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Abstract: This paper describes a complex correlation mapping algorithm
for optical coherence angiography (cmOCA). The proposed algorithm
avoids the signal-to-noise ratio dependence and exhibits low noise in
vasculature imaging. The complex correlation coefficient of the signals,
rather than that of the measured data are estimated, and two-step averaging
is introduced. Algorithms of motion artifact removal based on non perfusing
tissue detection using correlation are developed. The algorithms are
implemented with Jones-matrix OCT. Simultaneous imaging of pigmented
tissue and vasculature is also achieved using degree of polarization
uniformity imaging with cmOCA. An application of cmOCA to in vivo
posterior human eyes is presented to demonstrate that high-contrast images
of patients’ eyes can be obtained.
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1. Introduction

Optical coherence angiography (OCA) is a non-invasive vasculature contrast technique
based on optical coherence tomography (OCT). OCA has been used in several applications,
e.g., ophthalmology [1–5], oncology [6], neurology [7], and gastroenterology [8]. Several
angiography methods and algorithms have been developed, including OCA based on Doppler
phase-shift detection [9–11], high-pass filtering techniques [12–18], intensity variance [19],
and phase-shift variance [20,21]. Methods based on intensity correlation [22–24] and complex
correlation [6, 25–27] have also been presented. Among these, the complex-correlation-based
technique uses all of the complex information of OCT, and provides good vasculature contrast
[27]. In addition, the correlation-based methods are sensitive to the mobility of scatterers and
less sensitive to the Doppler angle [28].

Despite these advantages, complex-correlation-based OCA still suffers from certain
problems. First, the correlation coefficient is not only affected by motion, but also by the
signal-to-noise ratio (SNR) [29]; i.e., low SNRs create artificially high flow signals. A signal-
intensity-based threshold has been widely used to remove the low-SNR regions [20,24,27,30],
but the correlation signals above the threshold are still affected by the SNR, and this approach
is not fully quantitative. The second point is the variance of the estimated complex correlation
coefficient. This is limiting the contrast of vasculature imaging. For in vivo imaging, the
involuntary motion of samples causes decorrelation and artifacts.

In this paper, a new OCA method, which we call correlation mapping OCA (cmOCA), is
derived using the SNR-corrected low-noise complex correlation. We present SNR-correction
and variance-reduction theories for the complex correlation coefficient estimation (Section 2).
The treatment of bulk tissue motion is described in Section 3.1 and Section 3.2. The cmOCA
method is applied with Jones matrix OCT (JM-OCT) [31–37], which is a type of polarization-
sensitive OCT that has multiple polarization detection channels and enables polarization-
sensitive contrast. Details of the implementation of cmOCA with JM-OCT are presented in
Section 4. The combination of degree-of-polarization uniformity (DOPU) and cmOCA for
simultaneous visualization of vasculature and the retinal pigment epithelium (RPE) in the eye
(Section 5.3) is also described. The cmOCA method is applied to normal and pathologic eyes.

2. Theory of SNR-corrected low-noise complex correlation coefficient estimates

In this section, the general complex correlation coefficient of OCT signal and its estimate
are derived (Section 2.1). The SNR-corrected low-noise estimator of the complex correlation
coefficient is then described (Section 2.2). The notations used here and the following sections
are listed in Appendix B.
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2.1. Complex correlation of OCT signals

By assuming that the OCT signal at the spatiotemporal point r = (x,z, t) (where x is the
transversal position, z is the axial position, and t is time) is a random variable G(r), the
covariance matrix between two OCT signals at r and r+Δr can be expressed as

ΣG(Δr;r) =
[

E
[|G(r)|2] E [G(r)G∗(r+Δr)]

E [G(r+Δr)G∗(r)] E
[|G(r+Δr)|2]

]
, (1)

where E [ ] represents the expectation, and E [G(r)] is assumed to be zero. The population
correlation coefficient ρG and phase offset θG between G(r) and G(r+Δr) are

ρG(Δr;r)eiθG(Δr;r) =
E [G(r)G∗(r+Δr)]√

E [|G(r)|2]E [|G(r+Δr)|2] (2)

The correlation coefficient ρG is estimated using the sample covariance matrix SG between
the measured OCT signal pair g(r) and g(r+Δr) which is obtained as

SG(Δr;r)≡ 〈
g(Δr;r)g†(Δr;r)

〉
w1

=

〈[ |g(r)|2 g(r)g∗(r+Δr)
g∗(r)g(r+Δr) |g(r+Δr)|2

]〉
w1

,
(3)

where

g(Δr;r) =
[

g(r)
g(r+Δr)

]
, (4)

and 〈·〉w is an averaging operation across a window w. The superscript † denotes the conjugate
transpose operation. The correlation coefficient estimate of ρG is then obtained as

rG(Δr;r)≡ ρ̂G(Δr;r)≡ |sG12|√
sG11 · sG22

, (5)

where sGpq are the entry of the estimated covariance matrix SG at p-th row and q-th column.
In practical OCT measurements, the correlation coefficients obtained from measured OCT

signals are not only affected by the true OCT signal, but also by noise. The OCT signal to be
measured at the spatiotemporal point r can be considered as the summation of the true OCT
signal S(r) and some random additive noise N:

G(r) = S(r)+N. (6)

By assuming S(r) to be a zero-mean process and N to be a zero-mean stationary random
process, the covariance matrix [Eq. (1)] can be written as

ΣG(Δr;r) =
[
E
[|S(r)|2]+E

[|N|2] E [S∗(r)S(r+Δr)]
E [S∗(r+Δr)S(r)] E

[|S(r+Δr)|2]+E
[|N|2] .

]
(7)

The correlation between measured OCT signals at different spatiotemporal points, ρG(Δr;r),
can then be written as the product of the correlation coefficient of the true OCT signals,
ρS(Δr;r), and a factor expressing the noise effect, ρSNR(Δr;r), as [29]

ρG(Δr;r) = ρSNR(Δr;r)ρS(Δr;r), (8)

where

ρS(Δr;r) =
E [S∗(r)S(r+Δr)]√

E [|S(r)|2]
√

E [|S(r+Δr)|2] (9)
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ρSNR(Δr;r) =
[√

1+SNR(r)−1
√

1+SNR(r+Δr)−1

]−1

. (10)

ρSNR(Δr;r) [Eq. (10)] is a decorrelation factor caused by the random noise, where SNR(r) =

E
[
|S (r)|2

]
/E
[|N|2]. Hence, rG [Eq. (5)] does not provide an accurate estimate of the signal

correlation ρS.
The bias brG and variance σrG in the correlation estimate rG are expressed as

brG = E [rG]−ρS, (11)

σrG = E
[
r2

G

]−E [rG]
2 . (12)

The bias decreases with higher SNRs. As SNR → ∞, ρSNR → 1 and ρG → ρS. Thus, the bias brG

decreases. However, the variance of estimation is not always small at high SNRs. The variance
σrG depends on ρG, and rapidly increases as ρG decreases [38,39]. Hence, the variance is large
with small ρS even when the SNR is high (Table 1). The large variance σrG will results in the
noise of the correlation imaging.

Table 1. Variance of correlation coefficient estimation σrG .

SNR
ρS low ≈ 1

high high low
low high high

2.2. SNR-corrected low-bias, low-noise complex correlation estimation

The correlation of signal ρS(Δr;r) can be estimated using the noise power estimation technique
presented in our previous studies [29, 40]. In the present paper, we further modify this method
to achieve a lower estimation noise than the previous approach.

The signal correlation was estimated as

rS(Δr;r)≡ |sG12|√|[sG11 − q̂N ][sG22 − q̂N ]|
, (13)

where sSpq are the entry of the estimated covariance matrix SS at p-th row and q-th column, and
q̂N is an estimation of the noise power, obtained as

q̂N ≡
〈
|gn(t)−〈gn(t)〉t |2

〉
t
, (14)

where 〈 〉t denotes time-averaging. gn(t) is the measured OCT signal obtained without a
sample. This can be pre-determined by blocking the probe beam, or can be estimated from
tissue measurement data using OCT signals from non-tissue regions. Here, we assume the noise
N is identical in space. However, some OCT systems have a depth-dependent noise power. In
this case, the noise power q̂N should be treated as a function of depth z. The SNR-correction,
however, does not reduce the variance of the estimation.

To reduce the estimation noise, a second averaging is applied to estimate the magnitude of
the covariance and the geometric mean of variances. A correlation estimate with lower noise
than Eq. (5) can be obtained using an averaging window w2 as

rG(Δr;r)≡ 〈|sG12|〉w2〈√
sG11 · sG22

〉
w2

. (15)
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Similarly, a low-noise signal correlation estimate is obtained from Eq. (13) as

rS(Δr;r)≡ 〈|sG12|〉w2〈
ε
√|[sG11 − q̂N ][sG22 − q̂N ]|

〉
w2

, (16)

where

ε =
sgn(sG11 − q̂N)+ sgn(sG22 − q̂N)

2
. (17)

The sign ε is applied to suppress the bias of the denominator of Eq. (16) after the averaging
〈〉w2

when the signal is zero (See Section 7). Note that the estimate of Eq. (16) can be negative
or exceed 1. For imaging, the range of estimate rS will be wrapped as described in Section 5.1.

3. Correlation mapping optical coherence angiography

The present paper aims to demonstrate high-contrast OCA using the correlation coefficient of
the true OCT signal, as shown in Section 2.2. We refer to this as correlation mapping OCA
(cmOCA).

Typically, a single location on the sample is scanned multiple times, and the temporal
correlation is calculated to contrast the blood flow. The temporal correlation between time
points t and t+τ at space point (x,z) is denoted as ρS(Δr;r)|Δr=(0,0,τ) in the notation of Section
2. Hereafter, this is denoted as ρS(τ;r) for simplicity.

During the estimation of the temporal correlation coefficient, temporal averaging will be
applied, and then the spatial distribution of the signal correlation coefficient is obtained,
rS(ri,r j)→ rS(τ;x,z). This can be described as

rS(τ;x,z)≡

〈∣∣∣〈g(r)g∗(r+(0,0,τ))〉w1

∣∣∣〉
w2〈

ε
√∣∣∣[〈|g(r)|2〉w1

− q̂N

][
〈|g(r+(0,0,τ))|2〉w1

− q̂N

]∣∣∣
〉

w2

. (18)

Two specific issues for in vivo cmOCA measurements are also discussed. These are
associated with the bulk sample motion. The first issue is the bulk phase offset caused by the
axial shift of the sample between the two time points for which the correlation is computed.
Two approaches to avoid this bulk phase offset are described in Section 3.1. The second issue
is the reduction in the correlation coefficient due to the general bulk motion of the sample. This
creates artifacts, which affect our primary interest of visualizing only the region with real blood
flow. Section 3.2 presents a method to remove such artifacts. The processing flow is described
as a block diagram in Fig. 1.

3.1. Bulk-motion-induced phase-offset problem

The bulk motion of tissues induces a substantial phase shift, and this significantly decreases
the correlation coefficient when the averaging window 〈〉w1

in Eq. (18) is extended along the
temporal direction. There are two approaches to overcome this problem. One is to apply a bulk-
phase-offset correction to the estimation and the other is to form an estimation that is insensitive
to the bulk-phase-offset.

3.1.1. Bulk-phase-offset correction

To eliminate the bulk-motion effect, we must detect the magnitude of the bulk-phase offset. For
this purpose, previous studies have introduced sophisticated methods [9, 11, 41–43]. Although
these methods exhibit high detection accuracy, they also suffer from high computational costs.
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Fig. 1. Schematic block diagrams of cmOCA processing. (a) Overall processing. (b)
Covariance matrix estimate with bulk-phase-offset correction.

Some simpler methods have been used for vasculature imaging [20, 44–46], but their use is
limited to specific cases, such as when the non perfused region is dominant in each axial profile.

Table 2. Correlation coefficient ρG for each tissue type and SNR.

SNR
Type non perfused

tissue
flowing particles

high high low
low low–moderate low

Here, we describe a simple and robust bulk-phase-offset correction method. The key of this
method is the estimation of locations of non-perfused tissue. The non perfused region is selected
for each axial profile using the characteristics of data correlation coefficient ρG. According
to the relationship between correlation and SNR [Eq. (8)], locations with high correlation
coefficient ρG, are very likely to be tissue without perfusion and simultaneously to have high
SNRs. Such high SNRs are preferable for the reliable estimation of the bulk-phase offset. The
relationship is summarized in Table 2.
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To implement this method, the covariance matrix estimation process [Eq. (3)] is resolved in
two steps, i.e., bulk-phase-offset estimation and averaging after the phase correction. A block
diagram of this processing framework is shown in Fig. 1(b). In the first step, a sample covariance
matrix similar to Eq. (3) is estimated as:

S′
G(τ;r)≡ 〈

g(τ;r)g†(τ;r)
〉

w′
1
. (19)

and the data correlation r′G is then estimated using Eqs. (15) as

r′G(τ;r)≡
〈∣∣s′G12

∣∣〉
w′

2〈√
s′G11 · s′G22

〉
w′

2

. (20)

To prevent the disruption caused by bulk-phase offset, the estimation 〈〉w′
1

of Eq. (19) should be
computed by time-independent averaging, e.g., axial averaging. The bulk-phase offset between
time points t and t + τ is then determined at depth zmax(τ;x, t), which exhibits a high value of
r′G at x, as

Δφm(τ;x, t)≡ arg
{〈

s′G12(τ;r|z=zmax(τ ;x,t))
〉

w3

}
. (21)

Using Eq. (21), the bulk-phase-offset is corrected and the covariance matrix is finally estimated
as

SG(τ;x,z)≡
〈[

s′G11 s′G12e−iΔφm(τ ;x,t){
s′G12e−iΔφm(τ ;x,t)

}∗
s′G22

]〉

w′′
1

. (22)

The signal correlation map rS(τ;x,z) is estimated by substituting Eqs. (19) and (21) to (22)
into Eq. (16) as

rS(τ;x,z)≡

〈∣∣∣∣
〈
〈g(r)g∗(r+(0,0,τ))〉w′

1
e−iΔφm(τ ;x,t)

〉
w′′

1

∣∣∣∣
〉

w2〈
ε

√∣∣∣∣
[〈

〈|g(r)|2〉w′
1

〉
w′′

1

− q̂N

][〈
〈|g(r+(0,0,τ))|2〉w′

1

〉
w′′

1

− q̂N

]∣∣∣∣
〉

w2

. (23)

3.1.2. Phase-noise-immune estimate

In the case of swept-source OCT (SS-OCT) systems, the phase fluctuations caused by
asynchronous acquisition [47] and/or random phase noise of coherence revival signals [48]
make it difficult to acquire phase-stable signals. In addition, when no k-clock is used [49], the
low repeatability of the wavelength sweep of a light source could further degrade the phase
stability.

In such cases, another algorithm with phase-noise immunity is applied. The sample
covariance matrix SG is estimated as similar to Eq. (3) as:

SG(τ;r)≡ 〈
g(τ;r)g†(τ;r)

〉
w1

. (24)

To minimize the effect of the phase fluctuation, the averaging window w1 is selected within
time independent region as in Eq. (19). One example is axial averaging [27].

3.2. Removal of bulk-motion artifacts

Motion artifacts can occur in cmOCA images as a result of the de-correlation due to involuntary
eye motion. This section describes a method to remove these artifacts from correlation
coefficient estimates which is obtained without bulk-phase-offset problem (Section 3.1).
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If the bulk tissue motion is rigid translation, and its velocity is quite smaller than the net
blood velocity, the correlation ρS(τ;r) can be decomposed as

ρS(τ;r)≈ ρ f (τ;r)ρm(τ;x, t), (25)

where ρ f (τ;r) is the correlation coefficient corresponding to blood flow. This is mainly caused
by the motion of blood cells. ρm(τ;x, t) is the correlation coefficient corresponding to bulk
motion, which is uniform along the axial direction because single axial profiles are acquired
simultaneously by Fourier-domain OCT. By assuming the bulk tissue motion velocity is
constant during the temporal estimate window of correlation, the correlation estimate rS(τ;x,z)
can be expressed as

rS(τ;x,z)≈ r̃ f (τ;x,z)rm(τ;x), (26)

where r̃ f (τ;x,z) is the net correlation coefficient corresponding to blood flow. The reduction of
rS(τ;x,z) due to rm(τ;x) is the source of the bulk motion artifacts. Because the correlation
coefficient is estimated with bulk-phase-offset correction (Section 3.1.1) or phase-noise-
immune estimate (Section 3.1.2), decorrelation due to bulk-phase-offset is avoided. Our
motion-artifact-correction method first estimates rm(τ;x), and then removes this quantity from
rS(τ;x,z).

As discussed in Section 3.1.1, tissue with a higher data correlation is more likely to be
non perfused tissue with a high SNR. For such non perfused tissue, the correlation coefficient
estimate rS(τ;x,z) will be identical to rm(τ;x), so rS(τ;x,z) in the non perfused tissue can be
used to cancel out the bulk motion artifacts. The correlation coefficient rG(τ;x,z) is obtained
from the covariance matrix estimate SG [Eq. (22) or (24)] in the manner of Eq. (15) as

rG(τ;x,z)≡ 〈|sG12|〉w2〈√
sG11sG22

〉
w2

. (27)

Hence, the signal correlation estimate rS at the depth of the maximum of rG(τ;x,z) is used as
an estimate of rm:

r̂m(τ;x)≡ rS(τ;x,argmax
z

rG(τ;x,z)). (28)

The bulk-motion-corrected signal correlation coefficient is finally obtained as

rS f (τ;x,z)≡ rS(τ;x,z)
r̂m(τ;x)

. (29)

This estimate represents the correlation due to flow, and is used to form bulk-motion-corrected
cmOCA images.

4. Method

In this paper, we use Jones matrix OCT (JM-OCT), which is a multi-channel extension of
OCT. JM-OCT was originally developed for polarization-sensitive imaging [31–33,50] and has
recently been applied to multifunctional imaging [1, 49, 51].

First, we describe the scanning protocol for cmOCA measurements, and re-define variables
to indicate sampling points (Section 4.1). The details of cmOCA implementations with JM-
OCT is then described (Section 4.2).

4.1. Measurement protocol and correlation for cmOCA

For cmOCA measurements, multiple frames (B-scans) are obtained from the same position
on the sample. The schematic diagram of these sampling points is shown in Fig. 2. A single
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Fig. 2. Schematic diagram of applied scanning protocol.

location on the sample is scanned multiple times by this scanning protocol. The correlation is
computed at each spatial position among the frames.

JM-OCT simultaneously provides four independent OCT signals [49]. These are denoted
as g(x,z, f , p), where f is the index of frame and p = 1,2,3,4 is the index of the JM-OCT
channels. Note that variables x and z are re-defined as sampling point indices along the lateral
and axial directions, respectively. The time correlation between frames f and f + 1 at space
point (x,z) of p channel is denoted as ρS(τ;x,z, f , p) , where τ is the time separation between
successive frames. The correlations, covariance matrices, and their estimates are denoted in the
same manner.

4.2. cmOCA implementation with JM-OCT

To obtain lower bias in correlation estimate, a large number of samples is required to estimate
the covariance matrix [Eq. (3)]. To increase the size of the average 〈〉w1

, the bulk-phase-offset
correction (Section 3.1.1) is preferable to extend the window w1 along temporal axis. Each
averaging operation in the pre-processing of the bulk-phase-offset estimate [Eqs. (19) and (20)]
is replaced according to Table 3 as

S′M
G (τ;x,z, f , p)≡ 1

D

D

∑
d

g(τ;x,z+d, f , p)g†(τ;x,z+d, f , p) (30)

r′MG (τ;x,z, f )≡ ∑P
p

1
q̂N(p)

∣∣s′MG12

∣∣
∑P

p
1

q̂N(p)

√
s′MG11 s′MG22

, (31)

where D is the size of the averaging kernel along the axial direction. Here, we have used the K
pixels with the highest correlation coefficients r′MG in each axial profile to estimate the bulk-
phase offset. The axial indices of these pixels are denoted as zmax

k (τ;x, f ), with the index
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Table 3. Assignment of averaging and variables for each imaging mode.
High-contrast mode

(Section 4.2)
Single-channel mode

(Section 4.2.1)

Covariance
matrix

estimate

〈·〉w′
1

1
D

D

∑
d

·(z+d)
1
D

D

∑
d

·(z+d)

〈·〉w′′
1

1
L(F −1)

L,F−1

∑
l, f

·(x+ l, f )
1

L(F −1)

L,F−1

∑
l, f

·(x+ l, f )

Correlation
estimate

〈·〉w2

1

∑P
p 1/q̂N(p)

P

∑
p

·(p)
q̂N(p)

n/a

Bulk-phase-
offset

estimate

〈·〉w′
2

1

∑P
p 1/q̂N(p)

P

∑
p

·(p)
q̂N(p)

n/a

〈·〉w3
Med

x

1
PK

P,K

∑
p,k

·(x,zmax
k , p) Med

x

1
K

K

∑
k

·(x,zmax
k )

Noise power q̂N q̂N(p)
1

P2

P

∑
p

q̂N(p)

k identifying these pixels as k = 1, · · · ,K. As in Eq. (21), the bulk-phase-offset estimate is
obtained from s′MG12(τ;x,z, f , p) at depths zmax

k (τ;x, f ) as

ΔφM
m (τ;x, f )≡ arg

{
Med

x

[
1

PK

P

∑
p

K

∑
k=1

s′MG12(τ;x,zmax
k (τ;x, f ), f , p)

]}
, (32)

where Med
x

[·] represents the median operation along the transverse (x-) direction, which is

independently applied to the real and imaginary parts. In this paper, we consider K = 5, and
select ±15 lines to compute the median Med

x
. The bulk-phase-offset correction is applied to

S′M
G [Eq. (30)] with Eq. (32). The covariance matrix estimate is obtained with lateral and frame

averaging for 〈〉w′′
1
. The correlation coefficient estimate is then described from Eq. (23) using

the noise power of each channel q̂N(p) as

rM
S (τ;x,z)≡

∑p
1

q̂N(p)

∣∣∣∑L,D,F−1
l,d, f g(x+ l,z+d, f , p)g∗(x+ l,z+d, f +1, p)e−iΔφM

m (τ ;x+l, f )
∣∣∣

∑p
ε(x,z,p)
q̂N(p)

{∣∣∣[∑L,D,F−1
l,d, f |g(x+ l,z+d, f , p)|2 −LD(F −1)q̂N(p)

]

×
[
∑L,D,F−1

l,d, f |g(x+ l,z+d, f +1, p)|2 −LD(F −1)q̂N(p)
]∣∣∣}

1
2

,

(33)
where L is the size of the averaging kernel along the lateral direction.

The bulk-motion-artifact correction (Section 3.2) is then applied to rM
S (τ;x,z). For this

correction, the estimated data correlation rM
G (τ;x,z) is first obtained by avoiding the noise

power subtraction and the sign ε in the Eq. (33). The bulk-motion-induced net correlation is
estimated using Eq. (28) with rM

G (τ;x,z) as r̂M
m (x) ≡ rM

S (τ;x,argmax
z

rM
G (τ;x,z)), where r̂M

m is

the estimated bulk-motion-induced correlation during the acquisition of F frames at a lateral
point with index x. Finally, the bulk-motion-corrected signal correlation is obtained as

rM
S f (τ;x,z)≡ rM

S (τ;x,z)

r̂M
m (τ;x)

. (34)
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4.2.1. Single-channel mode without variance averaging

To compare with and without the second averaging 〈〉w2
, the coherent composite signal was

calculated and the same covariance estimation was applied. This mode is corresponding to
the previous complex correlation estimation method [29] in standard single-channel OCT. The
polarization channels are coherently averaged after the correction of phase offset [49] to obtain
the coherent composite signal gC(x,z, f ) = 1

P ∑P
p g(x,z, f , p)e−Δθ(p;1), where Δθ(p;1) is the

phase offset between the channel p and channel 1. Because of the coherent averaging, the
noise power will be reduced by the number of polarization channels P. Then, the correlation
coefficient estimation was applied as the same as Section 4.2 except the polarization channel
averaging.

rC
S (τ;x,z)≡

∣∣∣∑L,D,F−1
l,d, f gC(x+ l,z+d, f )gC∗(x+ l,z+d, f +1)e−iΔφC

m (τ ;x+l, f )
∣∣∣

ε(x,z)
{∣∣∣[∑L,D,F−1

l,d, f |gC(x+ l,z+d, f )|2 − LD(F−1)
P2 ∑P

p q̂N(p)
]

×
[
∑L,D,F−1

l,d, f |gC(x+ l,z+d, f +1)|2 − LD(F−1)
P2 ∑P

p q̂N(p)
]∣∣∣}

1
2

, (35)

The bulk-motion-artifact correction (Section 3.2) is then applied to rC
S (τ;x,z). Without the

noise power subtraction and the sign ε in the Eq. (35), rC
G(τ;x,z) is obtained. The bulk-motion-

induced net correlation is estimated using Eq. (28) as r̂C
m(x) ≡ rC

S (τ;x,argmax
z

rC
G(τ;x,z)). The

bulk-motion-corrected signal correlation with coherent composite is obtained as

rC
S f (τ;x,z)≡ rC

S (τ;x,z)

r̂C
m(τ;x)

. (36)

5. Image formation

5.1. Cross sections

Cross-sectional cmOCA images are displayed in grayscale with the estimated correlation
coefficient rS. Low correlation corresponds to high perfusion. Hence, a correlation coefficient
of 0 is assigned to white regions, and a value of 1 is assigned to black. The locations for which
r−1

S < 1 are expressed as black.

5.2. En-face projection

The projection images of cmOCA are calculated as E(x) = ∑N
i=0{1−M[rS f (τ;x,zi)]}, where

M[x] =

{
1, if x−1 < 1.

x, otherwise.
(37)

The dynamic range of the projection image is set to the [1: 99] percentile of each image’s pixel
value.

5.3. Retinal angiography with degree of polarization uniformity

Using JM-OCT for angiography not only increases the detection channels, but also allows
the tissue discrimination ability to be used to enhance the angiographic imaging. Several
retinal OCAs use a segmentation algorithm to separate some retinal and/or choroidal layers,
thus enhancing each vasculature and/or increasing the power of diagnosis of eye diseases.
Using DOPU measurement [52], it is suggested that the RPE can be distinguished. Here, we
implement an advanced angiographic projection image construction using DOPU.
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First, we generalize the encoding method of 3D multi-contrast information into a 2D
projection. This is a kind of color volume ray casting, where each contrast is considered as a
material that have reflection, absorption, and/or emission spectra of ray. Rays are introduced
from top of the 3D image, passing through the voxels, and back-reflected. According to
assigned properties of voxels, rays’ colors changed. The composite en-face projection image E
with multiple contrasts is calculated by averaging all reflected rays. This is defined as:

E(x) =
N

∑
n=0

∑
j

c j(x,zn)ms( j)Δz ·
[
e∑n

i=0 ∑ j c j(x,zi)ma( j)Δz ·L0

]
, (38)

where c j is the j-th contrast value. ma is an infinitesimally small color translation of rays, ms

is the reflection spectrum of rays, and L0 is initial color of rays. Δz is the axial distance per
unit data point. Analogous to Lambert–Beer’s law, c, ms, and ma are a pseudo-concentration,
pseudo-spectrum of scattering cross section, and pseudo-spectrum of attenuation/emission
cross section assigned for each contrast, respectively. The combination of absorption and
emission can be considered as single translation in a color space. Note that e() denotes the
matrix exponential operation.

In this paper, we utilize cmOCA and mDOPU [53] to create the color en-face image as:

E(x) =
N

∑
n=0

{1−M[rS f (τ;x,zn)]} ·T
[
W
[
ecPVn(x)mΔz ·L0

]]
, (39)

where cPVn(x) = ∑n
i=0{1−M[mDOPU(x,zi)]} is cumulative polarization variance from the

surface to the depth zn. This means that color of rays changed according to cPVn by e
1
2 cPVnmΔz,

rays are reflected at zn according to cmOCA rS f , color changed again by e
1
2 cPVnmΔz, and

reflected rays from every depth zn are summarized. The projection image will discriminate
a vessel by color whether it is located in front of or back of pigmented tissues, such as RPE.

Because the Euclidean distance between two colors in L∗a∗b∗ color space is roughly
proportional to perceptual color difference between them, m is defined as the infinitesimally
small color change in the ICC L∗a∗b∗ color space as

m =

⎡
⎢⎢⎣
−1.167 0 0 83.067

0 −0.236 0 27.944
0 0 −0.283 −1.932
0 0 0 0

⎤
⎥⎥⎦ [μm−1]. (40)

To treat translation in color space, m is defined as 4-dimensional matrix while L∗a∗b∗ color
space is 3 dimension. In this case, m is diagonalizable, m = Vdiag(λ1,λ2,λ3,λ4)V−1 and

ecPVn(x)mΔz = Vdiag(ecPVn(x)λ1Δz,ecPVn(x)λ2Δz,ecPVn(x)λ3Δz,ecPVn(x)λ4Δz)V−1. (41)

L0 = [L∗
0,a

∗
0,b

∗
0,1]

T is the initial location in the color space when n=0, i.e., the assigned color at
the top of cross-sectional image z = z0. In this paper, (L∗

0,a
∗
0,b

∗
0) = (84.17, -13.95, 82.72). The

transformation W [] is wrapping an input color location into the realizable L∗a∗b∗ space as:

W [Lin] =

{
WLin (vLin > 0)

Lin (vLin ≤ 0)
, (42)

where v = [0,cosθ ,sinθ ,−(ao cosθ +bo sinθ)] and

W =

⎡
⎢⎢⎣

1 0 0 0
0 −cos(2θ) −sin(2θ) ao +ao cos(2θ)+bo sin(2θ)
0 −sin(2θ) cos(2θ) bo −bo cos(2θ)+ao sin(2θ)
0 0 0 1

⎤
⎥⎥⎦ . (43)
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Fig. 3. Color change trajectory in L∗a∗b∗ color space according to cumulative polarization
variance cPV .

Here, we set θ = 0.165 rad, ao = 40.3, and bo = 40.9. The color change according to cPVn is
represented in L∗a∗b∗ color space as shown in Fig. 3.

The transformation T [] translate color in L∗a∗b∗ color space to RGB color space by (1)
converting the L∗a∗b∗ color space into the XYZ color space [54], (2) applying a chromatic
adaptation (using Bradford transform) from the D50 to D65 white points [55], and (3)
converting XYZ color space to the linear sRGB space [56]. The resulting E is scaled by fitting
the range [5, 99.9] percentile of the average RGB value, (R + G + B)/3, to within the range of
[0, 1]. As this is in the linear sRGB space, the gamma correction is applied to fit with the sRGB
standard [56]. We choose the sRGB color space because it is commonly used in Windows®
operating system.

Note that we refer the “isolum” color map [57] to design m, L0, and W [].

6. Results

JM-OCT described in elsewhere [49] is used to scan human eyes. The sampling configuration
of JM-OCT is the same as previous, with 512 axial lines per frame acquired and the scan
repeated four times at the same location (F = 4). The set of frames is scanned at 256 locations
to construct a 3D volume set. The scanning speed is 100,000 lines/s, and the time lag between
consecutive frames is 6.4 ms. JM-OCT simultaneously measures four complex OCT signals that
correspond to four polarization channels (P = 4). For every cmOCA calculation, spatial kernel
sizes are fixed to be (L = 3, D = 3) along the x and z directions, respectively. For scattering
OCT image, global-phase-corrected sensitivity enhanced imaging with 4 frames followed by
the coherently composition of 4 polarization-channel signals are applied [49].

All protocols for measurement were approved by the Institutional Review Board of the
University of Tsukuba. Written, informed consent was obtained prior to measurement.

6.1. Complex correlation with/without SNR correction

The SNR-independent vasculature images can be obtained using our signal correlation
estimator. Figure 4 shows a comparison of SNR-independent and -dependent cmOCAs. A
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Fig. 4. Cross sections of the human retina. (a) Coherence composite OCT intensity, (b)
SNR-dependent cmOCA, (c) SNR-independent cmOCA. The scale bar indicates 200 μm.

cross section of the retina of a volunteer’s (male, 35 years old) right eye which had no
remarkable abnormalities was obtained [Fig. 4(a)], and two correlation images were calculated.
The SNR-independent and -dependent cmOCAs are obtained by mapping the magnitude of the
signal correlation coefficient [Eq. (34)] and data correlation coefficient, which is estimated
similar to Eq. (34) using rM

G as rM
G f (x,z)≡ rM

G (x,z)/r̂M
m (x). With the estimated data correlation

rM
G f , both the perfused tissue and low-SNR region exhibit a low correlation, as with other

correlation-based and phase-shift-based angiography methods [Fig. 4(b)]. With the signal
correlation rM

S f , SNR-independent imaging is achieved [Fig. 4(c)]. Even the SNR of OCT
signal at some non-perfused tissue, such as nuclear layers and vitreous humor, is low, its
corresponding correlation coefficient exhibits close to 1. The presented cmOCA with SNR-
corrected correlation distinguishes perfused tissues from low-SNR regions without the use of
an arbitrary masking threshold.

6.2. Comparison between single-channel and multi-channel implementations

For comparison, the correlation mapping method for the single-channel case [Eq. (29)] was
applied to the complex summed OCT signal using the coherent composition [49]. The coherent
composite signal clearly has a higher SNR than that of each channel, because the four
polarization channels are coherently averaged. The correlation image is created with the
coherent composite signal (Section 4.2.1).

Although the coherent composite signal has a higher SNR, the single-channel
implementation exhibits significant spurious noise [Fig. 5(a)]. The images shows the left eye
of a age-related macular degeneration patient (male, 79 years old) with the scanning range
of 4.5 × 4.5 mm2. When the SNR is low, the correlation between measured data ρG is low
and the correlation estimation exhibits high variance. In addition, the large bias correction for
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Fig. 5. Complex correlation mapping image of the human retina. cmOCA (b, d) with
multiple polarization channels, as described in Section 4.2, exhibits lower spurious noise
than (a, c) single-channel estimation with a coherent composite signal. The cross sections
(a, b) and en-face slices (c, d) are taken from the locations indicated by the black arrows.
Both cmOCAs used the same kernel size.

estimating the signal correlation ρS enhances its variance.
In contrast, the multi-channel method exhibits high contrast and low noise vessel imaging

owing to the averaging process [Fig. 5(b)]. The corresponding en-face slice [Fig. 5(d)]
visualizes the fine abnormal vascular network better than the single-channel method [Fig. 5(c)].
This shows that the second-step averaging is preferred for high-contrast vasculature imaging.

6.3. Motion artifact compensation

The performance of bulk-motion-artifact removal and bulk-phase-offset correction was
evaluated with in vivo human posterior eye imaging. The left eye of a healthy subject (male,
27 years old) was scanned (6 × 6 mm2). Figure 6 illustrates the effect of bulk-motion-artifact
removal (Section 3.2), and compares bulk-phase-offset correction using the new correlation-
based estimation method (Section 3.1.1) against that with the complex-mean estimation method
[46].

There is a thick blood vessel along the B-scan direction. With the previous average-based
bulk-phase-offset estimation, the tissue above the thick blood vessel also has a low correlation
coefficient [Fig. 6(a)]. This is because the erroneous average-based bulk-phase-offset estimation
results in an incorrect phase-offset correction, and the phase-offset fluctuation between B-scan
pairs reduces the correlation coefficient. Hence, applying the bulk-motion artifact removal with
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Fig. 6. cmOCA cross sections without (a, b) and with (c, d) bulk-motion artifact removal.
Bulk-phase-offset correction has been applied using the complex-mean method (a, c) and
correlation-based method (b, d). The corresponding en-face projection images are shown
in (e)–(h).
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Fig. 7. cmOCA images with low-phase-stability SS-OCT system. The images were
obtained using (a, d) the multichannel cmOCA algorithm (Section 4.2), (b, e) high phase-
noise-immunity mode [Eq. (44)], and (c, f) high phase-noise-immunity mode with bulk-
motion-artifact removal [Eq. (45)]. Cross sections (a, b, c) at the location indicated by the
black arrow and en-face projections (d, e, f) are shown.

the average-based phase-offset correction over-corrects the correlation coefficient [Fig. 6(c)].
This effect reduces the contrast of thick blood vessels, as shown in Fig. 6(g) (yellow arrows).

With the new correlation-based phase-offset estimation method, the solid tissue exhibits a
high correlation coefficient as expected [Fig. 6(b)]. The bulk-motion artifacts over the thick
vessels are reduced. On the other hand, a small vessel overlaid on the thick vessel is retained
(blue arrows), and the contrast of thick blood vessels in the en-face image is maintained well
[Fig. 6(f), yellow arrows].

By applying bulk-motion artifact removal [Figs. 6(g) and (f)], artifacts appear as horizontal
lines because the frame-by-frame bulk-motion decorrelation changes are well suppressed
(green circles).

6.4. High-stability mode

In some cases, the phase of the swept-source OCT signal cannot be stabilized without a k-clock.
The algorithm of Section 4.2 results in significant artifacts. In this case, high phase-noise-
immunity mode (Section 3.1.2) can be applied. The details of the implementation is described
in Appendix A.

A subject (male, 33 years old, right eye) was scanned (6 × 6 mm2) using JM-OCT, which has
an unstable phase. As shown in Figs. 7(a) and 7(d), there are several artifacts that disturb the
vasculature image. Using the correlation calculation in Eq. (44), these artifacts are significantly
reduced, as shown in Figs. 7(b) and 7(e). Although the range of correlation has decreased to
[0.3, 1.0], the contrast in the en-face projection is significantly improved. After motion artifact
correction [Eq. (45)], horizontal line artifacts are suppressed (Fig. 7(f)). The high phase-noise-
immunity mode is an alternative high-contrast vasculature imaging method for unstable phase
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Fig. 8. cmOCAs at the human fovea, (a) cross-sectional cmOCA image with segmented
results, en-face projection images at (b) NFL + GCL, (c) IPL + INL, (d) OPL + ONL. The
scanning area is 3 × 3 mm2. The scale bar indicates 200 μm.

systems.

6.5. Retinal capillary imaging

To show the performance of the retinal capillary imaging with the cmOCA method, the same
data set of Section 6.1 is used. The retinal layers are segmented to visualize the capillary
network of different retinal layers. The Iowa Reference Algorithms (Retinal Image Analysis
Lab, Iowa Institute for Biomedical Imaging, Iowa City, IA) [58–60] were applied to the
coherent composite OCT intensity volume. The segmentation results were overlaid on a
cross-sectional cmOCA image [Fig. 8(a)]. The en-face projection images of cmOCA volume
visualize the retinal capillary vasculature at the fovea. From the anterior part, the retinal nerve
fiber layer (NFL) + ganglion cell layer (GCL) [Fig. 8(b)], inner plexiform and nuclear layers
(IPL + INL) [Figs. 8(c)], outer plexiform and nuclear layers (OPL + ONL) [8(d)] are shown.

6.6. Eye disease case

A polypoidal choroidal vasculopathy (PCV) (female, 67 years old, left eye) is shown in Fig. 9.
The composite projection image [Fig. 9(b)] combines the correlation mapping and DOPU
data [53]. Details of the method are described in Section 5.3. This imaging method reveals
whether vessels are covered or uncovered by multiple-scattering tissues, i.e., melanin. The
orange-yellow color indicates that blood flow signals are unblocked (UB) by mDOPU sig-
nals (vasculature is in front of the pigmented tissues), whereas magenta-blue indicates that the
flow signals are blocked (B). The cross-sectional image of the combination of OCT intensity
(coherent composite + sensitivity-enhancement with global phase correction) and cmOCA
reveals the relationship between morphology and vasculature. The log-scaled OCT intensity
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Fig. 9. cmOCA images of polypoidal choroidal vasculopathy. En-face (a) OCT, (b)
composition of cmOCA and mDOPU projection images. The scanning area is 6 × 6 mm2.
The corresponding area is indicated by the yellow rectangle in fluorescein angiography (c).
The cross-sectional (d) OCT + cmOCA and (e) mDOPU images at the center of the scan
[yellow line in (b)] are shown. The scale bar indicates 500 μm.

and cmOCA are assigned as blue and orange, respectively [57].
An abnormal blood flow signal can be observed in the cross section [Fig. 9(d), white circle].

The DOPU image [53] reveals some RPE detachment and its discontinuity [Fig. 9(e), white
circle]. The corresponding signal appears in orange in the en-face composite projection image.
This shows that the blood flow signal is not blocked by pigmented tissue, i.e., the RPE. The
corresponding location exhibits hyperfluorescence in late-phase fluorescein angiography (FA)
[Fig. 9(c)]. The composite imaging may be a good non-invasive alternative to FA for detecting
the collocation of abnormal vessels with RPE disruption, such as choroidal neovascularization.
Note that no segmentation is applied to generate the composite image, and so no segmentation
errors are present.

7. Discussion

We have presented a method for estimating the SNR-corrected complex correlation coefficient
with low noise. To compare the statistical properties of estimators, a numerical simulation was
applied. A pair of random numbers Xi and Xi+1 in consecutive sets (i-th and i+1-th sets) was
generated by using the method to generate correlated random numbers. Outcomes Zi and Yi

of independent complex Gaussian variables with zero mean and standard deviation σY were
generated. Then, Yi+1 was generated with the true correlation coefficient ρ as Yi+1 = ρYi +√

1−ρ2Zi. Yi and Yi+1 will be correlated with the correlation coefficient ρ . Another outcome
Ni of independent complex Gaussian variable with zero mean and standard deviation σN was
generated and added to provide Xi = Yi +Ni. By changing the ratio σY/σN , arbitrary true SNR
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Fig. 10. The numerical simulation results of correlation coefficient estimates. (a, b, c) Mean
and (d, e, f) standard deviation of each correlation estimator, i.e., data correlation (×), signal
correlation with previous method using coherent composite ( ), and the new method ( )
are plotted with several SNR. The set correlation coefficients are (a, d) 0.99, (b, e) 0.9, and
(c, f) 0.8.

can be simulated. These generated signals X were processed with correlation estimators. For
each trial, 4 sets of complex random Gaussian variable which have 9 sampling points were
generated. The random number generation iterated four times to simulate 4 channels of JM-
OCT. The data size for correlation estimate was 3 pairs from 4 sets of 9 data points times 4
channels, which is similar to the experiments. The mean and the standard deviation of estimates
are obtained with 10,000 trials. The true correlation coefficient ρ was set to be 0.99, 0.9, and
0.8. The SNR 10log10 σ2

Y /σ2
N was set from 0 to 20 dB in 1 dB step.

Figure 10 shows the comparison of correlation estimates. The previous method with coherent
composite and the new estimators give lower bias estimates than the normal data correlation
estimate for every true correlation coefficient [Fig. 10(a), (b), and (c)]. At low SNR, the
estimate with coherent composite exhibits lower bias than that of the new estimator. This is
reasonable because the coherent composite decreases the noise. However, the standard devi-
ation at high SNR is larger than that of the new estimator. This is because of the absence
of the second averaging 〈〉w2

. The advantage of the new estimator becomes greater as signal
correlation decreases. It means that the imaging noise of blood vessels (where signal correlation
is decreased) is lower in the case of the new estimator. Hence, the new estimation scheme
is probably a good compromise in the sense of both bias and noise. This fact suggests that
although SNR will be decreased, applying second averaging 〈〉w2

by splitting the OCT signal,
such as spectrally splitting method [23], may provide better vasculature imaging with standard
single channel OCT system at the same averaging kernel size.

In our method, we introduced the sign function ε [Eq. (17)] in the denominator of the noise-
corrected correlation estimate [Eq. (16)]. Although the absolute operation is applied inside the
square root to avoid non-real-valued results in Eq. (16), the proposed estimator retains the sign
ε after the noise correction. This modification from the previous method [29, 40] reduces the
spurious appearance in the no signal region after second-step averaging 〈〉w2

.
In the SNR range used in the abovementioned simulation, the sign ε in Eq. (16) does not

affect to the estimator’s performance. The difference of the existence of ε becomes apparent
at low SNR. The distributions of estimates with 0 SNR (-∞ dB) are shown in Fig. 11. The
estimation is regarded as invalid if the estimated correlation is smaller than 0 or larger than 1.
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Fig. 11. Comparison of statistical properties at no signal region. Histograms of correlation
estimates (a) without the sign ε , (b) without the sign ε and thresholding at 0 instead of
absolute operation, and (c) with the sign ε Eq. (16) are shown. The numerical simulation
of correlation estimates was applied at SNR=0.

Because of the sign ε , the correlation estimates at 0 SNR spread and are less likely to be fall
in the range of valid correlation coefficient estimate [0, 1]. With the sign ε , that probability of
correlation estimate in the range [0, 1] occurs roughly 2.7 % [Fig. 11(c)], while this is 32.0 %
in the case without ε [Fig. 11(a)] and 23.9 % in the case with thresholding [Fig. 11(b)]. Without
the second averaging 〈〉w2

, the thresholding method and the method using the sign ε provide
the same probability. However, the second averaging generates a bias in the denominator of
correlation coefficient estimate. This results in the large discrepancy after the second averaging.

8. Conclusion

Non-invasive vasculature imaging has been applied using complex-correlation-mapping
OCA. Using low-bias and low-noise complex correlation estimation and motion artifact
corrections, we have obtained better discrimination of perfusing tissue. The combination of
perfusion contrast and polarization contrast demonstrates the potential of clinical utility in
ophthalmology.

Appendix A. High-stability mode implementation

To implement the phase-noise-immune estimate (Section 3.1.2), no lateral and frame averaging
is used to estimate the covariance matrix [Eq. (24)] because both depend on time in the system
with scanning beam. Instead, polarization channel and axial averaging are used.

The correlation coefficient in the absence of phase noise is then obtained by substituting the
averaging operators and noise power as shown in Table 4 into Eq. (18) as

rΣ
S (τ;x,z)≡

∑L,F−1
l, f

∣∣∣ 1
D ∑P,D

p,d g(x+ l,z+d, f , p)g∗(x+ l,z+d, f +1, p)
∣∣∣

∑L,F−1
l, f ε(τ;x+ l,z, f )

{∣∣∣[ 1
D ∑P,D

p,d |g(x+ l,z+d, f , p)|2 −∑P
p q̂N(p)

]

×
[

1
D ∑P,D

p,d |g(x+ l,z+d, f +1, p)|2 −∑P
p q̂N(p)

]∣∣∣}
1
2

. (44)

The bulk-motion-artifact correction (Section 3.2) is then applied to rΣ
S (τ;x,z). For

this correction, the phase-noise-immune data-correlation-coefficient rΣ
G(τ;x,z) is estimated

using Eq. (44) without noise subtraction and ε . The net bulk-motion-induced phase-
noise-immune data-correlation is estimated using Eq. (28) with rΣ

G(τ;x,z) as r̂Σ
m(τ;x) ≡

rΣ
S (τ;x,argmax

z
rΣ

G(τ;x,z)). The bulk-motion-corrected phase-noise-immune signal correlation

coefficient is finally estimated as

rΣ
S f (τ;x,z)≡ rΣ

S (τ;x,z)

r̂Σ
m(τ;x)

. (45)
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Table 4. Assignment of averaging and variables of phase-noise-immune mode.
High-stability mode

(Section Appendix A)
Covariance

matrix
estimate

〈·〉w1

1
DP

D,P

∑
d,p

·(z+d; p)

Correlation
estimate

〈·〉w2

1
(F −1)L

F−1,L

∑
f ,l

·( f , f +1;x+ l)

Noise power q̂N
1
P

P

∑
p

q̂N(p)

Appendix B. List of notations

Symbols Descriptions
G complex random variable represents OCT data
S complex random variable represents OCT signal
N complex random variable represents additive noise
g realization of OCT measurement

ΣG population covariance matrix of OCT data
SG sample covariance matrix of OCT data

sGpq entries of SG

q̂N estimate of variance of noise N
ρG population correlation coefficient of OCT data
ρS population correlation coefficient of OCT signals

ρSNR population de-correlation factor of OCT signals due to additive noise ρG/ρS

rG sample correlation coefficient of OCT data
rS sample correlation coefficient of OCT signal
rG estimate of data correlation coefficient
rS estimate of signal correlation coefficient

SNR signal-to-noise ratio of OCT system E
[|S|2]/E

[|N|2]
Δφm estimate of bulk-phase-offset
rm decorrelation factor due to bulk motion
r̂m estimate of decorrelation factor rm

r̃ f net decorrelation due to flow
rS f estimate of signal correlation coefficient after bulk-motion artifact removal
p index of polarization channel (1,2, · · · ,P)
f index of frame (1,2, · · · ,F)
D averaging window size along axial direction
L averaging window size along lateral direction
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