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Identifying factors regulating variation in numbers of
individuals among populations across a species’ distribution
is a fundamental goal in ecology. A common prediction, often
referred to as the abundant-centre hypothesis, suggests that
abundance is highest near the centre of a species’ range.
However, because of the primary focus on the geographical
position of a population, this framework provides little
insight into the environmental factors regulating local
abundance. While range-wide variation in population
abundance associated with environmental conditions has
been investigated in terrestrial species, the relationship
between climate and local abundance in freshwater taxa
across species” distributions is not well understood. We used
GIS-based temperature and precipitation data to determine
the relationships between climatic conditions and range-wide
variation in local abundance for 19 species of North American
freshwater fishes. Climate predicted a portion of the variation
in local abundance among populations for 18 species. In
addition, the relationship between climatic conditions and
local abundance varied among species, which is expected as
lineages partition the environment across geographical space.
The influence of local habitat quality on species persistence
is well documented; however, our results also indicate the
importance of climate in regulating population sizes across a
species geographical range, even in aquatic taxa.

1. Introduction

Identification of the contemporary factors regulating local
population abundance is a fundamental goal in ecology. Whittaker
[1,2] provided formative evidence that variation in abundance
within and among species is due to differential responses across
habitat gradients, thus supporting the concept that species
respond to environmental conditions based on tolerances to those
conditions [3]. At larger spatial scales, studies of variation in
population abundance have generally focused on documenting
patterns across the geographical ranges of species (e.g. [4,5]).
A common prediction, often referred to as the abundant-centre
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hypothesis, suggests that population abundance is highest near the centre of a species” geographical
range and decreases towards the edge of the range [5-7]. Although the abundant-centre prediction has
been described as a general rule in biogeography [4] and driven by a common feature shared by all
species [8], this framework provides limited opportunities for direct investigation of environmental
factors regulating local abundance because of the primary focus on the geographical position of a
population (e.g. geographical coordinates or linear distance from the centre of the range). Hawkins &
Diniz-Filho [9] recognized a similar limitation in studies that relate species richness to latitude and
noted that hypotheses based on geographical positioning provide minimal benefits for advancing our
understanding of spatial variation in biodiversity because of the lack of quantification of environmental
conditions (or other spatially varying factors) across the region of interest.

While multiple mechanisms have been proposed to explain the abundant-centre distribution [6,7],
from a niche-based perspective, the abundant-centre prediction implies that the most suitable habitat
for a species is found near the centre of the geographical distribution and habitat quality decreases
towards the edge of the species’ range until the absence of suitable habitat contributes to the inability
of populations to persist [3,5,10]. However, the quantification of multivariate habitat characteristics
across the species range has historically been a challenge, thus limiting the broad-scale assessment of the
environmental conditions regulating local population abundance. Fortunately, the availability of global
environmental geographical information systems (GISs) data has recently allowed for the quantification
of climatic aspects of the niche at broad spatial scales (i.e. the environmental niche) [11].

The term ‘environmental niche’ is used to refer to the estimation of the n-dimensional hypervolume
described by Hutchinson [12] using integrated habitat and species distribution data, particularly at
landscape and larger spatial scales [13,14]. Characterization of the environmental niche frequently
excludes information on biotic interactions; however, this approach is useful for relating available habitat
and species distributions and diversity at broad spatial scales [11]. Using this GIS-based approach,
habitat gradients can be quantified across large geographical areas to assess the relationship between
regional climatic conditions and variation in local abundance. If a significant component of variation in
species abundance is predicted by broad-scale environmental factors such as climate, from a hierarchical
perspective, these broad-scale variables should have a primary effect on abundance, while local habitat
quality and biotic interactions generate secondary effects that regulate abundance under the constraints
of the regional environmental conditions. In this scenario, regional climate defines the arena in which
local interactions take place and optimal local habitat will maximize abundance only to the degree
allowable by climatic conditions.

While the relationship between the environmental niche and range-wide variation in local population
abundance has been investigated in terrestrial species [15], a taxonomically broad assessment of
the relationship between climate and range-wide variation in local abundance in freshwater taxa is
apparently not available. Nevertheless, the use of climatic variables in correlative approaches to predict
aquatic species distributions is common (e.g. [16-18]), and based on the untested assumption that climate
is a consistent predictor of local species persistence in aquatic systems across broad geographical regions.
The goal of this research is to determine if there is a relationship between climatic conditions and local
abundance in freshwater fishes. We use data from a standardized sampling methodology across the
ranges of 19 North American freshwater fish species and GIS-based climate data to test the hypothesis
that a portion of the variation in local population abundance in freshwater taxa can be predicted with
broad-scale environmental data.

2. Material and methods
2.1. Fish data

Fish abundance data were assembled from the United States Geological Survey (USGS) National Water-
Quality Assessment (NAWQA) program (http://water.usgs.gov/nawqa) [19-21]. The NAWQA dataset
contains data derived from over 15000 fish, invertebrate and algae samples from 51 river basins across
the United States and has been used to assess, for example, the relationship between land use and species
assemblage structure [22], impacts of non-native species on native species diversity [23] and relationships
between species distributions, body size and local abundance [24]. NAWQA sites were generally
sampled during low-flow seasons based on standardized stream section length and geomorphological
characteristics using electrofishing and beach seining methods to ensure a representative sample of the
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Table 1. Results and variable coefficients from models predicting variation in local abundance for each species. ‘N indicates the number n
of sites for each species. AlCc is the Akaike’s information criterion score corrected for small sample size. R}T) is the pseudo-R? statistic. s.e. is

standard error.— indicates cases where climate does not explain a greater portion of variation in local abundance over the mean based
on the AAICc > 2 criterion.

species (N)

family variable coefficient

Campostoma anomalum (151) 265.42 0.146 constant 2124 0.031 68.784 0.000
(yprinidae

Campostoma oligolepis (84) 120.58 0.157
(yprinidae
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Cottus carolinae (88) 171.45 0.090
Cottidae

Cypnnella ana lostoma(25) ................ 1830 ............ 0 629 .......................................................................................................................
Cyprinidae

. Cypnne/la sp//optera (117) e, 2 1813 ............ ; 153 ............................................................................................................
Cyprinidae

(yprmella venusta (43) ..................... 8609 ........... 0 113 ............................................................................................................................
(yprinidae
Esox americanus (44) 100.48 0.150
Esocidae

Etheostoma blennioides (102) 147.40 0.259

Percidae

Etheostoma caeruleum (55) 103.46 0.074
Percidae

e (61) ................. Y T T e
Percidae

e olmsted/(69) .................. e T
Percidae

(Continued.)



Table 1. (Continued.)

species (N)

family L variable coefficient

Fundulus olivaceus (39) 22.05 0.509 constant 1.148 0.073 15.640 0.000
Fundulidae 2 0 0041 —5287 0000

Lepistoseus oculatus (36)

Lepisosteidae
Lepistoseusosseus (4) 87 055  comstant 1200 0064 1872 0000
Lepisosteidae
Moxostomaduquem ( 80) ,,,,,,,,,,,,, e G
(atostomidae

Moxostoma erythrurum (100) 154.40

Catostomidae

Noturus exilis (20) 24.94 0.435
Ictaluridae

Percina nigrofasciata (39)

Percidae — —
Percina sciera (22) 0.08 0.738
Percidae

fish assemblage [25,26]. Individuals were identified and counted at each locality to provide estimates of
local abundance [21].

The NAWQA dataset is limited to sites within the United States. To effectively examine range-wide
variation in local abundance, only non-migratory species with distributions contained entirely within the
United States were used for this study. To ensure robust statistical analysis, species were also excluded
if they occurred at less than 20 localities in the NAWQA dataset and did not cover the full extent of the
species’ geographical distribution. The region of North America north of Mexico contains approximately
828 species of native freshwater fishes [27]. A total of 19 species, representing eight families, were
available for analyses after the geographical and sample size constraints were imposed on the NAWQA
dataset (table 1).

Although NAWQA samples were based on a standardized sampling methodology, peculiarities
associated with site-specific sampling may influence abundance estimates. Rarefaction was used in this
study to account for the influence of potential sampling bias on estimates of local population abundance
[28]. Separate rarefaction estimates were generated for each of the 19 species. The sample size during
rarefaction resampling was based on the total number of individuals (of all species) at the site where the
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Table 2. Climate variables used in all analyses.

climate variable

mean annual temperature (K)

least number of total individuals were collected [23]. For example, if a species occurred at 50 sites and the
total number of individuals of all species at each site ranged from 100 to 1000, then 100 individuals were
resampled from each of the 50 sites during rarefaction. Data from each site were resampled 1000 times
without replacement to generate rarefied estimates of local abundance for each species occurring at the
site (ECOSIM, v. 7.0, [29]) [23]. This process resulted in rarefied estimates of local population abundance
for the focal species.

2.2. Climate variables

Data for 10 climate variables were assembled from the Worldclim dataset (www.worldclim.org) ([30];
table 2). Owing to the covariation of climate variables, climate data were subjected to a principal
components analysis (PCA) for each species to produce a set of uncorrelated variables. All climate data,
except temperature and precipitation seasonality, were logo-transformed prior to statistical modelling
and separate analyses were carried out for each of the 19 fish species. Principal components with
eigenvalues greater than 1.0 were retained for further analyses, resulting in two or three principal
components with loadings that varied among species (electronic supplementary material, appendix SA).

2.3. Modelling individual species using linear quantile regression

The relationship between climate and logjg(abundance) was examined using linear quantile regression.
Quantile regression has been demonstrated to be preferable to ordinary least-squares (OLS) regression
for analysing ecological data in cases where the limits of species abundance are a result of complex
interactions between measured and unmeasured variables [31]. In this study, climate data are the
measured variables and local habitat availability and biotic interactions are the unmeasured variables. In
typical OLS regression, the effect of a set of predictors on the rate of change of the response is determined
for the conditional mean of the response distribution. The conditional mean is the portion of the response
distribution where the interactions between predictors of interest and other unmeasured predictors are
most likely to occur. However, determining the rate of change of the conditional response near the upper
boundary of its distribution has been demonstrated to provide a more accurate estimate of the limiting
effect of measured predictors where they are most likely to be the primary factor limiting abundance [31].
A quantile regression approach can model any portion of the conditional response distribution, referred
to as quantile (r), which takes on values from 0 to 1. The model uses an optimization function that
minimizes the sum of asymmetrically weighted absolute residuals based on the value of v (for a more
in-depth treatment of modelling using regression quantiles, see [31,32]). The limiting effect of climate for
each fish species was modelled at the 95th percentile of the abundance, corresponding to  =0.95 (similar
to [33]).

2.4. Model selection

Final models for each species were determined using stepwise variable selection. Along with the main
effect of each principal component, quadratic terms and interaction terms were also considered for
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inclusion in the final model to account for any curvilinear or synergistic effects. The retention of variables
for the final model at each step of selection was determined using Akaike Information Criterion for small
sample sizes (AICc). AICc is calculated using the negative log likelihood of the model, a penalty for
including additional variables into the model to avoid over-fitting, and a bias correction term for small
sample size, which results in an overall measure of lack of model fit to the data [34]. Stepwise selection
began with a model containing only the intercept term. Single predictor variables were then added to the
model and the variable generating the largest improvement based on the AAICc measure was retained.
The cut-off for variable inclusion was an improvement in AICc of greater than two (AAICc > 2) [34]. After
the addition of each variable, variables already in the model were re-examined for inclusion because
variables entered in a previous step may become superfluous at later steps due to their relationship
with other variables [35]. This was done by deleting individual variables from the model and removing
variables which no longer contributed to significant improvement of AICc (i.e. AAICc > 2). This process
was repeated until the addition or removal of variables no longer improved the model, resulting in the
final model for each species. We chose a stepwise model selection approach as opposed to comparing
the full model to candidate models based on a priori hypotheses for multiple reasons. First, the untested
inclusion of interaction and polynomial terms in a full model results in an extremely complicated model
with terms that are difficult to interpret. Moreover, the inclusion of interaction terms is dependent on
the importance of the main effect of the interacting variables, thus the inclusion of interaction terms in
a priori models can be overly speculative and challenging to conceptualize. Finally, the use of species-
specific PCA produces univariate variables with varying characteristics for each taxon and makes the
generation of consistent a priori hypotheses impossible.

Standard errors for parameters were calculated using the Markov chain marginal bootstrap (MCMB)
developed by He & Hu [36]. For species with sample sizes less than 50, the sparsity method of confidence
interval estimation was used because resampling methods become unstable at small sample sizes [37].
Goodness of fit of the final model for each species was determined using the R%r) statistic proposed in

[38]. While traditional R? measures model performance on the conditional mean response, R% 7 is a local
measure of fit that characterizes model performance on the specified quantile of the response distribution
[15]. R(lf) is calculated for the specified quantile by first dividing the residuals of the full model by the
residuals of the intercept-only (null) model. This quantity is then subtracted from 1.0, yielding a quantity
interpretable as the per cent reduction in error obtained using the full model as opposed to the null
model [38]. All analyses were carried out using the quantreg package [39] in R v. 3.1 software [40].

3. Results

Eighteen of 19 species models include variables that predict abundance data better than random (i.e.
better than a model with only a constant=0) using the AAICc (table 1). R(lr) values among the final
models ranged from 0.071 to 0.738 with an average of 0.240 among models (table 1). Species with smaller
sample sizes tended to have larger R%r) values (R =0.363, p=0.001), suggesting that the limited density
of localities for certain species did not inhibit our ability to detect relationships among variables. In
addition, the model selection approach and the limited number of predictor variables in each model
suggest that model overfitting is probably not driving this relationship. A graphical example of the
relationship between climate and local abundance for the longnose gar (Lepisosteus ossets) is presented
in figure 1.

Based on principal component scores and loadings, temperature is positively correlated with local
abundance in Cyprinella analostoma, L. osseus, L. oculatus, Campostoma oligolepis, Cy. venusta and Etheostoma
caeruleum, and negatively correlated with local abundance in E. blennioides, E. olmstedi and Moxostoma
erythrurum. Precipitation is positively correlated with local abundance in Cy. analostoma and Ca. oligolepis
and negatively correlated with local abundance in L. osseus, E. blennioides, E. olmstedi, Ca. anomalum, and
M. erythrurum. Fourteen of the 19 final models contained one or more squared terms, which indicates
that local abundance is maximized at intermediate values of climate (table 1). Six of the 19 final models
contained an interaction term, which indicates the strength of the association between particular climate
variables and local abundance changes as a function of other climate variables (table 1).

4. Discussion

Recent advances in the availability of GIS-based global environmental data have afforded the
opportunity to examine variation in population sizes across a species’ distribution, beyond simply

£60091 °€ ‘DS uado 0y Bi0Buiysgndiaaposieforsoss



TR
77 AR

I

iy

j

N\

Sou Bp“\'\qﬂ 301

Figure 1. Relationship between principal component (PC) scores describing temperature and precipitation and logyy(abundance) in the
longnose gar (Lepisosteus osseus).

relating the size of a population to its position in the landscape. In particular, estimation of a climate-
based environmental niche for a species provides the ability to examine variation in population size in
the context of apparent species tolerances to environmental gradients. While relating population sizes
to environmental gradients has been widely investigated in terrestrial taxa (e.g. [2]), this relationship
has received less attention in freshwater species and generally focused on limited geographical areas
[41-44], possibly due to limited amounts of standardized abundance data. Results from our niche-based
approach using GIS environmental data support the hypothesis that climate is responsible for some
aspect of local abundance in freshwater taxa, with climate variables explaining a portion of the variation
in abundance in 18 of 19 species examined. While our quantile regression approach acknowledges the
importance of local habitat and biotic interactions in the regulation of population size, results support
the prediction that climate is important to population-level processes and not only at the edge of a
species’ distribution, but also throughout the entire range. Dispersal and stream network geometry are
unlikely to influence variation in population sizes at our study scale due to the relatively limited intra-
annual dispersal distances in most non-migratory North American fish species. However, these spatial
influences are potentially important at smaller (e.g. watershed) scales.

The relationships between principal component (PC) climate variables and local abundance are
different among species, which is expected as lineages partition the environment across geographical
space [45]. Many species in this study exhibit linear relationships between climate and abundance.
In particular, eight species exhibit either positive or negative correlations with temperature (based on
principal component scores and loadings), suggesting that population abundance tends to peak near
the warmest or coldest parts of the species’ range. In these cases, physical features such as watershed
boundaries may constrain species distributions as opposed to climatic conditions, particularly in warmer
areas. For example, several species reach their highest abundances near the Gulf of Mexico (Cy. venusta, L.
oculatus, L. osseus), which is an obvious barrier to expansion into warmer regions. Variation in abundance
in 14 species is predicted by at least one squared variable, indicating a Gaussian-type relationship
between local abundance and climate [46]. This suggests that particular aspects of climate may be more
important in regulating these species” distributions than physical attributes of the landscape as species
abundance peaks at an intermediate point along the species’ perceived climatic range.

Percina nigrofasciata is the only species that does not exhibit a relationship between climate and local
abundance. Other than Type II error, this lack of relationship may be a result of physical constraints
on the species” distribution. The majority of the species range, which is relatively small compared with
other species in this dataset, occurs in watersheds that drain directly to the Gulf of Mexico (e.g. the
Mobile River basin) [27]. Thus, the environmental tolerances of the species may not be fully realized by
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the species due to northern headwater and southern Gulf of Mexico distributional constraints. These
constraints may limit detection of the response of abundance to the full climatic tolerances of the species.

The translation of climate to aquatic environmental conditions is a complex process and generally
realized as hydrological regimes and water temperature. While flow, seasonal variability in flow and
water temperature directly affect aquatic taxa and estimates of these variables would probably enhance
our analyses, the generation of these types of data to address ecological patterns is constrained by
available stream gauge monitoring (e.g. [47]) or requires a landscape-scale hydrological modelling
approach [48,49]. However, prediction of local flow and water temperatures across a continental scale
using this approach is computationally prohibitive; therefore, the application of non-aquatic data
surrogates (such as climate) is necessary. Air temperature and water temperature are correlated at broad
spatial scales [50,51], and precipitation and air temperature can serve as predictors of river flows due to
their determinant roles in the hydrological cycle (e.g. rainfall contribution and evapotranspiration), at
least at continental scales. However, the ability of climate variables to explain a portion of the variation
in local abundance of aquatic taxa across the range of a species has not been addressed. Results from this
study provide support that climate data can explain the distribution of freshwater taxa at broad spatial
scales and improve the ability to predict local population sizes.

The abundant-centre hypothesis provides little more than a framework for speculation regarding
factors that regulate population sizes over broad geographical areas and should be discarded in
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favour of more biologically meaningful hypotheses. Our results indicate that climate not only explains
variation in abundance of aquatic species across their geographical range, but species vary in their
response to gradients in climate in ways that are not consistent with predictions from the abundant-
centre hypothesis. In particular, the abundant-centre hypothesis fails to consider physical aspects of the
landscape in limiting the distribution of species, as well as the location of climatic optima, which can
potentially occur in any portion of a species” geographical range. The differential response of species
to temperature and precipitation along their geographical range indicates that climate is a meaningful
predictor of local abundance of freshwater fishes. This, along with increasingly available GIS-based
data resources on other biologically relevant environmental conditions will further improve the current
understanding of factors regulating local abundance of freshwater species.
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