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Abstract: We present a new OCT method for flow speed quantification and 

directional velocimetry: particle streak velocimetry-OCT (PSV-OCT). 

PSV-OCT generates two-dimensional, 2.5-vector component (vx,|vy|,vz) 

maps of microscale flow velocity fields. Knowledge of 2.5-vector 

components also enables the estimation of total flow speed. The enabling 

insight behind PSV-OCT is that tracer particles in sparsely-seeded fluid 

flow trace out streaks in (x,z,t)-space. The streak orientations in x-t and z-t 

yield vx and vz, respectively. The in-plane (x-z plane) residence time yields 

the out-of-plane speed |vy|. Vector component values are generated by 

fitting streaks to a model of image formation that incorporates equations of 

motion in 3D space. We demonstrate cross-sectional estimation of (vx,|vy|,vz) 

in two important animal models in ciliary biology: Xenopus embryos 

(tadpoles) and mouse trachea. 

© 2016 Optical Society of America 
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1. Introduction 

Optical methods are indispensable in the study of cilia-driven fluid flow [1]. Quantifying 

cilia-driven fluid flow has relevance in respiratory diseases such as asthma, chronic 

obstructive pulmonary disease, cystic fibrosis, and primary ciliary dyskinesia. Cilia-driven 

fluid flow also plays a role in cerebrospinal fluid flow in the central nervous system and ova 

transport in the oviducts. Recently, there has been growing interest in exploiting the cross-

sectional nature of OCT to quantify ciliary physiology [2–10]. Cross-sectional imaging of 

cilia-driven fluid flow is important for several reasons. First, since cilia-driven fluid flow is a 

surface-driven flow, it is important to localize flow velocity measurements with respect to the 

surface that is generating those velocities. Second, since cilia-driven fluid flow is not 

amenable to simplifying assumptions (e.g. parabolic velocity profile for Poiseuille flow), 

there are not straightforward models to which data can be fit. For example, while three vector 

component information about parabolic flow can be inferred from, for example, one vector 

component measurements of vascular blood flow by modeling the vessels as a cylindrical 

tube [11–15], such model fitting is, in general, not possible for cilia-driven fluid flow. 

Previous velocimetry techniques developed in OCT include Doppler-OCT [16–18], 

multiangle Doppler-OCT [19–21], particle tracking velocimetry (PTV) [2], digital particle 

image velocimetry (DPIV) [9, 22–24], speckle tracking [25], dynamic light scattering (DLS) 

[26], and directional DLS [27, 28]. Doppler-OCT is able to estimate only the axial component 

of the velocity by analyzing the rate of phase evolution over time. PTV-OCT tracks the 

center-of-mass location of sparsely distributed tracer particles in 2D space in between frames 

and hence gets the two in-plane velocity components. DPIV-OCT also estimates in-plane 

velocity components using frame-to-frame displacement, but operates in an intermediate 

scattering regime by analyzing spatial correlation at displaced spatial locations. Speckle 

tracking is a similar idea, but operates in a densely scattering regime in which particles are 

unresolvable. DLS-OCT looks at temporal decorrelation of densely seeded, sub-resolution 

particles, with the idea that faster moving particles will cause the signal to decorrelate faster. 

Assuming that the effects of diffusion are accounted for or that diffusion is small compared to 

the translational motion, the total speed can be estimated. Directional DLS-OCT is an 

extension that imparts a directional scan bias that allows recovery of an additional lateral 

velocity component. In both methods, Doppler can be used to get the axial component. 

Another recently reported method, called OCT micro-particle image velocimetry [29], 

analyzes the intensity trace as a function of time as a single particle enters and exits the beam, 

which, like DLS, enables the estimation of total speed. Table 1 summarizes these methods. 

We observed that these techniques can be broadly categorized as either spatial- or 

temporal-correlation techniques. In particular, techniques such as Doppler and DLS can 

estimate velocity based on how the signal changes in one particular location over time, while 

techniques such as PTV, DPIV, and speckle tracking examine correlations at neighboring 

spatial locations. Herein, we present a novel OCT-based velocimetry method called particle 

streak velocimetry-OCT (PSV-OCT), which combines elements of both spatial (PTV) and 

temporal (DLS or OCT micro PIV) techniques. PSV-OCT generates 2D, 2.5-vector 

component flow velocity fields v(x,z) = (vx(x,z),|vy(x,z)|,vz(x,z)) from time series of 2D B-

scans. x and z are the in-plane (lateral and axial, respectively) image axes and y is out-of-

plane axis. Like PTV-OCT, PSV-OCT generates flow velocity estimates from images of a 

sparsely seeded flow field. While PTV tracks in-plane center-of-mass particle position [2, 
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30], PSV-OCT fits a spatiotemporal volumetric streak generated by particle motion in (x,z,t)-

space to a model of the streak that is parameterized by (vx,|vy|,vz). Because PSV-OCT does not 

require identification of individual particles, it avoids the particle-pairing issues and 

simplifies segmentation. As such, our method can operate in a potentially denser particle 

regime than PTV-OCT. Our technique also enables the extraction of the out-of-plane speed 

|vy|. Also note that (vx,|vy|,vz) is sufficient for estimating total flow speed |v|. PTV-OCT falls 

short in this respect, because it does not account for differing intensities of the particles nor 

the lateral beam waist and hence does not obtain quantitative out-of-plane speed estimates [2]. 

Another feature of our method, which will be clarified below, is that our method does not 

require calibration of the OCT beam waist—effectively, this means that we do not need to 

measure the beam width, nor do we have to account for the depth-dependent beam width in 

Fourier-domain OCT. Overall, modeling of the spatiotemporal OCT intensity signal in (x,z,t)-

space enables detailed multidimensional flow velocity imaging of cilia-driven fluid flow. 

Table 1. A comparison of velocimetry techniques in OCT 

Technique Correlation Density Components 
PSF 

Calibration? 
References 

Doppler-OCT temporal dense z not needed [16–18] 

Multiangle-
Doppler-OCT 

temporal dense 
x, y, z, total 
speed 

not needed [19–21] 

PTV-OCT spatial sparse x, z not needed [2] 

DPIV-OCT spatial intermediate x, z not needed [9, 22–24] 

Speckle tracking spatial dense x, z not needed [25] 

DLS-OCT 
(intensity) 

temporal dense total speed yes [26] 

DLS-OCT 

(field) 
temporal dense 

z, total speed, 

lateral speed 
yes [28] 

Directional DLS-
OCT 

temporal dense x, z, total speed estimated [27, 28] 

OCT micro PIV temporal sparse total speed yes [29] 

PSV-OCT 
spatial + 

temporal 

sparse-

intermediate 

x, |y|, z, total 

speed 
estimated this work 

The second column indicates the type of correlation on which the technique is based. The third column indicates 

in what scattering regime the technique operates. A dense scattering regime means that individual particles are 

unresolvable, while in a sparse regime the particles are resolvable. The fourth column indicates which 

components are estimated from a time series of B-scans. Finally, the fifth column indicates whether calibration 

(i.e., of the optical beam waist) is required. 
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Fig. 1. 3D (x,z,t) particle streaks generated by the ciliated skin of a Xenopus embryo. a) A 

single frame from a time series of 2D images (Visualization 1). The bright dots are particles to 

be tracked. b-d) The entire 3D stack (Visualization 2). 

2. Mathematical description of particle streak velocimetry-OCT (PSV-OCT)

Particles in sparsely-seeded flow trace out streaks in (x,y,t)-space (Fig. 1). More formally, a 

2D intensity OCT image of N particles taken in the xz-plane at a position yn along the y-axis 

(out-of-plane direction) can be modeled as: 

         
1

.
n

N

y y ny y
n

image psf y y psf 




        r r
r r r r  (1)

r = (x,z) is particle position in the xz-plane, psfr(r) is the intensity point-spread function (PSF) 

in the xz-plane (not necessarily isotropic in OCT), psfy(y) is the PSF along the y-axis, (xn,zn,yn) 

= (rn,yn) is the location of the n
th

 particle, and δy(y) and δr(r) are the 1D the 2D Dirac delta

functions in their subscripted domains. If a series of images are acquired over time, and if 

each particle moves at a constant velocity over the acquisition period, then Eq. (1) is modified 

to account for this in-plane trajectory. In particular, rn and yn are no longer a constant, but 

rather a linear function in time: 

  0, , 0( )n n nt t t   
r

r r v  (2a) 

  , 0( ).n y ny t v t t   (2b) 
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Here, vr,n is the is the vectorial velocity of the n
th

 particle in the xz plane. Each particle traces 

out a streak in (x,z,t)-space as it moves in time. The width of the streak is given by the PSF 

width. The characteristic length (e.g. 1/e
2
 length, or the σ parameter of a Gaussian) of the 

streak is inversely proportional to the out-of-plane speed. Hence, the spatial-temporal 

orientation and length of a streak gives us three pieces of information: the in-plane velocity 

vector components (vx,vz) and the out-of-plane speed |vy|. In-plane particle motion traces out 

the shape of the in-plane PSF (psfx,z(x,z)). The characteristic length of the streak is inversely 

proportional to the out-of-plane speed and directly proportional to the point-spread function 

width along the y-axis. The slope of the line segment generated by translation of the n
th

 

particle contains information about the in-plane speed. Given these pieces of information, we 

can write an expression that models each streak as an oriented 3D Gaussian function. We can 

fit this model to the streaks in the image (Fig. 1) to extract vx, vz, and |vy| for each streak. Thus, 

assuming an anisotropic Gaussian PSF, the streak is an oriented oblong Gaussian: 

  
       

2 2 2

2 2 2

( ) ( )
, , exp exp

2 2 2

o o x o o z o

o back

t xy z

t t x x v t t z z v t t
I x z t I I

  

       
    

  
  

   
 (3) 

Here, σxy is the lateral point spread function width, σz is the axial point spread function width, 

Iback is the background intensity and I0 + Iback is the peak intensity of the streak, which occurs 

at the coordinate (x0,z0,t0). σt is the streak characteristic length and |vy| = σxy / σt. There is sign 

ambiguity in vy because estimation of vy depends not on streak orientation in (x,z,t)-space but 

rather streak length: particles moving at + vy generate the same streak length as particles 

moving at -vy. For fitting, vx was expanded to vx = tan(a)cos(b) and vz was expanded to vz = 

tan(a)sin(b). For a (x’,z’,t’) coordinate system centered on an individual streak, a is the angle 

that the streak makes with the t’ axis and b is the angle that the projection of the streak onto 

the x’z’-plane makes with the x’-axis. tan(a) is the total in-plane (x’z’-plane) speed (Fig. 2). 

The cos(b) and sin(b) operations project that total speed onto the x’ and z’ axes, respectively. 

We used the lsqcurvefit() nonlinear least squares regression function in MATLAB (Natick, 

MA, USA) to fit each streak to the model Eq. (3). Because the fitting procedure estimates σxy, 

the method does not require prior knowledge of the point spread function width. In other 

words, our method is calibration-free. 
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Fig. 2. Two-dimensional (z,t) streak model. The streak is the product of the in-plane trajectory 

and the in-plane residence time, σt = σxy / |vy|. If σt is small (top row), the in-plane residence is 
small and thus the out-of-plane speed is fast. If σt is large (bottom row), the speed is slow. Sign 

ambiguity in vy arises because σt is insensitive to the sign of vy. 

3. Materials and methods 

3.1 Materials 

All OCT measurements were made using a spectral domain OCT system (Thorlabs Telesto) 

with 1325 nm center wavelength. Using subresolution particles, we estimated the lateral full 

width at half max (FWHM) to be 8-9 μm near the focus, and the axial FWHM to be 12 μm in 

air (9 μm in water). The B-scan images were composed of 2,048 A-scans, scanned over a 

lateral range of 3-3.2 mm (~1.5 μm per A-scan) at a rate of 28,000 A-scans per second (13.7 

frames per second). A-scans were 512 pixels over a depth range (in air) of 2.494 mm. 

Typically, 100 frames were acquired for the videos. This duration enabled imaging a 

sufficient number of particles to generate a reasonably dense flow velocity field. Likewise, 

lower particle concentrations require longer OCT video acquisition times. We used 5 μm 

polystyrene microspheres (Bangs labs) as flow tracers in all experiments. All Xenopus and 

mouse procedures were reviewed and approved by Yale’s Institutional Animal Care and Use 

Committee, which is Association for Assessment and Accreditation of Laboratory Animal 

Care-accredited. 

3.2 PSV-OCT algorithm and workflow 

Our PSV-OCT procedure is as follows. First, stationary objects such as flow phantom walls 

and animal bodies are removed based in a minimum projection across time and mathematical 

morphological operations to remove false regions. Next, a 3D (x,z,t) image is subject to a 

liberal intensity threshold to identify 3D streaks, so as to capture as many of the particle 

streaks as possible. To filter out falsely identified streaks due to noise, we used one of the 

following methods: 1) the temporal dimension of the streak must be at least n pixels, where n 

is user-defined (e.g., 10), or 2) we calculated the orientation of each streak and kept the 

middle m% (e.g., 95%). The procedure for estimating 3D orientation is described in the next 

paragraph. For method 1, n and the intensity threshold should be jointly selected, depending 

on the background noise. Other strategies for filtering out false streaks, such as mathematical 
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morphological operations that mitigate noise, may be used as well. Further filtering can be 

done after the fitting based on fitting diagnostics, which we describe later in this section. 

We use principal component analysis (PCA) to estimate the orientation of individual 

binary streaks segmented by the intensity threshold. This estimate will be crude because of 

the arbitrariness of the intensity threshold. This involved obtaining the 3D coordinates (x,z,t) 

of the region of connected pixels and finding the eigenvectors of the 3-by-3 covariance 

matrix. The eigenvector corresponding to the largest eigenvalue is the one that points in the 

direction of the streak. We do not use the other principal components. This orientation from 

PCA serves as the initial guess for our fitting procedure. Using the orientation parameters, we 

define a local 3D neighborhood around the streak that defines the domain over which 

nonlinear fitting is to occur (Fig. 3). This region should be on the liberal side so as not to cut 

off part of the streak with the tradeoff being that, the larger the region, the more time the 

fitting will take. Lastly, using information from the PCA to inform initial estimates, each 

streak is fit to the oblong Gaussian in Eq. (3) in order to estimate (vx,|vy|,vz). Using PCA 

results as initial estimates facilitates faster convergence of the nonlinear fitting process. All 

fitting was performed on the linear intensity data; that is, we do not use the logarithm of the 

intensity values as is typically used when displaying OCT images, because doing so 

invalidates the Gaussian model. 

Figure 3 shows a sample streak. A region was isolated around the streak based on the 

PCA-derived orientation, and the fitted oblong Gaussian curve is shown to match up quite 

closely to the intensity values. For comparison, we also show the particle tracking result. 

 

Fig. 3. A sample streak fit. The three panels show the three possible 2D projections from the 

3D streak (x-z, x-t, and z-t). The smaller, background circles are the image pixels, whose color 
represents the pixel intensity. As such, the yellow-white circles are where the streak is located. 

The large region around the streak was the region over which the fitting was done; the 

orientation of this region is derived from PCA. The fit itself is the continuous region in the 
background. The turquoise circles represent particle tracking based on center of mass per 

frame. 

4. Results 

4.1 Validation in a flow phantom 

As an initial demonstration, we used PSV-OCT to quantify flow in a cylindrical flow 

phantom. The image plane orientation with respect to the channel ranged from ψ = 0° 
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(perpendicular to the channel axis) to 90° (parallel to the channel axis; Fig. 4(a)). We tilted 

the axis of the cylindrical channel (φ) so that there would be a non-zero vertical velocity 

component. If our technique works, then at ψ = 0° the out-of-plane speed should be the 

greatest while the in-plane (xz) velocity should be approximately 0, while at ψ = 90° the in-

plane velocity should be maximum while the out-of-plane speed should be approximately 0. 

The axial velocity (z) should be approximately constant across all angles because the image 

plane is being rotated about the z-axis. Lastly, the total speed should remain constant as a 

function of ψ. Figure 4(a)-4(c) confirms these expected patterns, validating our method. Peak 

velocities measured using PSV-OCT for ψ = 90° (~1.7 mm/s) also are consistent with peak 

velocities predicted from the tube geometry (~1.75 mm/s) and those obtained using our PTV-

OCT approach [2] (~1.5 mm/s). We typically use spatial binning in PTV-OCT, which will 

underestimate the peak value of a parabolic profile. Also, shape of the PSV-OCT flow 

profiles were slightly deviated off-center, which we attribute to strong refraction at air/glass 

and glass/water interfaces. Lateral and axial point-spread function widths (σxy and σz, 

respectively) were consistent with width estimates made by imaging 1 μm particles. Lastly, 

using PSV-OCT estimates of σxy as a function of axial position z (Fig. 4(d)) were used to 

estimate an imaging center wavelength of l = 1312 nm, which is quite close to the Thorlabs 

reported value of 1325 nm. We used [31] 
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for estimating l using nonlinear fitting. Here, w is the 1/e
2
 beam radius (w = 2σxy), wo is the 

waist, and zf is the axial location of the beam waist. 
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Fig. 4. PSV-OCT in a capillary flow phantom. (a) The intersection of the imaging plane (x0,z0) 

with a cylinder of radius r’ leads to an ellipse with major and minor axes a and b, determined 

by the angle of imaging with respect to the tube. The tube was rotated about the global x-axis 
by an angle φ = 9°. The imaging plane was then rotated about the global z-axis by an angle ψ, 

from 0° to 90°. Intensity images at three ψ are shown. Flow was estimated using PSV-OCT at 

each of these ψ. (b) Predicted and estimated in-plane speed (vx
2 + vz

2)1/2, out-of-plane speed |vy|, 
and total speed v = (vx

2 + vy
2 + vz

2)1/2 at three angles with respect to flow. When ψ = 0°, the 

imaging plane is orthogonal to the direction of flow except for a small component due to 

vertical tilt φ. At ψ = 90°, flow is predicted to be completely in plane. (c) Peak flow speed of 
the parabolic flow profile, estimated by non-linear least squared fitting to Poiseuille flow in a 

tube, as a function of ψ. The error here, a 95% confidence interval (CI), is estimated by 

calculating the Jacobian during non-linear fitting. (d) Lateral point spread function (PSF) width 
σxy as a function of axial location (ψ = 0). 

4.2 PSV-OCT in cilia-driven fluid flow in Xenopus tropicalis embryo 

After demonstration in a calibrated flow phantom, we demonstrated PSV-OCT in two 

important animal models of ciliary disease: Xenopus and mouse. Figure 5 visualizes 2-

dimensional, 2.5-vector component cilia-driven fluid flow fields generated by a ciliated 

Xenopus tropicalis embryo. Xenopus (frog) embryos have a ciliated skin that generates a 
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vigorous, head-to-tail flow, making them a versatile and readily manipulated model in ciliary 

biology [32]. For imaging, embryos were pharmacologically immobilized using benzocaine, 

so that the only motion in the images is fluid flow due to the cilia. In Fig. 5, in-plane speed is 

encoded by both quiver size and quiver color. Out-of-plane speed is indicated by the size and 

color of a circle at the base of each quiver. Both in-plane and out-of-plane speeds decrease 

with increasing distance away from the ciliated embryo surface. Having access to out-of-

plane speed confirms that, for most of the flow field near the surface, the flow is dominated 

by predominantly head-to-tail (i.e. in-plane flow). Interestingly, however, the out-of-plane 

flow speeds begin to approach in-plane flow speeds at the boundary between the ciliated 

embryo and the base of the well in which the embryo sits. That is, the presence of a large out-

of-plane flow component (and recirculatory flow patterns) is a geometrical consequence of 

flow near the edges of a finite-sized ciliated surface. 

Fig. 5. Quantification of cilia-driven flow in X. tropicalis tadpole epithelium. (a) Maximum 

intensity projection image showing streaks traced out by particles, with primary direction of 

flow from head (h) to tail (t). Overlay of vector flow field estimated with PSV-OCT showing 
in-plane velocity (vx,vz) and direction indicated by length and direction of arrow, and out-of-

plane speed |vy| indicated by size and color of circle placed at base of each arrow. Axes: h- 

head; t- tail; l-left, r-right. (b,c) inset of location of region of higher out-of-plane flow near the 
(a) head of the embryo and (b) tail of the embryo. 

4.3 PSV-OCT in cilia-driven fluid flow in mouse trachea 

Lastly, we demonstrated PSV-OCT in postnatal day (PND) 21 ex vivo mouse trachea. We 

used PND 21 mice since, at that age, 1325 nm OCT can visualize cilia-driven fluid flow 
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directly through the tracheal wall [8, 9]. Tracheae were kept at 37°C. PSV-OCT was 

particularly useful in quantifying the degree of out-of-plane flow when complex recirculatory 

flow profiles are present. We minimize recirculation in the context of experimental diagnostic 

tests [8] by ensuring the trachea remains patent. In the context of general flow imaging, 

however, it may be advantageous to be able to quantify such recirculatory patterns. For 

example, we found here that significant out-of-plane motion occurs near the surface of the 

trachea, while flow is more directed down the axis of the trachea in the center of the lumen 

(Fig. 6(b), 6(c)). Such findings would not be possible with standard particle tracking 

velocimetry. 

Fig. 6. Quantification of cilia-driven flow in mouse trachea. (a) Maximum intensity projection 
of flow in tracheal lumen showing tail-head flow directed along the bottom and top surface, 

and recirculatory flow in the center of the trachea due to closed outflow. Overlay of vector 

flow field estimated with PSV-OCT showing in-plane velocity (vx,vz) and direction indicated 
by length and direction of arrow, and out-of-plane speed |vy| indicated by size and color of 

circle placed at base of each arrow. Axes: h- head; t- tail; d- dorsal; v- ventral. (b,c) 

Quantification of relative values of out-of-plane flow |vy| versus in-plane flow (vx
2 + vz

2)1/2. In 
two regions of interest (ROI), one near the surface of the tracheal wall (ROI 1, red) and one in 

the center of the lumen (ROI 2, green). (c) Histogram of ratio of values of |vy|/(vx
2 + vz

2)1/2 . 

Note the logarithmic scale. Values less than one indicate flows that are primarily in-plane, 
while values greater than 1 indicate flows that are primarily out-of-plane. 

4.4 Nonlinear least squares fit diagnostics 

Because we are fitting a model to the image data, we have access to fit diagnostics that can 

tell us how well the data match the model. This simplest approach is to analyze the residuals 

in a bulk manner; that is, we can look at the r value, the correlation coefficient between the fit 

and the pixel values, or the root mean-square error (RMSE). Low values for these metrics 

indicates either that the fitting algorithm did not converge to a good local minimum, and/or 

that the streak identified may not have been a streak. In either case, we would want to omit 

these points or perhaps reanalyze them. In our presented data, we simply omitted based on 

user-defined thresholds. Figure 7 shows the the correlation coefficients and the square-root of 
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the MSEs plotted jointly for the mouse trachea data. The fact that most of the fits are of high 

correlation and relatively low MSEs is indicative that our fitting was accurate. Furthermore, 

as reported above, the lateral beam waist values also led to a good estimate of the imaging 

wavelength, a good reality check that the fits were reasonable (Fig. 4(d)). We drew thresholds 

on the MSE and correlation coefficient to exclude poor fits. 

Fig. 7. The correlation coefficients and root mean-square errors (with arbitrary intensity units) 

of all streak fits (prior to any goodness-of-fit filtering) for the tadpole data and the mouse 
trachea data. Ideally, the fits will be of low mean-square error and correlation coefficients 

close to 1. It is thus reassuring that the points in the figure are clustered close to the lower right 

corner. 

5. Discussion and conclusion

In sum, PSV-OCT is a novel method for multi-vector component velocimetry of microscale 

biological fluid flows. Our method is distinct compared to prior streak velocimetry-type 

methods [33, 34] since our estimation process fits the streak data to a function with 

continuously varying intensity. That is, prior methods neglect image intensity and PSF 

information but rather identify the beginning and end of a streak and use those endpoints, 

which are arbitrarily defined, as an interval displacement over some time interval. PSV-OCT 

is thus able to obtain out-of-plane speed quantitatively because it does not acknowledge hard 

cutoffs of the streaks, as in principle the PSF is infinite, and it accounts for the depth-

dependent beam waist in OCT. 

It should be noted that Mujal et al. [29] observed that an out-of-plane speed estimate can 

be derived from particle duration time within the PSF. The particle duration time, in turn, can 

be estimated from a time-varying intensity trace. To summarize, their method fits to the 

parabolic log-intensity (equivalent to our Gaussian model of the linear intensity) profile as a 

particle traverses the imaging PSF. In this way, their duration estimate is independent of 

absolute levels of backscatter intensity. However, what differentiates our technique from their 

method is that their technique was demonstrated in M-mode and does not exploit in-plane 

trajectory estimation (e.g. PTV, PSV). PSV-OCT, on the other hand, looks at the intensity 

profile over its spatiotemporal trajectory because the method simultaneously tracks in-plane 

particle position as well as the rate at which the particle is leaving the PSF. In other words, as 

mentioned in the introduction, our technique is both temporal- and spatial-correlative while 

previous techniques use one or the other. 

An important assumption of our work is that the trajectories of the particles are at least 

locally linear. Indeed, we are exploiting the finiteness of the OCT beam waist to sample local 

windows of a potentially curved trajectory, while techniques that use projection images may 

exhibit curved trajectories. Such curves are apparent in the projection images in Figs. 5 and 6, 
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from which the blending of multiple particles as a result of projecting gives deceptively 

curved appearances. However, the supplemental videos, which show the full x-z-t data set, 

show that the streaks are actually quite linear. Hence, PSV-OCT is advantageous over a 

technique previously termed particle streak velocimetry [14], which uses projection images 

from a camera with a long integration time. In particular, there is a loss of time-resolution and 

a limit on how dense the particle distribution can be to avoid overlapping trajectories. Also, 

unlike PSV-OCT, they did not obtain out-of-plane speed because they did not account for the 

PSF. Another note is that they fit parabolas to the streaks, noting that they were not linear. In 

principle, we could do the same thing with PSV-OCT by modifying Eqs. (2a) and (2b) to be 

parabolic rather than linear and use a model selection criterion to account for potentially 

curved trajectories (one can think of this as a second-order Taylor expansion). However, we 

found this to be unnecessary. 

Finally, we acknowledge that there are upper and lower limits on the speed of particles 

measurable by PSV-OCT. An implicit limit is that the particle translations are sub-resolution; 

therefore, if the particles move too quickly, the streaks would not be contiguous and would 

hence be missed by segmentation criteria. However, if the discontiguous streaks could be 

identified, the fitting would still be able to proceed. The lower bound is limited by Brownian 

motion, which violates our assumption of dominant translational motion. The lower bound 

also is limited by imaging noise (e.g. shot noise), since noise will result in a particle image 

profile that deviates from a smooth Gaussian curve. In general, the longer the particle remains 

in-plane (the slower the out-of-plane speed), the better both in-plane and out-of-plane velocity 

estimates are. Another concern is that streaks may be clipped at the beginning or end of the 

videos. In these cases, as long as the streak is long enough to pass the initial filtering criteria, 

the streak will still be fit. Even if it is clipped, the remaining parts should still follow the 

Gaussian intensity profile. The fit may be noisier than that from a complete streak, however. 

In sum, PSV-OCT is a novel contribution to a growing body of work that approaches 

transverse velocimetry and total speed estimation by incorporating equations of motion into 

models of OCT image formation (see, for example [9, 26, 27, 35, 36],). We expect this 

technique to be applicable in a wide range of biological settings in which discrete scattering 

objects (e.g. red blood cells) can be identified. 
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