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Abstract: We propose a novel automated volumetric segmentation method 
to detect and quantify retinal fluid on optical coherence tomography (OCT). 
The fuzzy level set method was introduced for identifying the boundaries of 
fluid filled regions on B-scans (x and y-axes) and C-scans (z-axis). The 
boundaries identified from three types of scans were combined to generate a 
comprehensive volumetric segmentation of retinal fluid. Then, artefactual 
fluid regions were removed using morphological characteristics and by 
identifying vascular shadowing with OCT angiography obtained from the 
same scan. The accuracy of retinal fluid detection and quantification was 
evaluated on 10 eyes with diabetic macular edema. Automated 
segmentation had good agreement with manual segmentation qualitatively 
and quantitatively. The fluid map can be integrated with OCT angiogram 
for intuitive clinical evaluation. 
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1. Introduction 

Diabetic retinopathy (DR) is a microvascular disease characterized by hyperpermeability, 
capillary occlusion, and neovascularization [1]. These pathophysiologic changes can lead to 
macular edema and proliferative diabetic retinopathy, which are responsible for most of the 
vision loss associated with this disease [2]. Therefore early detection and monitoring of these 
complications is important in preventing permanent visual impairment. 

Optical coherence tomography (OCT) [3] is commonly used in clinical ophthalmology to 
detect diabetic macular edema (DME) and assess treatment response by mapping the total 
retinal thickness [4–10]. The retinal thickness correlates with vascular leakage, but can also 
paradoxically decrease due to ischemic atrophy, which happens not infrequently in the setting 
of DME. Retinal fluid volume, not retinal thickness, would be a more accurate indication of 
vascular permeability in DME. 

Direct detection of retinal fluid has been performed qualitatively through laborious visual 
inspection of sequential OCT cross sections. Thus, an automated image processing algorithm 
that detects and quantifies retinal fluid would be necessary to make this practical in clinical 
settings. A few state-of-the-art algorithms [11–18] provided fluid segmentation methods on 
clinical two dimensional (2D) OCT images. These have been used to classify the fluid 
associated abnormalities based on extraordinary retinal layer texture and structure gradient in 
DME. To the best of our knowledge, no fully-automated algorithm capable of a generalized 
and robust application has been validated to identify fluid-filled regions in a three 
dimensional (3D) fashion. 

In this paper, we present and validate an automated volumetric segmentation algorithm 
based on fuzzy level-set method [19] to identify and quantify retinal fluid, including 
intraretinal fluid (IRF) and subretinal fluid (SRF), on OCT structural images. Our proposed 
method uses OCT angiography volume scans [20–22], where structural OCT is 
simultaneously acquired. Finally, by registering the structural (fluid accumulation) and 
functional (blood flow) information into a single 3D volume, clinicians can intuitively 
evaluate pathological structures and microvascular dysfunction simultaneously. 

2. Materials and method 

2.1 Patient selection and data acquisition 

Participants diagnosed with DME and varied levels of retinopathy severity were recruited 
from the Casey Eye Institute. An informed consent was obtained and the protocol was 
approved by the Institutional Review Board at the Oregon Health & Science University. The 
study was conducted in compliance with the Declaration of Helsinki. 

Two volumetric data sets were collected from single eyes of participants with DME 
within a visit. All of the data was acquired using a commercial spectral domain OCT system 
(RTVue-XR; Optovue, Fremont, CA) with a center wavelength 840 nm, a full-width half-
maximum bandwidth of 45 nm, and an axial scan rate of 70 kHz [23]. A single volumetric 
data set contained two volumetric raster scans covering a 3 × 3 mm area with a 2 mm depth. 
In the fast transverse scanning direction, 304 axial scans were sampled to obtain a single 3 
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mm B-scan. Two repeated B-scans were captured at a fixed position before proceeding to the 
next location. A total of 304 locations along a 3 mm distance in the slow transverse direction 
were sampled to form a 3D data cube. All 608 B-scans in each data cube were acquired in 2.9 
seconds. Blood flow information was acquired using the split-spectrum amplitude-
decorrelation (SSADA) between consecutive B-scans [23, 24]. The SSADA algorithm 
detected blood flow by calculating the signal amplitude-decorrelation between consecutive B-
scans. OCT structural images were obtained by averaging two repeated B-scans. The 
structural and angiography data were generated simultaneously on each scan. For each 
volumetric data set, two volumetric raster scans, including one x-fast scan and one y-fast scan 
were registered and merged through an orthogonal registration algorithm [25]. The digital 
resolution is 10 × 10 × 3.0μm3/pixel. 

One eye of sixteen DME participants was scanned. Ten eyes had retinal fluid in the 
macular scans based on clinician grading. These were used to test the automated algorithm. 

2.2 Algorithm overview 

Figure 1 summarizes the algorithm. A pre-processing step was first performed to prepare the 
tissue region for segmentation. Fluid segmentation using fuzzy level-set method followed. 
Finally, post-processing steps were applied to remove artifacts. The following three sections 
will describe the process in detail. The algorithm was implemented with custom software 
written in Matlab 2011a (Mathworks, Natick, MA) installed on a workstation with Intel(R) 
Xeon(R) CPU E3-1226 v3 @ 3.30GHz and 16.0 GB RAM. 

 

Fig. 1. Overview of the automated volumetric retinal fluid detection algorithm. ILM: inner 
limiting membrane, BM: Bruch’s membrane, IS/OS: junction of inner and outer photoreceptor 
segments. 

2.3 Pre-processing 

The retina was defined as the region between inner limiting membrane (ILM) and Bruch’s 
membrane (BM). Three dimensional structural OCT data (Fig. 2(A)) was flattened using ILM 
plane (Fig. 2(B)). The junction of inner and outer photoreceptor segments (IS/OS) defined the 
boundary between IRF and SRF. 

All aforementioned layer boundaries were segmented by the directional graph search 
method (Fig. 3), published in [26]. Because of the tissue damage inherent to DME, automatic 
layer segmentation is likely to fail even with robust algorithms. By using the graph search 
based segmentation method, ILM and BM can be automatically detected with a high degree 
of precision (Fig. 3(A)), while IS/OS requires some manual intervention in the data with SRF 
(Fig. 3(B)). 
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Fig. 2. (A) Original OCT structural volume. (B) OCT structural volume flattened according to 
the inner limiting membrane (ILM) boundary. B-scans (x and y-axes) and C-scans (z-axis) 
were indicated with red, green and blue, respectively. 

 

Fig. 3. (A) An example B-frame showing inner limiting membrane (ILM), Bruch’s membrane 
(BM) and junction of inner and outer photoreceptor segments (IS/OS) boundaries used in this 
study can be automatically segmented. (B) An example B-frame with subretinal fluid showing 
IS/OS needs be manually corrected in the position pointed by a white arrow. 

2.4 Retinal fluid segmentation 

In this stage, a fuzzy level-set method, (combination of fuzzy C-means (FCM) and level set 
method) is implemented. Briefly, the intensity of retinal fluid is lower than retinal tissues, so 
fluid region can be clustered using FCM scored by probability. Then, the boundary of the 
retinal fluid can be detected by level-set method. Fuzzy level-set method is applied frame by 
frame on C-scans (z-axis) and B-scans (x and y-axes) to identify fluid filled regions (Fig. 
2(B)). Therefore, three separate volumetric segmentation results are obtained. The synthetic 
candidates are combined by voting the three volumetric segmentation results for each voxel. 

2.4.1 Fuzzy level-set method 

Level-set methods are widely used in image segmentation [27–29], and has recently been 
applied to detect abnormality in OCT en face images [30]. Level-set method represents the 
boundary of interest in image I as contour φ = 0 (i.e. level-set curve), where the level-set 
function φ, is a function of time and spatial coordinates in I. φ was initialized with an estimate 
of the segmentation and evolves to get the accurate boundary. For example, in our 
implementation the evolution of φ was described by [19] and [31]. 

 = ( ) (1 2 ) ( )
t bdiv div g g R
φ φ φμ φ λδ φ δ φ

φ φ
    ∂ ∇ ∇Δ − + + −       ∂ ∇ ∇     

 (1) 

where δ is the Dirac function, div is the divergence operator, μ, λ, Rb are estimated based the 
FCM result. 

The first term has two purposes. It smooths the level-set when φ is too steep (|Δφ|>1) and 
also makes the level-set steeper when φ is too smooth (|Δφ|<1). The second and the third term 
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on the right hand side of Eq. (1) are responsible for driving the zero level curves towards the 
boundary of interest. 

Typically, a Gaussian smoothing operator is used to calculate the boundary weight g [19, 
31]. However, considering that the dominate noise in OCT images is the speckle noise [32], 
we used median operator M instead 

 
2

1 / 1 ( )g M I = + ∇   (2) 

The median operator suppresses the noise while maintaining the edge sharpness in OCT 
images. 

A drawback of the traditional level-set method is that its performance is subject to optimal 
configuration of the controlling parameters (μ, λ and Rb) and appropriate initialization of φ (an 
estimate of the segmentation). This requires substantial manual intervention [19]. The fuzzy 
level-set based method achieves full automation by first obtaining a probabilistic clustering 
result using the FCM. This clustering information is then used to determine the initialization 
and controlling parameters. 

On OCT structural images, retinal fluid has a low intensity value compared to the high 
intensity of surrounding retinal tissue. Based on this intensity contrast, FCM assigns every 
pixel a probability of belonging to both the fluid and tissue cluster, by minimizing a cost 
function 

 
2

, ,
1 1

( ) ( ) , with 1, 1, 2, ,
K N K
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i j i j

i j i

E p I j C i p j N
= =

= − = ∀ =     (3) 

where K is a predetermined number of clusters, N is the number of pixels, pi,j is the 
probability of I(j) belong to the i-th cluster, m is a initialized parameter (m>1) (in this study, 
m = 2). C(i) is the center of mass of the i-th cluster, and the C of the low intensity cluster is 
initialized using the mean intensity of vitreous region (above the ILM, top dark area in Fig. 
3(A)). The pi,j and C(i) was updated by Eq. (4) during the iteration of the segmentation 
process. 
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 (4) 

The probability map pi,j of the lowest intensity cluster (Fig. 4(B)) contains retinal fluid, 
vitreous, shadows of vessels, and other low intensity regions in or below retina. FCM results 
were used to initialize φ and calculate controlling parameters (μ, λ, Rb in Eq. (1)) for level-set 
evolution. (detailed implementation can be found in [19]). 
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Fig. 4. (A) OCT structural B-scan (y-axis) image of a participant with severe macular edema. 
(B) Lowest intensity cluster generated by applying fuzzy C-means (FCM) on image (A). (C) 
Retinal fluid delineated by applying fuzzy level-set method on image (A). 

The fuzzy level-set based segmentation method is fully-automated and self-adaptive for 
images with quality variation. In these DME cases, it detected retinal fluid boundaries (shown 
in red on the B-scan (y-axis) Fig. 4(C)) with few remaining artifacts, which were filtered out 
in the following steps. 

2.4.2 Voting of cross-sectional segmentations 

Each voxel at location ω = (x, y, z) has a segmentation result for each of the three cross-
sectional orientations (SYZ, SXZ and SYZ). These segmentations vary among the orientations due 
to differences in image contrast and bulk motion artifacts (Fig. 5, the regions outlined by 
yellow). In order to improve segmentation accuracy, a voting rule was used to automatically 
determine the segmentation results for each voxel. If a voxel was identified as belonging to 
retinal fluid in at least two of the cross-sectional orientations, it was considered to be “true” 
retinal fluid; otherwise, it was considered as retinal tissue. An example shown in Fig. 5 
indicates the segmentation errors are dramatically reduced in the integrated results. 

 

Fig. 5. Illustration of improving retinal fluid segmentation accuracy by voting of cross-
sectional segmentations. (A1) (B1) and (C1) are the segmentation results obtained by applying 
the fuzzy level-set method on C-scan and two B-scans, respectively. (A2) (B2) and (C2) are 
the segmentation results represented on a C-scan extracted from (A1) (B1) and (C1). (A3) (B3) 
and (C3) show a zoomed in perspective of the yellow square region in (A2) (B2) and (C2). 
(D1) is the segmentation result after voting. (D2) shows a zoomed in perspective of the yellow 
square region in D1. It can be seen that D2 has much less error than (A3) (B3) and (C3). 
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2.5 Post-processing 

Voting of the results on three cross-sectional orientations improved the accuracy of 
segmentation. However, some segmentation artifacts still remain (Fig. 5(D1)). Areas of 
retinal thickening or areas under vascular shadow have low intensity on OCT and can be 
misclassified as retinal fluid. 

Morphological characteristics can distinguish retinal thickening from retinal fluid. 
Generally, retinal fluid appears as a near-round region with smooth boundaries on OCT cross 
sections, while retinal thickening has boundaries that change sharply (Fig. 6(A) and 6(B1), 
marked with white arrows). The smoothness of the boundary quantified by both the shape 
descriptor [33] and polar coordinates, in addition to the aspect ratio of the region, are all used 
to remove retinal thickening segmentation errors (Fig. 6(A), 6(B1) and 6(B2), marked with 
green arrows). 

Shape descriptors were reflected by the contour inflexion points of the detected regions 
[31]. The contour C of the detected region was expressed using two parametric functions x(l) 
and y(l): C = (x(l), y(l)). where l is a normalized parameter ranging from [0, 1], which 
represents the length variable. Curvature in variation levels were computed using Eq. (5). 

 ( ) ( ) ( ) ( ) ( )
( ) ( ){ }

1 1 1 1
1 3/22 2

1 1

, , , ,
,

, ,

X l Y l Y l X l
l

X l Y l

σ σ σ σ
τ σ

σ σ

′ ′′ ′ ′′−
=

′ ′+      

 (5) 

where, X(l, σ1) and Y(l, σ1) are smoothed curves using Gaussian filter g(l, σ1), X'(·) and X”(·) 
are first and second derivatives of length l, respectively, and similarly for Y'(·) and Y”(·). The 
zero-crossing of τ(l,σ1) indicates the curvature inflexion. 

Since we express the curve in polar coordinates, the curve variation can also be reflected 
in a one-dimensional sequence, following 

 ( ) ( ) ( )2 2

2 2( , ) ,o oR l x l X y l Y g lσ σ = − + − ∗        
 (6) 

where (Xo, Yo) is the center of detected region. The inflexion of R(l,σ2) is another parameter to 
evaluate smoothness. 

In our study, σ1 = 12, σ2 = 6 were used in Eqs. (5) and (6). Zero-crossings of τ(l,σ1) and 
inflexions of R(l,σ2) above the preset thresholds are identified as artifacts. Furthermore, the 
aspect ratio of the region, the ratio(r) between major axis and minor axis of the minimum 
enclosing ellipse, was also assessed. 

Hemoglobin in perfused vessels absorbs and scatters the incident light of OCT and creates 
a vascular shadow. The SSADA angiogram, computed using the same OCT scan, can identify 
these blood vessels. By targeting the low intensity area associated with the vessels from the 
angiogram, we removed segmentation errors caused by vascular shadowing. Figure 6(A) and 
6(B2) provide an example of how we removed the detected regions (indicated by purple 
arrows). This region can be differentiated as a segmentation error because the far left and far 
right points both fall within the vascular shadowing. 

In the final step, the boundaries of volumetric detected regions were smoothed. We 
rejected the clutters with dimension smaller than 3 pixels on each axis. Therefore, the smallest 
fluid volume we can resolve is 30 × 30 × 9.0µm3. 
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Fig. 6. Structural OCT B-scan images overlaid with SSADA (blue) and retinal fluid 
segmentation results (outlined by red). (A) Before post-processing results where segmentation 
artifacts due to retinal thickening (white arrow, green arrow) and vascular shadow (purple 
arrow) can be seen in the square regions. (B1) and (B2) showed the zoomed in perspective of 
the yellow and blue square regions in A. (C) After post-processing image where artifacts 
contained in the square regions have been removed. 

2.6 Quantification and visualization 

The fluid volumes were calculated as the product of the number of detected voxels and the 
voxels dimension (10 × 10 × 3.0μm3) in each scan. Fluid thickness maps were generated by 
calculating the product of the number of detected voxels and voxel size in each axial position. 
This was then projected on 2D en face maps. Fluid voxels above the IS/OS reference plane 
were classified as IRF and those below as SRF. This allowed separate volume calculations 
and thickness maps of IRF and SRF to be made. 

Three-dimensional rendering of retinal fluid were constructed by 3D visualization module 
of ImageJ (1.49, http://imagej.nih.gov/ij/). This 3D rendering showing the retinal fluid (blue) 
and OCT angiogram (sepia) can be combined to visualize the retinal fluid in relation to 
vasculature. Here, en face OCT angiogram was created by projecting the maximum SSADA 
flow signals internal to BM boundary [20]. 

2.7 Verification of results 

To evaluate the accuracy of the proposed method, we compared our segmentation results with 
ground truth which is the manually corrected segmentation results. An expert human grader 
manually corrected the boundaries detected by automated algorithm through the whole 
volumetric data set. The correction was done on the OCT orientation with the clearest fluid 
boundaries for contouring. During correction, the grader compared the structural OCT frames 
at all three orientations to make a grading decision, and use an editing tool incorporated in the 
same software interface to delineate the correct fluid boundary. The smallest fluid region that 
the editing tool could resolve was 9 pixels. In order not to introduce too much error during 
contouring, the regions smaller than this were neglected. 

Jaccard similarity metric (J) [34] was used for comparison, which is defined as 

 
S G

J
S G

∩
=

∪
 (7) 

where S is our automated segmentation results, G is the ground truth that is the manually 
corrected results based on S. The Jaccard coefficient ranges from 0 to 1, where 1 denotes the 
two were identical and 0 if they were completely different. Errors rates were also computed 
by comparison to ground truth. False positive error was the ratio of the total number of 
automatically segmented pixels that were not included in the manual segmentation result to 
the total number of ground truth pixels. False negative error was the ratio of the total number 
of manually segmented pixels that were not included in the automated segmentation result to 
the total number of ground truth pixels. Difference between the automated segmentation 
results and ground truth is described as the total number of false positive and false negative 
errors. 
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We also conducted the same evaluations described above on the fuzzy level-set algorithm 
using the fast-axis orientation. Paired Wilcoxon rank-sum tests were performed to compare 
the performance between our proposed algorithm using three different orientations and the 
simple 2D processing using one orientation only. 

We assessed intra-visit repeatability of the proposed method using and intra-class 
correlation (ICC). 

3. Results 

The results from automated fuzzy level-set algorithm were compared with the results from 
manual correction (ground truth). Data from a single eye of 10 participants with DME were 
analyzed. The results from two representative cases were shown in Fig. 7 and Fig. 8. The first 
case (Fig. 7) has IRF only and shows the high image contrast between IRF and surrounding 
tissues. The second case carries both IRF and SRF, and also diffused retinal thickening. It 
represents a challenging case with low contrast between retinal fluid and thickening. The 
fuzzy level-set algorithm automatically outlined the boundary of fluid space. The algorithm 
required about 26 minutes of processing time on an Intel Xeon CPU (E3-1226, 3.3 GHz), of 
which 73% of the time was spent on the iteration of fuzzy level-set segmentation. 
Segmentation of each orientation required 6 minutes of processing time. 

A qualitative comparison between both B-scans and C-scans shows a very small 
difference between the fuzzy level-set algorithm and expert grading. This difference is due to 
false positive segmentation where the boundaries between IRF spaces are indistinct (Fig. 
7(B2)) and the retinal thickening cause extremely low intensity (Fig. 7(A2)). Some difference 
was due to false negative segmentation (Fig. 8(A2) and 8(B2)) where the real fluid detected 
region may be excluded in the step of removing clutters (see 2.5 post-processing). Fluid 
regions appearing as black holes on C-scans were infrequently missed by the manual grading. 
This is due to the indistinct size and boundary of small fluid regions (indicated by green 
arrows in Fig. 8). 

 

Fig. 7. Segmentation results compared to ground truth. (A1) and (B1) are original images on 
C-scan and B-scan. (A2) and (B2) are segmentation results of our proposed method. (A3) and 
(B3) are ground truth delineated by human expert. Yellow arrows identify the false positive 
segmentation results corrected by an expert human grader. 
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Fig. 8. Segmentation results compared ground truth in a case with both IRF and SRF. (A1) and 
(B1) are original images on C-scan and B-scan. (A2) and (B2) are segmentation results of our 
proposed method. (A3) and (B3) are ground truth delineated by human expert. Yellow arrows 
identify the false negative segmentation results corrected by an expert human grader. Green 
arrows identify the rejected regions by both automated algorithm and manual correction. 

Quantitatively, the proposed method agreed well with manual grading, which is 
significantly higher than the same processing using one orientation only (Tables 1 and 2). 
Repeatability of retinal fluid measurement was computed from the 2 sets of OCT scans 
obtained from each eye. The automated method has excellent repeatability as measured by 
ICC (0.976). 

To visualize the segmented fluid spaces better, the thicknesses of IRF and SRF were 
projected separately on 2D map (Fig. 9(A) and 9(B)), and 3D volumetric fluid were rendered 
separately (Fig. 9(D) and 9(E)). The detected IRF in the case shown stays together in the 
same region, appearing in petaloid pattern. The detected SRF are shown as a large dome 
shape, which corresponds to the classical pattern. An en face composite map combining fluid 
volume map and angiogram presents the vasculature and the fluid cysts in an intuitive fashion 
and highlights the relationship between the vascular and anatomic changes in DR (Fig. 9(C) 
and 9(F)). 

Table 1. The retinal fluid volumes detected by our proposed algorithm and ground truth 

Case 1 2 3 4 5 6 7 8 9 10 

Fluid 
Volume 
(mm3) 

Ground 
truth 

0.286 0.290 0.051 0.022 0.020 0.027 0.059 0.232 0.139 0.052 

Fuzzy 
level-set 

0.297 0.336 0.048 0.024 0.019 0.020 0.065 0.246 0.132 0.051 

Differencea 0.037 0.068 0.009 0.005 0.005 0.007 0.021 0.044 0.023 0.006 
a Difference is the total number of false positive and false negative errors 

Table 2. Agreement between automated segmentation and ground truth 

 Our proposed method Fuzzy level-set on fast-axis P-valuea 

Jaccard similarity metric 0.811 ± 0.052 0.724 ± 0.049 0.005 
False positive error 0.092 ± 0.036 0.136 ± 0.461 0.005 
False negative error 0.121 ± 0.061 0.232 ± 0.077 0.008 

a P-values were based on paired Wilcoxon rank-sum test. 
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Fig. 9. Quantification of volumetric spaces of retinal fluid. (A) Thickness maps of intraretinal 
fluid (IRF). (B) Thickness maps of subretinal fluid (SRF). (C) En face retinal OCT angiogram. 
(D) 3D rending of IRF volume. (E) 3D rending of SRF volume. (F) OCT angiogram overlaid 
with retinal fluid thickness map. 

4. Discussion and conclusion 

We developed an automated volumetric segmentation method to quantify retinal fluid (IRF 
and SRF) on OCT which involves three main steps: (1) segment and flatten retinal layers; (2) 
identify retinal fluid space using a fully automated and self-adaptive model (fuzzy level-set 
method) on OCT cross-sections from three orthogonal directions (two types of B-scans and 
C-scans); (3) remove remaining artifacts by identifying morphological characteristics and 
vascular shadowing. We showed that the proposed algorithm can detect and quantify the 
retinal fluid in DME eyes with a varied image contrasts. The fuzzy level-set algorithm agreed 
with expert human grading very well. Our technique offers a major advance in providing 
clinically valuable quantitative measurements of IRF and SRF. 

The clinical relevance of IRF and SRF on OCT is well established. Resolution or 
stabilization of IRF and SRF was a main indicator of disease activity for the studies of DME, 
neovascular aged-related macular degeneration (AMD) and retinal vein occlusion [35–40]. 
Current OCT platforms provide retinal thickness and volume measurements, but the retinal 
fluid volume may be a more robust and accurate biomarker of disease activity compared to 
retinal thickness and volume. Numerous factors such as atrophy and fibrosis, in addition to 
vascular permeability, influence retinal volume. An automated segmentation technique that 
provides a quantitative measurement of retinal fluid could offer a more precise tool in the 
management of macular diseases with hyperpermeability. 

Despite its clear applicability, automated detection of volumetric retinal fluid has been a 
poorly explored area. No commercial system offers this function, leaving the identification of 
fluid space to subjective assessment or manual delineation. Carera Fernandez [17] applied 
active contours (a gradient vector flow snake model) to extract fluid regions in retinal 
structure of AMD patients. This method is slow and requires substantial grader input, 
including initial boundary location estimation. Wilkins [41] described an approach for 
automated segmentation of retinal fluid on Cirrus OCT of cystoid macular edema. This 
method applies an empirical thresholding cutoff on the contrast enhance images by bilateral 
filtering, sparse details were presented on the assessment of the segmentation reliability. Chiu 
[16] recently presented a fully automated algorithm based on a kernel regression classification 
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method to identify fluid-filled region in real world spectral domain OCT images of eyes with 
severe DME. However, this algorithm did not yet distinguish between intraretinal from 
subretinal fluid or focal from diffuse retinal thickening. All aforementioned algorithms were 
developed for 2D OCT images only. Quellec [13] and Chen [14] introduced an approach 
working on volumetric data set using prior information to classify the fluid associated 
abnormalities based on feature- and layer-specific properties in comparison with the normal 
appearance of macula. Unfortunately this method did not provide a clean measurement of 
fluid-filled space. 

Compared to the previously reported methods using 2D images, our method makes full 
use of the volumetric information by operating detection on three directions. The voting 
process increases the accuracy of detecting true fluid voxels. The remaining false positives 
are rejected using morphological characteristics and OCT angiography. 

There are several reasons leading to the use of level-set segmentation on 2D instead of 
3D. First, the time cost of segmentation step using 2D algorithm is lower than 3D algorithm. 
This is because the complexity of 2D algorithm [O(n2)] is lower than 3D algorithm [O(n3)]. 
Second, the segmentation of each frame is independent; therefore, parallel computing could 
further shorten the processing time. Furthermore, the 2D algorithm can easily incorporate 
manual grading results, making the trouble-shooting easier compared to 3D approach. 

In our proposed method, we removed the dependence on parameter tuning and the needs 
for initialization by using a rigorous classification algorithm. This classification assumes that 
the retinal fluid filled regions have similar reflectance to the vitreous region. The 
classification initialized by the intensity of vitreous avoids the process of data training for 
searching optimal parameters, so that it has a strong self-adaptive capacity. This is critical in 
applying the method to real world clinical situations where a wide variability of image quality 
and pathology exists. Due to its self-adaptive capability, this classification method would 
enable utilizing data sets acquired from multiple different clinical OCT systems. Although 
our method was developed on the OCT angiography scan pattern from a commercial spectral 
domain OCT (Optovue RTV-ue XR Avanti) it can be applied easily to other OCT devices 
that generates volumetric scans. The removal of vascular shadowing artifact can be modified 
by use of other criterion as described in [41]. 

In summary, this novel algorithm can automatically detect and quantify retinal fluid space 
accurately, offering an alternative and possibly more meaningful way to evaluate diabetic 
macular edema than total retinal thickness and volume. 
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