the out-of-focus images were mixed with only slightly blurred images and the 
nearly empty images received strangely high values. The Spectral Moments metric on the other hand worked quite 
well with the phase-contrast images, but it was quite insensitive to blur with the fluorescence images, although 
the clearly out-of-focus images were successfully identified – and for some reason the detail-less images received 
very high values. Our image quality ranking measures gave the most consistent results in both fluorescence and 
phase-contrast image datasets, and due to their strong response to small amounts of blur, they also successfully 
found only slightly blurred images, which were sometimes left unnoticed by the comparison methods. All the 
measures were more reliable with the phase-contrast images than the fluorescence ones. This result correlates 
well with the simulations.

Figure 5.  In (a–e) the performance of the fMean, fSTD & MeanBin measures is compared against Brenner and 
Spectral Moments autofocus metrics. The colors in each graph follow the legend shown on the upper right. The 
th denotes the value of the power spectrum threshold, that was used in calculating the fMean, fSTD & MeanBin 
measures. The base images that were used to create the blur series can be seen in (Supplementary Fig. 4).
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Discussion
A novel method for image quality ranking, aimed at microscopy applications was introduced. We demonstrated 
the applicability of our method to evaluating image quality within microscopy image datasets. We showed how 
the developed method could be used to find the good quality images in a STED microscopy dataset. The image 
quality ranking values correlated well with subjective scores. Our method also compared favorably against five 
state-of-the-art blind image quality assessment algorithms, also when using regular photographs, which is what 
those algorithms were created for. We also showed how the same method could be used to detect out-of-focus 
images in an automated HCS experiment. Similar applications can be found in all aspects of microscopy, and thus 

Figure 6.  Examples of the image quality ranking results in the HCS image datasets are shown. The 
fSTD, fMean and MeanBin measures all clearly separate out-of-focus images from in-focus images with both 
fluorescence and phase-contrast. It is also possible to identify images, which are only slightly blurred. Especially 
good results were obtained with the phase-contrast images. Our quality ranking measures were also found more 
reliable than the two autofocus metrics. The four example images from the fluorescence and phase-contrast 
datasets represent (I) good, (II) nearly empty, (III) slightly blurred and (IV) clearly out-of-focus images.

fSTD fMean MeanBin Brenner
Spectral 

Moments

Phase Contrast

  In-Focus 0.76/0.1 0.72/0.1 0.73/0.1 0.93/0.03 0.74/0.1

  Out-of-focus 0.12/0.08 0.05/0.03 0.09/0.06 0.32/0.15 0.10/0.06

Fluorescence

  In-Focus 0.68/0.11 0.8/0.1 0.69/0.10 0.81/0.15 0.83/0.04

  Out-of-focus 0.20/0.04 0.34/0.04 0.21/0.04 0.21/0.05 0.45/0.08

  Blurred 0.38/0.1 0.56/0.13 0.39/0.10 0.37/0.16 0.77/0.17

Table 1.  Statistics from the HCS dataset ranking are shown for each measure. In the Fluorescence channel 
two levels of blurriness were identified: clearly out-of-focus images, and in-focus, but clearly blurred images. 
Therefore two levels of blurriness are reported here. The numbers denote (Mean/STD) of all the values above 
and below the last in-focus image.
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we think that the method would be of general interest to the bio-imaging/microscopy community. Applications 
could also be found in other fields of science, such as in medical imaging, automated inspection and aerial and 
satellite imagery.

Based on the simulations and results obtained with the HCS image datasets, our image quality ranking method 
could be quite powerful in an online autofocusing application as well. The possibility to tune the blur sensitivity 
by adjusting the power spectrum threshold would make it possible to create a highly accurate multi-stage focus-
ing algorithm, in which the threshold is shifted up, as the image approaches perfect focus. Especially the MeanBin 
measure should be ideal in such an application, because it does not even require the calculation of the complete 
power spectrum and can be calculated very quickly. According to our results the performance of such a method 
should be at least at-par with current autofocus algorithms.

Although our image quality ranking method does not require complicated mathematical models, method 
training or reference image, additional features could of course be added, according to the requirements of a 
given application. One could for example use some form of method training to select a set of reference images, 
against which the other images would be compared. Also, integrating the quality ranking method with a 
pattern-recognition software6, would make it possible to select good quality images that in addition have the 
desired content, thus enabling a form of automatic image understanding7. Such a method could remove the offset 
between subjective opinion scores and ranking values that was seen in the STED image dataset.

Like any new image processing method, also ours has hope of finding applications only if there are available 
tools to try it with. To this end, we are releasing the source code of our own software PyImageQualityRanking 
under an open-source BSD license. The software was written in Python, using standard scientific libraries, avail-
able on all common operating systems, thus ensuring full cross-platform compatibility. There is also a plan to 
integrate our software with BioimageXD31 bio-image processing application in the future, in order to further 
improve the usability of our method32. Moreover, it is important to note that all of the functionality necessary to 
implement our method is available in practically all image processing software packages, as well as generic data 
analysis tools and programming languages. One could even contemplate implementing some of the functionality 
on an FPGA for autofocusing28, for example.

Methods
Contrast quantification by spatial domain histogram measurements.  The histogram is a powerful 
measure of image contrast in spatial domain. It represents the distribution of gray values within an image – a 
good quality image has ideally every single gray value within the dynamic range of the data acquisition device. 
We quantify the goodness of the histogram by Shannon entropy measure20,33,34:

∑=








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H P
P

log 1
(1)i

i
i

where Pi denotes the normalized image histogram and i is the histogram bin index. Generally in fluorescence 
microscopy images, much of the field of view is black, and therefore the histograms tend to be dominated by 
the background values. To compare histograms of different images, the varying amount of background needs to 
be taken into account. We addressed this by calculating the histograms within masked image regions that had 
average intensity values significantly above the background level. The mask was created by first smoothing the 
image using a large (r =​ 100) averaging filter, and then thresholding it at 80th percentile, which means that 80% of 
the pixels are below that value (see Fig. 7a,d–f). The averaging ensures that single bright spots (e.g. dust) do not 
get confused for image details. The 80% thresholding was determined experimentally by observing the content of 
the masked region in several test images (from the STED sample preparation optimization dataset): the aim was 
to select such a value at which only parts of the image containing useful details were included into the masked 
regions.

Frequency domain analysis of image details.  A spatial domain based histogram measure is limited 
to quantifying gray-scale contrast, whereas an image quality assessment method should take image sharpness/
blurriness, noisiness and details into account as well. These properties can be quantified in the spatial domain 
by way of image segmentation or local filtering, but we decided to look into the power spectrum, derived from 
the frequency domain representation of an image, to find out simple descriptive statistics for image details. Our 
motivation for the spectral domain approach was that it should be more easily applicable to comparing similar 
images that are not different versions of a single base image. The spectral domain representations of images with 
similar structures can be expected to contain similar frequencies, although their spatial organization might differ 
significantly. A power spectrum measurement should thus to some extent be applicable to evaluating image con-
tent, and more importantly it can be used to detect blur and noise: blurriness should decrease the amount of fine 
details and thus attenuate high frequencies, whereas noisiness should do the opposite18,35. We therefore decided 
to focus exclusively on the fine details (high frequencies), by calculating a number of statistical measures, such as 
mean, standard deviation (STD) and skewness of the power spectrum tail (Fig. 7a–c). Inverted measures can also 
be used, when noise is of interest; in case the dataset consists both noisy and blurred images, the ranking should 
be run twice, once each way. This means that our method can be tuned to look for specific types of distortions 
(details) by choosing the appropriate measures and using them the right way.

The power spectral analysis of an image was performed, as follows. First, a two-dimensional power spec-
trum image was calculated by taking a square of the centered frequency-domain image, thus precluding neg-
ative power values. The effect of image-to-image brightness (content) variation was addressed by dividing the 
power spectrum by the image average gray level and the total number of pixels, similar to what was done in18. 
A one-dimensional power-spectrum was then calculated, by taking advantage of one of the two implemented 
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methods: 1° by calculating an average power amplitude at a given radius from the zero frequency center or 2° by 
first adding all the rows and columns together and then adding the corresponding “negative” frequencies to the 
“positive” ones. The second method is significantly faster to calculate, as it only consists of additions and was thus 
used throughout our experiments. In order to focus exclusively on fine image details, the power spectrum was 
then cropped to contain only frequencies larger than a set threshold value, and then the following statistics were 
calculated on the power spectrum tail: mean (fMean), standard-deviation (fSTD), cv, kurtosis, entropy, skewness 
and summed power amplitude at frequencies larger than 90% of the maximum frequency. MeanBin parameter is 
the average power, calculated at a single five-sample-wide bin, starting from the selected threshold. Also inverse 
measures were calculated for skewness and STD, i.e. the invSTD measure value equals to 1-STD; similar measures 
could be calculated from e.g. MeanBin and fSTD.

STED microscopy dataset.  In order to optimize a sample preparation protocol for vimentin intermediate 
filaments in BHK21 cells, samples were prepared with a combination of different fixation, permeabilization and 
blocking methods. Two different primary antibodies, V9 (Sigma) and D21H3 (Cell Signaling Technologies) were 
applied to each sample preparation method. Two different secondary antibodies, Atto647N (Invitrogen) and 
Abberior Star635P (Abberior), were used as well (Supplementary Protocol 1). The samples were imaged with a 
Leica TCS STED (Leica Microsystems) super-resolution microscope. The STED microscopy image dataset con-
tains a mixture of STED and confocal images, at various zoom levels; the STED images can be separated from the 
confocal images using the file filtering functionality in our PyImageQualityRanking software (see Image Quality 
Ranking Software).

Simulation photograph dataset.  Twelve grayscale photographs were used to create a simulation dataset 
(Supplementary Fig. 3). Two blurred versions of each of the pictures were created, by using a Gaussian blur fil-
ter, with radii 1.0 and 2.0. The image dataset was generated with a custom Python script that is included in our 
PyImageQualityRanking software (see Image Quality Ranking Software).

Figure 7.  The working principle of the image-ranking tool is illustrated. In order to extract statistics related 
to image-structure, noise and blurriness, a frequency domain representation (b) of the original image (a) is 
computed via Fourier transform, after which it is simplified into a one-dimensional power-spectrum (c). All the 
frequency domain statistics are calculated only at the highest frequencies (typically >​40% from maximum), as 
highlighted in (c). In order to compare the histograms of different images, a mask is first formed by filtering the 
original image (a) with a large (r =​ 100) uniform mean filter; the result of the operation can be seen in (d). By 
selecting the pixel positions in (d), at which the intensity is higher than 80% of the pixel values in the masked 
image, a spatial mask can be formed, to extract the neighborhoods in the original image that contain most 
details (e). Calculating the histogram from the masked image enables the comparison of images with varying 
amount of dark background.
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Autofocus simulation datasets.  Four microscope auto-focus simulation datasets were generated from 
Vimentin, Beads, Phase Contrast & Butterfly Cells images (Supplementary Fig. 4). Each base image was Gaussian 
blurred with radii 0–29 in order to create simulated focus series. The image datasets were generated with a custom 
Python script that is included in our PyImageQualityRanking software (see. Image Quality Ranking Software).

HCS time series datasets.  Two datasets from an automated HCS time-course experiment of a 3D 
co-culture of LNCaP tumor cells together with PF179T stromal cells (see30 for full details) were used to test the 
possibility to detect out-of-focus images with our image quality ranking method. Each of the datasets contains a 
time series from a single well of a 96-well plate, a little over 300 images, with both phase-contrast and fluorescence 
channels. In total there were thus approximately 1200 images to be ranked.

Subjective image quality assessment.  Subjective scores for the STED microscope image data-
set (see STED microscopy dataset) were obtained by asking microscopy experts to rank the images on a 
scale “Bad”, “Poor”, “Fair”, “Good”, “Excellent” (numeric 1–5)15,36. The experts were requested to identify 
images with good contrast and nice, fibrous intermediate filament structure. The images were evaluated 
in one-by-one fashion, not side-by side. At each re-run the order of the images was shuffled. The opinion 
scores used in in the results section are the average of four subjective rankings. The subjective image rank-
ing was performed with the help of a custom Python script that is included in our PyImageQualityRanking 
software (see Image Quality Ranking Software).

Method validation against blind image quality assessment methods.  Our image qual-
ity ranking method was compared against five state-of-the-art blind image quality assessment methods: 
DIIVINE23, BRISQUE24, BLIINDS225, NIQE26 & BIBLE27. Our requirements for the comparison meth-
ods were that they should not require a reference image, and that a functioning reference software imple-
mentation that can be used for testing, has been made available by the authors. DIIVINE, BRISQUE and 
BLIINDS2 are so called opinion-aware blind image quality assessment methods, which means that they have 
been trained to recognize different kinds of distortions by using images with known distortion type and 
human opinion score. NIQE and BIBLE are completely blind methods, i.e. they do not require method train-
ing. BIBLE is specifically aimed at detecting image blur, whereas the other four methods are aimed at general 
image quality assessment. Our tests were done on the original software released by the authors; for each of 
the five methods Matlab code was either directly available online, or upon request. No changes were made to 
the original implementations. DIIVINE, BRISQUE and BLIINDS2 were supplied pre-trained to recognize 
all common image degradations. The comparisons were done with the STED microscope image dataset 
(see STED microscopy dataset) and the blurred photograph simulation dataset (see. Simulation photograph 
dataset). Same kind of normalization was used as with our own ranking measures, in order to establish a 
common (0–1) scale for the image quality measures.

Method validation against autofocus metrics.  We compared the blur detection performance of our 
image quality ranking method against two previously published, robust automatic microscopy autofocus metrics. 
The Brenner metric29 is a form of a spatial domain derivative:

∑∑= − < + <+ F G G i N j N( ) , 2
(2)

Brenner
i j

ij i j x y2
2

where Gij is the grayscale intensity at pixel position ij, Nx and Ny are the image width and height. It has been shown 
to be a very robust autofocus metric28. The Spectral moments metric28 is calculated from the image power spec-
trum, similarly to what is done in our image quality ranking method:

∑=F P ilog ( ),
(3)Moments

i
i

where i is the spectral component index and P is the normalized power spectrum ∑ =P( 1)i i . However, the 
entire power spectrum is used for the metric calculation, instead of cropping it to contain only the high fre-
quencies, as is done in our method – the logarithmic scaling does somewhat emphasize high frequencies. We 
implemented the two autofocus metrics in our PyImageQualityRanking software (see Image quality ranking 
software).

Image Quality Ranking Software.  Our PyImageQualityRanking software was written in Python, and 
it is released under BSD open-source license. Only standard Scientific Python libraries (Numpy, SciPy, 
Pandas, Matplotlib) are utilized. Numpy and SciPy were used to implement all the image processing and 
analysis features, whereas Pandas was used to implement methods to process the results (data sorting by 
measure value, measure calculations, measure normalization etc.). Matplotlib was used for image visuali-
zation, as well as to produce mathematical plots. In many quantitative microscopy applications time lapse 
recordings are made, which means that the order of the images should not be changed – therefore the 
data sorting features in PyImageQualityRanking software do not actually change the order of the images, 
but instead the software creates a separate data file with the image names and measures, which can be 
safely modified, without risk of compromising the original image data. The basic functionality of the 
PyImageQualitRanking software is described in pseudocode in (Supplementary Note 1).
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