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Mosaic parental germline mutations causing recurrent
forms of malformations of cortical development
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To unravel missing genetic causes underlying monogenic disorders with recurrence in sibling, we explored the hypothesis of

parental germline mosaic mutations in familial forms of malformation of cortical development (MCD). Interestingly, four families

with parental germline variants, out of 18, were identified by whole-exome sequencing (WES), including a variant in a new

candidate gene, syntaxin 7. In view of this high frequency, revision of diagnostic strategies and reoccurrence risk should be

considered not only for the recurrent forms, but also for the sporadic cases of MCD.

European Journal of Human Genetics (2016) 24, 611–614; doi:10.1038/ejhg.2015.192; published online 23 September 2015

INTRODUCTION

Familial forms of Mendelian disorders with recurrences in sibling and
healthy parents are usually predicted to result from two modes of
inheritance: X-linked or autosomal recessive with homozygous or
compound heterozygous mutations inherited from healthy hetero-
zygous parents. Conventional Bayesian methods taking into account
prior probability for each event and conditional probability on the
basis of pedigree analysis are usually used to determine relative
probabilities for each pattern of inheritance.1 For instance, in the
EuroMRX consortium study focused on familial forms of intellectual
disability (ID) with at least two affected brothers, authors suggested
that 63% of the ID in these families should then be X-linked.2 This
estimation contrasts with the much lower observed frequency of 17%
shown in a cohort of potential X-linked ID families with two affected
boys.2 For disorders with autosomal recessive pattern of inheritance,
undiagnosed cases are common despite proper analysis of known and
candidates related genes.

How can we explain these ‘missing genetic causes’?

One could argue that the missing mutations could be present in not-
yet identified genes, or in non-coding regions of the genome.
Alternative genetic explanations include autosomal dominant inheri-
tance with reduced penetrance, polygenic or multifactorial inheritance
modulated by the influence of non-genetic factors.
Here, we explored the hypothesis that these familial cases could

be attributed to parental mosaic germline mutations. Such
events have been already described for few well-defined disorders
using targeted analysis of specific genes. The percentage of
germline or somatic mutations has been found to be between 6
and 11.5%.3 However, to our knowledge this hypothesis was rarely
explored in an unbiased manner for a heterogeneous group of
disorders.4 In this study, we used whole-exome sequencing (WES)
approach to assess the contribution of parental mosaic germline
mutations in familial forms of malformations of cortical
development (MCD).
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SUBJECTS AND METHODS
We selected 18 families with at least two sibs affected and healthy parents. Index
cases were affected by lissencephaly, polymicrogyria, heterotopia or micro-
cephaly, with or without abnormalities of the corpus callosum, brainstem or
cerebellum. Details about pedigrees, clinical and imaging phenotypes are
summarized in Supplementary Table 1.
We performed WES in trios made of one child with an MCD and his two

unrelated parents, except one consanguineous family (P370), using standard
protocols developed at CNG (Centre National de Génotypage) and pipeline
analysis of Paris Descartes University bioinformatics platform.3 Exome sequen-
cing quality data are available in Supplementary Table 2. We analyzed variants
affecting coding regions and essential splicing sites and excluded all variants
with a frequency greater than 1% according to genomic databases (dbSNP,
1000 Genomes, Exome variant server and local platform database). We used
different genetics models of inheritance (de novo, recessive, X-linked) to
perform familial analysis of trio’s exome data. Finally, relevant variants were
confirmed by PCR and Sanger sequencing and tested for familial segregation
using genomic DNA from the patient, his or her parents and sibs.
We used different methods to determine parental origin of de novo variants,

depending on haplotypes, informativeness of SNP and distance between SNP
and mutation (Supplementary Figure 3 and legend of Supplementary Figure 3).
In the suspected case of somatic variant, confirmation and estimation of the

percentage of cells bearing the variant was performed by Droplet Digital PCR
approach using DNA extracted from peripheral blood of P248 proband and his
two parents (QX100 Droplet Digital PCR System, Bio-Rad Life Science
Research, Hercules, CA, USA). We used both variant and wild-type specific
primers associated to specific probes. Data were analyzed with QuantaSoft v.1.4
software (Bio-Rad Life Science Research).
Reference sequences used: DYNC1H1 (NM_001376.4), TUBA1A

(NM_001270399.1), STX7 (NM_003569.2), ASNS (NM_133436.3), VPS13B
(NM_017890.4), REELN (NM_005045.3), WDR62 (NM_173636.4), LACTB
(NM_032857.3).
All variants have been submitted in ClinVar database (http://www.ncbi.nlm.

nih.gov/clinvar/); accession number for the new variant in STX7 gene:
SCV000222759.

RESULTS AND DISCUSSION

That strategy allowed us to identify five families with variants in genes
involved in autosomal MCD disorders (Table 1 and Supplementary
Figure 1) and four families with evidence for the presence of parental
germline mosaicism (Table 1 and Figure 1). Although most variations
involve known MCD-related genes, we also identified in a family (P248,
Table 1 and Figure 1) with subcortical band heterotopia, paternal
germline and somatic variant in a novel gene, STX7 (Syntaxin 7).

In addition to the index case, a 3-year-old boy with posteriorly
predominant subcortical band heterotopia, this family includes a
female fetus for which pregnancy follow-up revealed a microcephaly
with pachygyria that led to parental decision of medical termination of
pregnancy. In this family the de novo c.159A4C, p.(Gln53His)
heterozygous variant in STX7 gene revealed by WES in the index
cases has been confirmed by Sanger sequencing in both siblings but
not in the parents (Figure 1,Table 1). However, a close look to the
reads generated by the high throughput sequencing showed the
presence of this variant three times out of 95 father’s reads consistent
with a somatic mosaicism. Droplet PCR analysis revealed variant
alleles in 4.8% of paternal blood cells (Figure 1 and Supplementary
Table 7). A recent MRI performed in the father showed bilateral and
symmetrical posterior band heterotopia (Figure 1).
As mentioned in Supplementary Table 3, another variant,

c.46G4A, p.(Gly16Arg) in LACTB gene, has been also found in the
offspring but not in the parents of this family. This variant is known
and described in dbSNP (rs34925488) that is present in about 3% of
the population.
We then focused on the variant in STX7, that encodes the 261

amino acids protein, called syntaxin 7, involved in vesicle trafficking5

and required for late endosome-lysosome fusion.6 Syntaxins are a
family of transmembrane proteins that belong to the SNARE complex
(Soluble N-ethylmaleimide sensitive factor Attachment protein REcep-
tor) known to be implicated in NMDA (N-methyl-D-aspartate)
receptor and dopaminergic receptor function7. To further support
our finding, we analyzed by quantitative RT-PCR STX7 expression
using RNA extracted from different tissues and showed that STX7
transcripts are ubiquitous with a predominant level in the
central nervous system (Supplementary Figure 2). Moreover, the
p.(Gln53His) variant in STX7 gene was predicted by Polyphen 2
and mutation Tester to alter a highly conserved amino acid and to be
damaging. Taken together, these data are consistent with STX7 variant
as the likely cause of the disease phenotype in this family. We screened
the complete coding sequences and splice sites of this gene in a cohort
of 276 individuals affected by various MCDs, but did not identify any
additional potential deleterious variant. Retrospectively, the rarity of
the type of MCD observed in this family (posterior band heterotopia)
might explain the absence of additional mutation in the screened
cohort, mainly enriched with PMG and pachygyria cases.

Table 1 Variants identified in families with recurrent forms of MCD

Family Phenotype Gene cDNA variation Protein variation Transmission Parental origin

Germline mosaicism inheritance P5 Micolissencephaly DYNC1H1 c.1738G4A p.(Glu580Lys) Germline mosaicism Mother

P248 Subcortical band heterotopia STX7 c.159A4C p.(Gln53His) Somatic mosaicism Father

P374 Pseudo-PMG, heterotopia DYNC1H1 c.8159G4A p.(Arg2720Lys) Germline mosaicism Unknown

P474 Polymicrogyria TUBA1A c.1148C4T p.(Ala383Val) Germline mosaicism Mother

Autosomal recessive inheritance
P60 Gyral simplification ASNS

c.1439C4T p.(Ser480Phe) Compound Mother

c.1648C4T p.(Arg550Cys) Father

P180 Microcephaly VPS13B
c.3582delT p.(Ala1194fs) Compound Father

c.6295_6296delAT p.(Met2124fs) Mother

P231 Pachygyria RELN
c.9427T4G p.(Tyr3143Asp) Compound Mother

c.2213G4A p.Cys738Tyr Father

P286 Lissencephaly, schizencéphaly WDR62 c.2030T4C p.(Leu677Pro) Homozygous Both

P533 Polymicrogyria WDR62
c.2515C4T p.(Arg839Trp) Compound Father

c.3304C4T p.(Gln1102Ter) Mother

Germline mosaic mutations, homozygous and compound heterozygous mutations, as well as parental origin of the mutations are summarized. Reference sequences used: DYNC1H1
(NM_001376.4), STX7 (NM_003569.2), TUBA1A (NM_001270399.1), ASNS (NM_133436.3), VPS13B (NM_017890.4), REELN (NM_005045.3), WDR62 (NM_173636.4).
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The remaining parental germ line variants were identified in known
MDC-related genes (Figure 1 and Table 1). Briefly, P5 family was
included because of the occurrence of two cases with microlissence-
phaly and arthrogryposis that led to pregnancy terminations. In this
family, we identified in both fetuses a common variant in DYNC1H1
gene (c.1738G4A, p.(Glu580Lys)) that was not detected in the
parental DNA. We could highlight the maternal origin of the variant

(Supplementary Figure 3). For P474 family, the c.1148C4T,
p.(Ala383Val) variant in TUBA1A gene detected by WES was confirmed
in both patients, the boy who died at the age of 13 months and in
his young sister. They were both affected by a complex MCD combined
with cerebellar hypoplasia and agenesis of the corpus callosum.
Though we did not detect the variant in the parents blood DNA, it
was possible to trace its maternal origin (Supplementary Figure 3).
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Figure 1 Families with parental germline mosaic variants. (a) P248-STX7 variant. (a1, a2, a3) Proband’s MRI sections showing the extended heterotopic band.
(a4) WES reads showing the STX7 variant and one variant read in the father. (a5) Droplet digital PCR data confirming the somatic mosaicism in the father: variant
allele is present in 213 out of 3882 positive droplets in first father well; 207 out of 3788 in second well; 239 out of 3738 in third well; absent in the mother and
present in 1982 out of 2053 droplets in the proband. (a6) Father’s MRI showing the milder posterior band heterotopia (arrow). (b) P474-TUBA1A variant. (b1, b2,
b3) Patient’s MRI sections showing the corpus callosum agenesis, brainstem and cerebellum abnormalities, bilateral opercular dysplasia and dysmorphic ventricular
horns. (c) P374-DYNC1H1 mutation. (c1, c2) Histopathological sections showing heterotopic neuronal cells, extended polymicrogyria, enlarged germinative zones
and disorganized axonal tracts (arrows). (d) P5-DYNC1H1 variant. Star symbol is to highlight position of heterozygous mutation in affected individuals.
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Finally, the P374 family with three affected fetuses was referred
to our laboratory for diagnostic purposes. We identified a hetero-
zygous variant in DYNC1H1 gene in a female fetus after pregnancy
termination for agenesis of the corpus callosum and ‘double cortex’
aspect. We confirmed the c.8159G4A, p.(Arg2720Lys) variant in
the other female and male aborted fetuses who shared the same
malformation. Interestingly, neuropathological analysis showed
focal polymicrogyria with major neuronal migration defect (multi-
ples bands and nodules of heterotopia) and abnormal axonal
guidance with anarchical tracts in the white matter and the
brainstem. In addition to agenesis of the corpus callosum,
cerebellum was hypoplastic with heterotopias. It is the first
description of DYNC1H1-related histological anomalies. This var-
iation was not detectable in parental blood DNA and determination
of parental origin was hampered by the lack of informative SNP
nearby the variant (Supplementary Figure 3).
In total, out of 18 families with recurrent forms of MCD, variants

were identified in 5 families with autosomal recessive inheritance and 4
families with parental germline mosaicism (9 out of 18; 50%).
Retrospectively, it would have been possible to identify most variants
by testing targeted MDC-related genes; however, as familial segregation
and phenotypes were not always suggestive, the unbiased WES emerged
as an appropriate strategy. For the remaining nine families, we did not
find any variant shared by affected sibs in five families; and identified
homozygous, compound heterozygous or X-linked variants in candi-
date genes in four families, highlighted in Supplementary Tables 3.
Importantly, our study revealed that parental germline mosaicism

accounts for about 15% of recurrent forms of MCD and should lead
to a revision of estimated risk for disease reoccurrence and genetic
counseling for couples with an affected child who carries a variant
considered as de novo. Also, one should consider mosaic germline
mutation when investigating apparent autosomal recessive familial
disorders. Finally, this unbiased WES approach should be applied to
assess parental germline mosaicism contribution in other heteroge-
neous groups of genetic diseases.
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