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Abstract

Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both 

a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through 

indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, 

including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and 

innate and adapative immunity. Here we highlight specific biological processes that could be 

exploited as targets for the prevention and therapy of cancer. Specifically, we describe how 

inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and 

hypoxia, macrophage activation and conversion, indoleamine 2, 3-dioxygenase regulation of 

dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, 

endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the 

regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also 

identified therapeutic agents as approaches, in particular natural products such as berberine, 

resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, 

desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the 

tumor microenvironment for the treatment and/or prevention of cancer.
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 1. Introduction

 1.1 Tumor microenvironment as a therapeutic target

The tumor microenvironment is critical to both the initiation and maintenance of 

tumorigenesis [1,2]. The tumor microenvironment is comprised of a complex network that 

includes multipotent stromal cells/mesenchymal stem cells, fibroblasts, blood vessels, 

endothelial cell precursors, immune cells, and secreted factors such as cytokines [2]. During 

tumor progression, changes in the microenvironment occur through effects on a molecular as 

well as cellular level and involve interactions between incipient cancer cells and host 

structural as well as adapative and innate immune cells [3]. Many of the “hallmarks of 

cancer” are related to the tumor microenvironment, including the ability to induce 

proliferation and inhibit apoptosis, to induce angiogenesis and avoid hypoxia, to inhibit the 

immune system and avoid immune detection, and to activate immune cells to support 

invasion and metastasis [4]. Specific oncogenic pathways can be associated with dramatic 

changes in the tumor microenvironment [5–8]. Hence, the manipulation of the tumor 

microenvironment could be used as an approach to prevent as well as treat cancer.

Identification of therapeutic targets in the tumor microenvironment could be useful in the 

treatment and prevention of cancer. The typical biological approach has been to investigate 

specific molecular and cellular mechanisms and then to examine whether or not the 

inhibition or activation has the expected consequences for tumorigenesis. However, there are 

caveats to this approach. The same molecules and effector cells can have roles in both the 

prevention and initiation of tumorigenesis. Different cancers can occur through disparate 

mechanisms. What is limiting in some contexts may be in other circumstances of no 

importance. Some targets may have effects on multiple pathways and programs that can 

counteract their overall effectiveness. Hence, the ability to reconcile how to target the 

microenvironment and identify suitable therapies is daunting.

In this review, we have taken a different approach. Through an intiative supported by the 

Halifax Project, a group of investigators worked together as a team to identify both specific 

targets and novel approaches to therapeutically inhibit specific aspects of the tumor 

microenvironment. Through an integrative approach we have identified strategies for the 

treatment and prevention of cancer. Then, we examined the literature and thereby identified 

possible agents, in particular natural products, which could potentially inhibit some or 

several of these targets. Our goal was to identify existing agents that may be exploited for 

the prevention and/or treatment of cancer. Finally, the team utilized a cross-validation 

approach to examine how these targets and approaches, either alone or in combination, could 

be useful for the prevention and/or treatment of cancer.

We identified ten programs that could be or definitely appear to be targets and ten existing 

natural agents that may mediate their reported anti-cancer effects through the tumor 
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microenvironment (Figures 1 and 2, Tables 1 and 2). Our list is not a complete examination 

of all possible targets or therapeutic approaches but rather an attempt to identify existing 

broad-spectrum, lower toxicity therapeutics that could be combined with existing 

therapeutics.

The targets identified include metabolic programs that may broadly influence many cell 

biology programs that impact tumorigenesis and the tumor microenvironment (cholesterol 

synthesis and metabolites, reactive oxygen species (ROS) and hypoxia, inflammation, innate 

and adaptive immunity related programs (macrophage conversion, dendritic cell (DC) 

activation, immune signaling), host microenvironment associated cellular programs (fibrosis, 

angiogenesis), and cytokine mediated regulatory programs (interleukin (IL)-6, endoglin, and 

Janus-associated kinase (JAK)) (Figure 1, Tables 1 and 2).

We particularly focused on identifying approaches for inhibiting these targets, including 

natural products that may have significant anticancer activity. Some of these molecules may 

more generally influence tumorigenesis and the microenvironment (berberine), others more 

specifically target ROS (resveratrol, desoxyrhapontigenin) macrophage conversion (onionin 

A), indoleamine 2,3-dioxygenase (IDO) regulation of dendritic cells (epigallocatechin-3-

gallate (EGCG)), cholesterol synthesis (genistein), fibrosis (naringenin), inflammation and 

immune signaling (piperine), vascular endothelial growth factor (VEGF) inhibition 

(curcumin), and JAK signaling (zerumbone). These approaches may warrant further 

investigation (Figure 1, Tables 1 and 2). These agents generally have low toxicity, suggesting 

that they could be combined with each other or existing therapies.

 1.2 Cross-validation of approaches and targets

We identified approaches and targets through the analysis of the scientific literature via a 

team of investigators from a multitude of subspecialties. We made several assumptions. 

First, the complex biology and heterogeneity of cancer suggested that the most effective 

therapeutic approach may require simultaneous actions on mechanisms that are important 

for many of the hallmarks of cancer. Second, we anticipated that synergies would be 

achieved by combining specific targets and with specific approaches. Third, we considered 

that we could validate both targets and approaches through a cross-validation through the 

analysis of literature. Finally, we considered it was important to examine the relevance of the 

identified targets and the nominated approaches across different aspects of cancer biology.

Notably, the targets and approaches that we identified for the tumor microenvironment have 

been shown to be relevant to other cancer hallmarks. These are noted as having 

“complementary” effects, while those that were found to have pro-tumorigenic actions were 

noted as having “contrary” effects. Instances where reports on relevant actions in other 

aspects of cancer biology were mixed, where reports showing both pro-cancer potential and 

anti-tumorigenic potential, we have used the term “controversial.” Finally, in instances 

where no literature support was found to document the relevance of a target site or approach 

in a particular aspect of cancer’s biology, we documented this as “no known relationship.” 

These validation results are shown below in tabular form (Tables 1 and 2).
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Our priority was to choose targets and approaches after consideration of potential cross-

hallmark effects. We examined for possible incidental actions from therapeutic interventions. 

We assembled a reasonably complete view of the literature. However, we recognize that our 

results are a starting point. Future research on therapeutic combinations will require 

empirical testing of mixtures of constituents.

In some instances, published evidence of cross-hallmark relationships is robust. In other 

cases, the underlying evidence was weak, consisting of only a single in vitro study involving 

a single cell type. Dose levels and cell/tissue types were not used to discriminate when 

gathering together these reported actions. Hence, our results serve as a starting point, with 

caveats in mind and a degree of caution. We believe this heuristic approach will be useful to 

consider synergies that might be anticipated in testing that involves certain targets and/or 

mixtures of chemical constituents that are being considered for therapeutic effects.

 2. Targets

 2.1 Cholesterol synthesis and its metabolites

The cholesterol pathway has general importance in the pathogenesis of many disease states, 

including cancer, through the regulation of cellular signaling, oncogene activation, hormone 

signaling, inflammation, and immune response, amongst many possible contributions.

Cholesterol synthesis and metabolites are intimate to the pathophysiology of carcinogenesis 

[9–11]. Cholesterol and its metabolites have an influence on many biological programs that 

are critical to cellular growth and signaling. Cholesterol and its metabolites are integral to 

the structure and fluidity of cellular membranes and are the templates for hormones and 

messengers and regulate cellular signaling and activation of oncogenes. Cholesterol is 

critical to normal host cellular and immune function. Cholesterol is specially localized in 

lipid rafts, which are membrane microdomains that assemble the signal transduction 

machinery and associate with proteins involved in key cellular signaling pathways. Many of 

these pathways closely associate with malignant transformations due to their effect on 

organization of the cytoskeleton, cell polarity, and angiogenesis [12].

Cholesterol was first identified in gallstones [13]. Subsequently, cholesterol was found to be 

important for many biological purposes, including core body temperature, the structural 

integrity and fluidity of cellular membranes, the production of bile salts, the synthesis of 

hormones such as vitamin D, testosterone, progesterone, cortisol and estradiol, the 

regulation of cellular signaling and activation of many gene products [9,10]. Indeed, 

cholesterol and its metabolites are critical to the regulation via prenylation of many 

oncogenes including RAS and perhaps MYC [14,15]. Cholesterol biosynthesis generally 

appears to be altered in cancer cells and its inhibition can impede tumorigenesis [16]. Hence, 

understanding cholesterol’s metabolism could be important to understanding potential 

therapeutic approaches for cancer.

Cholesterol biosynthesis has been well defined [16,17]. Cholesterol is generally synthesized 

in the liver beginning with one molecule each of acetyl CoA and acetoacetyl CoA [18]. 

Cholesterol is regulated in the endoplasmic reticulum by sterol regulatory element-binding 
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protein (SREBP) 1 and 2 [19]. Cholesterol synthesis is controlled by a single enzymatic 

reaction mediated by beta-hydroxy- beta-methylglutaryl CoA reductase (HMG- CoA) [20]. 

Many studies suggest that cholesterol and its metabolites play a fundamental role in 

tumorigenesis.

First, mouse model studies suggest that cholesterol biosynthesis is causative for 

tumorigenesis [21–23]. Similarly, in transgenic mouse models of oncogene-induced 

lymphoma and liver cancer, tumorigenesis is prevented when mice are treated with inhibitors 

of HMG-CoA reductase [24,25], which was found to be associated with the inhibition of 

RAS and MYC oncogenes, respectively.

Second, epidemiological studies have shown that patients receiving agents that inhibit 

cholesterol metabolism reduce the risk of cancer [26]. Notably, serum cholesterol and cancer 

risk appears to depend upon the site of cancer [27].

Third, other studies have been reported demonstrating increased levels of cholesterol in 

tumors compared to normal tissue [28,29]. Fourth, cancers often exhibit alterations in 

programs that regulate cholesterol biosynthesis through the upregulation of HMG-CoA 

reductase activity [30,31], loss of feedback inhibition [20], increased uptake of extracellular 

cholesterol through the LDL receptor [32,33] and decreased expression of cholesterol 

exporter ATP binding cassette transporter A1 (ABCA1) [33–35]. Finally, obesity and high 

cholesterol level is associated with increased risk of breast cancer in postmenopausal women 

[11,36].

Cholesterol metabolites play a key role in the regulation of cellular and nuclear oncogene 

activation. Cholesterol metabolites are key to the regulation of many oncogenes through 

prenylation including the RAS oncogene [25]. In turn, this leads to the regulation of the 

MYC oncogene [24,25]. Thus, cholesterol metabolism is likely playing a role in 

tumorigenesis. Cholesterol is a key component of cellular membranes, a metabolite required 

to regulate oncogene activation, and a template for critical hormomes. The potential 

importance of cholesterol biosynthesis in cancer has led to significant interest in the use of 

HMG-CoA reductase inhibitors, statins, for the treatment or prevention of human cancer 

[37–41].

 2.2 ROS

ROS influences the tumor microenvironment through many mechanisms that may be 

important for the treatment and prevention of cancer [42]. ROS can be defined as oxygen 

radicals and non-radical oxidizing agents that can be easily converted to radicals containing 

one or more unpaired electrons [43]. Major enzymes implicated in the generation of ROS 

are nicotinamide adenine dinucleotide phosphate (NADPH), myeloperoxidase (MPO) and 

xanthine oxidoreductase (XOR). The non-enzymatic reaction that produces ROS is through 

the mitochondria and generally involves the use of “catalytic” iron or copper ions. ROS are 

involved in various metabolic processes and enzyme reactions in the cells, in electron 

transport chain in the mitochondria, gene expression, signal transduction, activation of 

transcription factors [44,45]. Excess production of ROS may ultimately lead to tissue 

damage [43].

Casey et al. Page 6

Semin Cancer Biol. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ROS contributes to tumorigenesis through mutagenesis as well as effects on the tumor 

microenvironment [46]. ROS levels in cancer cells are higher compared to those present in 

the normal cells [47,48], as cancer cells produce ROS via mitochondria [49]. Deregulation 

of the anti-oxidant machinery of the mitochondrial matrix has been shown to contribute 

significantly during cellular transformation. This is achieved by enhancement in the levels of 

ROS in the matrix [49] that may play an important role in the regulation of ROS [50–52].

The regulation of ROS is important to tumorigenesis. The mitochondrial enzyme superoxide 

dismutase 2 (SOD2) [53,54] regulates tumor hypoxia [55]. Oncogenes and tumor suppressor 

genes are regulated by ROS, including the phosphatase and tensin homologue (PTEN) tumor 

suppressor [56,57], the mitogen activated protein kinase (MAPK), and the extracellular 

signal regulated kinases (ERK) pathway [58–60]. ROS levels have been shown to influence 

tumor angiogenesis [61] and regulate tumor self-renewal/stemness associated with cancer 

stem cells [62]. Finally, the anti-neoplastic properties of some therapeutic agents may be 

mediated by their antioxidant properties [63], including tamoxifen [63,64] and 

sulphasalazine [65,66]. The manipulation of ROS levels could be therapeutically exploited 

for the treatment and prevention of cancer.

 2.3 Macrophage conversion

Macrophage function and regulation contribute to tumorigenesis. Tumor associated 

macrophages (TAMs) and other innate immune cells have been found to regulate the tumor 

microenvironment, including the promotion of angiogenesis, initiation of fibrosis, and 

suppression of immune detection [67]. Recently, it has emerged that tumors can secrete 

factors that promote the conversion of macrophages from an “M1” to an “M2” phenotype 

[68]. Physiologically activated macrophages, or M1-type macrophages, produce cytokines 

such as IL-1β, IL-8, IL-12, IL-15, IL-18, IL-23 and tumor necrosis factor (TNF)-α in 

response to signaling through toll-like receptors triggered by damage associated molecular 

patterns present on bacteria, fungi, viruses and parasites [68]. These acute inflammatory 

mediators, in particular, IL-12, promote the development of a Th1 immune response to 

eliminate foreign pathogens and cancer cells [69]. However, macrophages within tumors are 

not exposed to danger signals and produce higher levels of IL-10, a cytokine that alters the 

differentiation of T cells away from the cytotoxic Th1 response [70]. M2 macrophages also 

secrete higher levels of transforming growth factor (TGF)-β, a cytokine that can dampen the 

ability of T cells to mount a targeted response and may lead to cancer cells attaining stem 

cell like features [71]. TGF-β also induces the activation of fibroblasts and other 

mesenchymal cells that eventually leads to tissue fibrosis. Thus, tumor associated 

macrophages can promote carcinogenesis, angiogenesis and immune escape.

Macrophages express major histocompatibility complex (MHC) class I and II. Thereby, they 

can present tumor antigens through MHC II to CD4+ T cells and to cross-present MHC-I to 

CD8+ T cells [72]. Following activation by toll-like receptors such as lipopolysaccharide 

(LPS) or interferon-gamma (IFN-γ), macrophages upregulate costimulatory molecules such 

as MHC-class I, CD80, CD83 and CD86, enabling T cells to fully mature and mount an 

antigen-specific immune response [73]. However, in a tumor microenvironment, 

macrophages do not appear able to present antigens. This may be reversible. Thus, IL-12 can 
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convert M2 into M1 macrophages. This can enable antigen presentation to CD8+ T cells and 

improved anti-tumor immunity [74].

TAMs can contribute to tumorigenesis by inducing the expression of immune checkpoints 

on tumor cells. For example, TAMs can induce the expression of programmed death-ligand 

1 (PD-L1) [73]. This can engage the PD-1 receptors on T cells and inhibit their ability to 

respond to tumor antigens. Therapies that block PD-1 and PD-L1 may be effective for the 

treatment of many types of cancer. [75,76]. In general, increased TAMs correlates with poor 

prognosis of patients [77,78]. Hence, therapies that target TAMs or alter their function may 

be useful for the treatment of cancer.

 2.4 IDO

DCs are antigen-presenting cells that link the innate and adaptive immunity and have been 

implicated in the immune regulation of cancer [79,80]. DCs are key players in inducing anti-

tumor immune responses. DCs exposed to antigen in the absence of the correct 

costimulation can induce tolerance [81]. The tolerogenic function of DCs has been 

associated with low levels of specific molecules including the B7 family members and PD-

L1, B7-H2, B7-H3, B7-H4 and BTLA [82–89].

The immune tolerance mediated by DCs appears to be mediated by enzymes that negatively 

regulate the function of effector lymphocytes in an antigen-independent fashion. These 

include inducible nitric oxide synthase, which generates nitric oxide, arginase-1, which 

depletes the milieu of arginine, and IDO, which degrades the essential amino acid 

tryptophan (TRP) and catalyzes the generation of kynurenine (KYN) [90–95].

The immune system can serve a protective role against tumor development [96–100]. DCs 

harboring active IDO have been detected in the tumor microenvironment or draining lymph 

nodes [101–103]. These cells can suppress T cell functions via IDO activation by two 

mechanisms. In the case of KYN, upon interaction with the aryl hydrocarbon receptor, this 

molecule has been shown to inhibit proliferation of T cells and NK cells, promote regulatory 

T cell (Treg) differentiation, and inhibition of DC immunogenicity [90,91,104]. In addition, 

rapid TRP depletion from the microenvironment sends stress signals to T cells, inducing 

anergy in CD8 cytotoxic T cells and promoting CD4 differentiation towards Tregs 

[90,91,105].

Tumor cells can synthetize IDO. But, it is not clear if the major contributors to KYN 

generation and TRP depletion in the tumor microenvironment are tumor cells or infiltrating 

leukocytes, in particular DCs or TAMs [90,91,106]. Regardless of the source, IDO activation 

can induce immunosuppression. High levels of IDO are correlated with poor prognosis 

[107–112]. IDO inhibition can suppress tumor growth in mouse models [113–117]. Hence, 

IDO inhibitors may be useful to target the tumor microenvironment for the treatment of 

cancer.

 2.5 VEGF

VEGFs are critical regulators of tumor angiogenesis. They comprise a family (VEGF-A, -B, 

-C, -D, -E and placenta growth factor [PGF]) of growth factors that show a conserved pattern 
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of eight cysteine residues [118–120]. In particular, VEGF-A (the paradigmatic molecule of 

this family and usually referred to as VEGF) has the capability to act both as a mitogen, 

stimulating the proliferation of endothelial cells, and also a chemotactic factor with the 

capability to attract monocytes [118–120].

Human VEGF-A has four different isoforms (VEGF 121, 165, 189 and 206), a consequence 

of alternative exon splicing [118]. The properties of native VEGF most closely correspond to 

that of VEGF-165, which is the predominant VEGF-A isoform [118]. VEGF participates in 

different physiological processes such as angiogenesis, wound healing, and embryogenesis 

[118–120]. VEGF has been shown to participate in pathological processes such as diabetic 

retinopathy and oncogenesis [118]. Tumors require angiogenic factors to induce the 

formation of neovessels [121–123]. VEGF alone can initiate the angiogenic cascade [124]. 

VEGF is secreted by most human cancers [124], and VEGF expression can be correlated 

with a poor prognosis in ovarian [100] and other types of cancer tumors [125–128].

VEGF interacts with common receptors (VEGFR-1, VEGFR-2, VEGFR-3 and neuropilin-1) 

[129]. They comprise a family of receptor tyrosine kinases (RTKs) showing several 

immunoglobulin-like domains in the extracellular domain, a single transmembrane region 

and a consensus tyrosine sequence that is interrupted by a kinase-insert domain [118–120]. 

VEGF-A also interacts with the neuropilins family of co-receptors.

VEGFR-1 has a very high affinity for VEGF-A [130]. VEGF-A prevents binding to 

VEGFR-2 [118]. VEGFR-1 is able to induce mitogenic and pro-survival signal in some cells 

[131]. VEGFR-1 also has been linked to the induction of angiogenic molecules such as 

matrix metalloproteases (MMPs) and hepatocyte growth factor (HGF) [132,133]. VEGFR-1 

may also participate in hematopoiesis, recruitment of endothelial progenitors, and migration 

of monocytes. Finally, VEGFR-1 can heterodimerize with VEGFR-2, leading to a 

transactivation of this molecule [134].

VEGFR-2 mediates mitogenesis and angiogenesis [118–120]. Upon ligand binding, 

VEGFR-2 dimerizes and autophosphorylates on multiple tyrosine residues. Ligation of 

VEGFR-2 by VEGF results in the phosphorylation of different proteins such as PI-3-kinase, 

RAS GTPase-activating protein, the SRC protein family, and the proteins from the RAF-

MEK-ERK pathway [119,120,135]. VEGFR-2 signaling can promote endothelial cell 

survival, proliferation and angiogenesis. Thus, VEGF and its receptors are considered to be 

key molecules in the neovascularization process and consequent growth of many tumors.

VEGF has been the target for antitumor therapies [136]. A humanized monoclonal antibody 

targeting VEGF (bevacizumab/avastin) has been approved for treatment of different 

colorectal cancer, renal cancer, lung cancer or glioblastoma [137]. Some studies highlight its 

efficacy as part of combinatorial therapies [138–140]. Aflibercept/VEGF-trap can act as a 

decoy receptor for VEGF. This compound has antitumor efficacy [137,141–144]. Finally, 

RTK inhibitors such as sunitinib and sorafenib have activity in gastric cancer, renal cancer, 

pancreatic tumors or hepatic cancer [137,145].
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 2.6 Fibrosis

Tissue fibrosis is commonly observed in the tumor microenvironment associated with rapid 

proliferation of fibroblasts [67]. Fibroblasts also can secrete various cytokines and 

chemokines such as TGF-β, IL-1, IL-6, IL-8, CXCR4, CXCL12, and monocyte-chemotactic 

protein 1 (MCP-1) [146] and platelet-derived growth factor (PDGF), HGF, stromal-cell-

derived factor 1 (SDF1), VEGF, and basic fibroblast growth factor (bFGF) [147].

Cancer associated fibroblasts (CAF) are often linked to more aggressive tumor biology due 

to the secretion of MMPs that enhance the breakdown of the ECM and aid in cancer cells 

escaping into the vasculature and metastasizing to distant sites [148]. MMPs are also 

implicated in inducing epithelial to mesenchymal transition (EMT), a process that triggers 

the de-differentiation of cancer cells of epithelial origin into mesenchymal cells with 

properties of stemness. EMT may be a biomarker of poor prognosis [149]. Fibroblasts can 

be associated with a worse clinical outcome in patients with many types of cancer [150–

152]. Thus, the targeted inhibition of fibroblasts may be useful for treating cancer.

However, some studies suggest a more complex role for fibroblasts in tumorigenesis. 

Targeting the fibroblast activating protein (FAP) did not result in tumor regression but was 

associated with bone marrow toxicity [153]. The targeted deletion of smooth muscle actin 

positive myofibroblasts specifically associated with pre-malignant stages of pancreatic 

carcinomas (pancreatic intraepithelial neoplasia) [154]. This led to a more poorly 

differentiated and aggressive tumor phenotype. Hence, fibroblasts and myofibroblasts appear 

to play a critical role in the formation of the extra-cellular matrix and inducing fibrosis 

within growing tumors.

 2.7 IL-6

IL-6 is an inflammatory cytokine associated with innate immune responses and defense 

against infection, but was more recently found to play a role in the tumor microenvironment. 

Macrophages, monocytes and T cells can produce IL-1α and TNFα [155]. The dysregulation 

of IL-6 is associated with inflammatory diseases, such as rheumatoid arthritis, insulin 

resistance, sepsis and cancer [155,156].

Signaling of IL-6 occurs through the collaboration of a membrane-bound receptor (IL-6Rα/

gp80) and signal transducer glycoprotein (gp130), a receptor for cytokines such as IL-11 and 

IL-27 [155–158]. The expression of surface IL-6Rα is limited mostly to immune cells and 

hepatocytes. However, gp130 is ubiquitously expressed by many cell types, including 

endothelial and tumor cells [157,159–161]. The soluble form of the IL-6R (sIL-6R) is able 

to interact with IL-6 in solution and then contact the cell membrane to induce signaling 

through gp130. Thus, cells lacking membrane-bound IL-6Rα can still be influenced by IL-6 

generated in the microenvironment [157,159–162]. IL-6 activates JAK and the signal 

transducers and activators of transcription (JAK/STAT) activating STAT3 [155,163,164]. 

STAT3 leads to cancer cell survival, proliferation, and metastasis; it also promotes 

angiogenesis and expression of immune suppressive factors in the tumor microenvironment 

[165]. IL-6 can promote growth of breast cancer [166], glioma [167], lymphoma [168], 

multiple myeloma [169], ovarian cancer [170], and prostate cancer [171]. High levels of 
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soluble IL-6 or high levels of IL-6 staining in tumor samples correlate with poor outcome 

[172–181]. Finally, IL-6 can induce the production of VEGF in cancer cells or tumor-

associated cells [182–184]. Thus, IL-6 can promote tumorigenesis through many 

mechanisms.

IL-6 has been therapeutically targeted. Anti-IL6 antibody (siltuximab/CNTO 328) increases 

the cytotoxic effect of chemotherapeutic drugs such as paclitaxel or melphalan [185–187] 

and decreased tumor growth, macrophage infiltration and angiogenesis [185]. Siltuximab 

alone or in combination with cytotoxic drugs has been studied in human patients [188–190]. 

Some effect was observed when used in combinatorial therapies [191,192]. Similarly, a 

humanized anti-IL-6R antibody, tocilizumab, has been shown to inhibit IL-6 signaling in 

cancer cells in preclinical studies [193–195]. This antibody has been used for the treatment 

of inflammation [196] and cachexia [197].

 2.8 Endoglin

Endoglin (CD105) is a homodynamic glycoprotein growth factor co-receptor for TGF-β in 

endothelial tissue that plays a critical role in angiogenesis and vascular remodeling 

[198,199]. Endoglin modulates SMAD phosphorylation and may control cell adhesion and 

migration by regulating the composition of focal adhesion complexes and can regulate 

angiogenesis. Aberrations of its co-receptor function are critical to many cell processes 

implicated in cancer [200]. Inflammation and tumor-associated angiogenesis may result 

from dysregulation of endoglin co-receptor functions [201]. Endoglin expression is observed 

in neo-angiogensis, tumor progression and metastasis [202]. Inhibiting the endoglin pathway 

may be useful for the treatment of cancer [203,204]. The TRC105 antibody has high avidity 

for endoglin-binding and may have activity as a single agent as well as combined 

chemotherapy with bevacizumab [205] and may overcome therapeutic resistance to 

bevacizumab [206].

 2.9 JAK

The JAK family includes the receptor-associated tyrosine kinases JAK1, JAK2, JAK3 and 

Tyk2 that are important regulators of many normal signaling processes that have been 

implicated causally in tumorigenesis [207,208]. The JAK pathway is generally critical to 

normal cellular signaling [209,210]. Among classical examples is the JAK-mediated STAT3 

tyrosine phosphorylation in response to IL-6 family cytokines (including IL-11) signaling 

through GP130 [211].

Mutations in JAK2 and more commonly in JAK2 or SOCS1 have been implicated in 

tumorigenesis [212]. The JAK/STAT3 pathway is constitutively active in the tumor cells 

[213,214] and in tumor associated stromal cells [163,164,184,215,216]. IL-6 – mediated 

JAK/STAT paracrine signaling is commonly observed in cancer [217–219].

JAK signaling is important to tumor-host interactions in the microenvironment. In head and 

neck cancer, IL-6 mediates EMT and increases metastatic potential of transformed cells 

[220]. In Waldenstrom macroglobulinemia, dysregulated CCL5 expression modulates IL-6 

secretion in stromal cells, resulting in increased IgM secretion by malignant cells via the 

JAK/STAT pathway [221]. Pancreatic cancer-associated stellate cells secrete IL-6 and other 
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soluble factors that promote the accumulation of myeloid-derived suppressor cells via the 

JAK/STAT3-dependent mechanism [222]. In lung carcinogenesis, AZD1480 inhibits STAT3 

activation in tumor-associated myeloid cells, reduces cell number, inhibits tumor metastasis, 

and myeloid cell-mediated angiogenesis. AZD1480 blocks angiogenesis, lung infiltration of 

myeloid cells and formation of pulmonary metastases in mouse syngeneic experimental and 

spontaneous metastatic models as well as in human xenografts. STAT3 activation in cancer 

cells is sufficient to overcome the microenvironment-mediated and AZD1480-inhibited lung 

cancer progression [223].

The therapeutic effects of the TLR4 and TLR9 agonist complexes against melanoma 

metastasis are dependent on the simultaneous use of inhibitors of the JAK/STAT pathway 

(such as the AG490 antagonist). Such combined therapy activates the autophagy-associated 

death of melanoma cells via IFN-γ/STAT1 activation and attenuated tumor metastasis [224]. 

In Barrett’s carcinogenesis, the IL-6 blocking antibody and AG490 and JAK inhibitor I 

blocks STAT3 phosphorylation decreasing resistance to apoptosis [225]. The JAK/STAT3-

dependent accumulation of Treg cells in tumors is dependent on an increase in S1PR1 

protein in CD4+ T cells, while the JAK/STAT3 pathway inhibition in T cells diminishes 

accumulation of Treg cells in tumors and tumor growth. The Treg migration toward tumors 

is nearly completely blocked by AZD1480 [226]. The GP130-IL6ST/JAK1 signaling 

generates actomyosin contractility through Rho-kinase dependent signaling in both the 

tumor cells and the stromal cells. Hence, the inhibition of the JAK pathway could be useful 

to modulate tumorigenesis through many mechanisms, including targeting the tumor 

microenvironment.

 3. Approaches

 3.1 Berberine

Berberine (Figure 2) is quaternary ammonium salt from the protoberberine group of 

isoquinoline alkaloids with general anti-neoplastic properites [227,228]. Berberine has a low 

bioavailabiliy with less than 5% of the ingested dose finding its way into the systemic 

circulation [229,230]; in rats the value is considerably lower (0.68%) [231]. In humans, 

doses of 1,000 to 1,500 mg per day have been shown to be effective in regards to berberine’s 

impact on glucidic and lipidic profiles in patients with hypercholesteremia and type 2 

diabetes. The metabolized product of berberine also acts as an original compound but with 

less potency [232,233]. The common form of the urinary excreted product of berberine is 

believed to be jatrorrhizine [234,235].

As a traditional medicine or dietary supplement, berberine has shown activity against fungal, 

Candida albicans, parasitic, and bacterial/viral infections [236]. Its clinical utility has been 

assessed for many diseases and conditions including hyperlipidemia, diabetes, obesity and 

fatty liver disease. Currently there are 17 completed and ongoing registered clinical studies 

regarding berberine (www.clinicaltrials.org).

Berberine’s interactions with a variety of metabolic pathways have been widely investigated. 

Adenosine mono-phosphate kinase (AMPK) is a nutrient sensor protein; berberine activates 

AMPK in a dose and time-dependent manner [237,238]. The data suggests that berberine-
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induced AMPK inhibits complex I of the mitochondrial electron transport chain [239]. This 

effect is also observed with the anti-diabetic drugs metformin and rosiglitazone. In lipid 

metabolism, the lipid-lowering effect of berberine is believed to be related to stabilization of 

the hepatic LDL-C receptor (LDLR) by an ERK-dependent pathway and also by increased 

transcriptional activity of LDLR promoter by a c-Jun N terminal kinase (JNK) [240,241]. In 

3T3L1 cells, berberine has been shown to reduce key adipogenic enzymes in vitro such as 

fatty acid synthase, acetyl-coenzyme A (acetyl-CoA) carboxylase, acyl-CoA synthase, and 

lipoprotein lipase [242]. Furthermore, berberine has been shown to inhibit cholesterol and 

triglyceride synthesis in hepatic cells via activation of AMP kinase [243].

Berberine’s anti-neoplastic effects have been noted [244,245]. Berberine appears to suppress 

inflammation in response to pro-inflammatory stimuli [246]. Berberine at 10–20 mcg/mL 

concentrations, in vitro, has been shown to slightly increase T cell proliferation in response 

to antigens, while concentrations above that level result in dose-dependent 

immunosuppression [247]. The selective inhibition of JAK3 by berberine may also mediate 

immunosuppression [248]. Berberine exerts its anti-tumor effects via various mechanisms 

that include inhibition of cell proliferation, induction of apoptosis, and suppression of 

angiogenesis and tumor metastasis. Berberine’s immunomodulatory effects, via JAK3 

inhibition, might also impact cancer growth [248]. Berberine has been found to enhance the 

cytotoxicity of doxorubicin, which suggests that this agent may have potential as an adjunct 

to some traditional chemotherapeutic agents [249]. The cytotoxic effect of berberine has 

been demonstrated for a wide variety of tumors including lung, breast, prostate, colorectal 

neuroblastoma, lymphoma, osteosarcoma and leukemia [228].

Berberine has a caspase-independent apoptotic effect on the IMCE colon cancer cell line but 

not a normal colonocyte cell line, YAMC [250]. Berberine also induces cytotoxicity via G1-

phase cell cycle arrest and caspase-3-dependent apoptosis in glioblastoma, epidermoid and 

prostate carcinoma cells [251–253]. The apoptotic effect of berberine is associated with 

upregulation of the pro-apoptotic genes Fas, FasL, p53, and Bax [254–256]. Berberine has 

an anti-angiogenic effect related to decreased expression of MMP-1, MMP-2 and MMP-9 

[257–259].

As a quaternary ammonium, berberine’s solubility is low. Berberine use is hampered by its 

low bioavailability which is related to it rapid biotransformation during the lengthy period 

that it remains in the intestine. Various nano-particulate delivery systems have been used to 

increase the absorption of berberine, including the rotary-evaporated film-ultrasonication 

method [260], nanoemulsification with isopropyl myristate/glycerin [261], and lipisomal 

incorporation [262]. Berberine manufactured with the nanoparticulate delivery systems 

demonstrated improved bioavailability and optimization of its anti-inflammatory, anti-

angiogenic [263], and anticancer effects [264]. Berberine has potential as an anti-cancer 

agent [250]. The molecular basis of its neoplastic effects, however, needs to be further 

investigated.

 3.2 Resveratrol

Resveratrol (3,4′,5-trihydroxy-trans-stilbene) is a polyphenolic compound that functionally 

belongs to phytoalexins with anti-ROS activity. Resveratrol is produced through stilbene 
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synthase [265] in response to pathogen infections [266] or stress conditions [267] using 

malonyl- coenzyme A (CoA) and p-coumaroyl CoA as precursors. This compound may have 

potential for cancer prevention and treatment [268].

Resveratrol is naturally occurring in more than 70 plant species including peanuts, 

blueberries, raspberries, mulberries, pine, and grapes [269]. Relatively high levels of 

resveratrol present in fresh grape skin, which explain its high concentrations in red wine and 

grape juice [270]. Different conjugated forms of resveratrol were detected in plants. Trans-

resveratrol exists in glycosylated forms and has cis and trans isomers. Other conjugations, 

including 1–2 methyl groups, sulfate group, and fatty acids, were also observed [270]. 

Glycosylation increases stability, solubility and absorption in human gastrointestinal tract. 

Additionally, it protects resveratrol from oxidative degradation [271].

Resveratrol metabolism in human body includes its conversion to water-soluble trans-
resveratrol-3-O-glucuronide and trans-resveratrol-3-O-sulfate by liver phase-2 drug-

metabolizing enzymes [272]. These metabolic products have a plasma half-life of about 9.2 

h, which is significantly higher than the half- life of resveratrol (8–14 min) [272]. 

Concentrations between 32 nM and 100 μM were used for different in vitro studies, while 

concentrations of 100 ng to 1500 mg/kg (body weight) were used in animal studies [273]. 

Resveratrol and its metabolism products were detected in liver, stomach, kidney, bile and 

urine after a single oral administration of 14C-trans-resveratrol in Balb/c mice [274], 

whereas 24.6% of resveratrol and its metabolites were detected in human urine after oral 

administration [275].

The biological activity is associated only with the trans form, which is a free radical 

scavenger [276]. Normal cellular respiration, environmental stress, and UV radiation are the 

main inducers of ROS production. The imbalance in the ratios between oxidized and 

reduced redox couples like glutathione (GSH/GSSG) or NADPH/NADP+ cause ROS 

accumulation [277]. High levels of ROS react with cellular components including DNA, 

proteins, and lipids leading to cellular and tissue damage [278]. Resveratrol and other 

dietary stilbenes reduce oxidative stress by acting either as a direct scavenger of ROS [279] 

or as an inhibitor of NADPH oxidase expression and xanthine oxidase activity [280]. 

Resveratrol has low toxicity [281]. Various studies report anti-cancer effects [282–284], 

including the suppression of metastasis [285], and induction of proliferative arrest [286].

Normal cells have antioxidant enzymes and molecules that keep ROS under normal 

physiological levels [287]. In cancer cells, oncogenic signals stimulate active cellular 

metabolism, which increase ROS production and cause permanent oxidative stress [288]. 

Additionally, tumor associated mitochondrial malfunction cause massive increases in ROS 

production [289]. Resveratrol inhibits ROS and reduces oxidative stress [290]. It decreases 

intracellular ROS production and oxidative stress by mechanisms involving degradation of 

Keap 1 protein, which is a repressor of Nrf2 [291]. In a rat model of hepatocarcinogenesis, 

resveratrol was found to upregulate hepatic Nrf2 [292]. In another study, the total oxidant 

levels in plasma, liver and brain were decreased and total antioxidant levels in these organs 

were increased in rats treated with resveratrol [293]. Additionally, resveratrol reduced 

oxidative stress and maintained mitochondrial function through its ability to activate sirtuin 
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1 (SIRT1), which has many roles in reducing oxidative stress and promoting mitochondrial 

functions [294]. Moreover, it decreased serum and hepatic oxidative stress in high-fat diets 

[295] and diabetic rats [296]. Resveratrol is a candidate for the treatment and prevention of 

different cancers by the inhibition of ROS.

 3.3 Onionin A

Onionin A is a natural product in Allium vegetables that has recently been identified as a 

potential agent to regulate macrophage activity that could have anti-neoplastic activity. The 

consumption of Allium vegetables is associated with a decreased risk of several cancers. A 

European epidemiological study reported a 55–80% reduction of odds ratios of almost all 

major cancers, including oral, esophageal, laryngeal, colorectal, prostate, breast and ovarian 

cancers, in populations who frequently consumed considerable quantities of onions or garlic 

in their meals [297]. Vegetables including onions, garlic, leaks, chives and scallions belong 

to the Allium family. Previously identified bioactive compounds in onions (Allium cepa) are 

flavonoids and phenols [298]. Flavonoids are the largest family of polyphenolic compounds 

and as such the names “polyphenols” and “flavonoids” may, at times, be used 

interchangeably. These compounds are believed to limit and deter the development of 

cancers from damaged cells via their anti-inflammatory effects. [299–302].

The cytotoxic effects of onion-derived polyphenol extracts have recently been investigated. 

The polyphenol extract from A. cepa can induce caspase dependent apoptosis of human 

gastric cancer cells via a mitochondrial pathway by upregulating p53 and Bax proteins as 

well as by modulating Bcl-2 proteins. Furthermore, onion-derived polyphenol extract 

induced caspase-dependent apoptosis of several human leukemia cell lines in vitro has been 

attributed, at least in part, to inhibition of the PI3K/AKT signaling pathway [303]. The 

antioxidant and antimutagenic properties of onion extract against mutagens are related to 

their polyphenols and flavonoids [304]. The lipid soluble organosulfur compounds present in 

onion extracts inhibit proliferation of cultured human colon, skin and lung tumor cells [305]. 

One possible mechanism for the inhibition of carcinogen activation by onion extract 

derivatives may be inhibition of cytochrome P450 2E1, which is activated by a number of 

xenobiotic substances [306].

Onions are also rich in organosulfur compounds. These phytochemicals, including diallyl 

disulfide, S-allylcysteine and ajoene, protect against chemically induced cancer in animal 

models by altering carcinogen metabolism [307–310]. Recently, onionin A was purified 

[311] and identified as a 3,4-dimethyl-5-(1E-propenyl)-tetrahydrothiophen-2-sulfoxide-S-

oxide. Onionin A may inhibit TAMs [68,312]. The toxic effect of onionin A on IL-10- 

induced activation of M2 macrophage by assessing the expression of the unique M2 marker 

CD163. Onionin A significantly suppressed the expression of CD163 at concentrations of 10 

μM and 30μM. These results suggest that onionin A may suppress tumor cell proliferation. 

This agent may be useful as an anti-cancer agent.

 3.4 EGCG

EGCG inhibits IDO expression in human cancer cells. Consumption of green tea, which is 

produced from the leaves of Camellia sinensis plant, has been associated with lower 
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incidence of human cancer [313]. Green tea contains many polyphenols, in particular 

EGCG, which have been shown to suppress tumor formation and progression in animal 

models [314]. The chemopreventive and therapeutic effects of EGCG are attributed to the 

broad-spectrum anti-cancer abilities of this polyphenol, including inhibition of proliferation, 

inflammation, apoptosis, and angiogenesis [314,315].

EGCG has also been found to inhibit the expression of IDO, which is a key enzyme in 

suppressing T cells and inducing immune tolerance to tumor cells through depletion of 

tryptophan. Many cytokine-dependent and independent signaling pathways are involved in 

IDO expression. Interferon-stimulated IDO activation is, however, mediated by the JAK/

STAT signaling pathway [316]. There is a number of evidence suggesting that EGCG 

interferes with JAK/STAT-regulated IDO activation, resulting in the suppression of IDO and 

IDO-related downstream gene expression in human cancer cells.

EGCG has been shown to suppress IDO expression through inhibiting IFN-γ induced in 

human oral cancer cell lines [317]. The translocation of STAT1 into the nucleus, which 

consequently inhibits the transcriptional activation of IDO, was blocked by EGCG. Chen et 

al. [317] also showed that EGCG significantly suppressed the phosphorylation of protein 

kinase C (PKC-δ) and JAKs, resulting in inhibition of IFN-γ-stimulated STAT1 

phosphorylation. Similarly, another group demonstrated that EGCG blocks IDO expression 

in human colorectal cancer at transcriptional level through inhibition of STAT1 

phosphorylation, which consequently suppressed the activity of STAT1-activated sequence 

elements of the IDO promoter, IFN-stimulated response element (ISRE) and IFN-γ- 

activation sequence (GAS) [318].

EGCG was found to exhibit anti-IDO activities in murine bone marrow-derived dendritic 

cells (BMDCs) [319]. EGCG blocked the binding of phosphorylated STAT1 to INF 

regulatory factor-1 (IRF-1) promoter, in response to IFN-γ stimulation. The expression of 

prostaglandin E2 (PGE2) and cyclooxygenase (COX-2) was also significantly inhibited in 

EGCG-treated murine BMDCs. Over expression of PGE2, a bioactive lipid, and COX-2, the 

key enzyme in prostaglandin biosynthesis, is often associated with immune surveillance and 

cancer [320]. The inhibitory effect of EGCG on COX-2 expression has also been seen in 

other cancer cell lines such as human prostate carcinoma and colon carcinoma [321,322]. In 

an in vivo study, Ogawa et al. [323] demonstrated the effect of EGCG on azoxymethane 

(AOM)-induced preneoplastic lesions in F344 rat through suppression of IDO expression. 

EGCG-treated rats exhibited significantly reduced levels of aberrant crypt foci, which had 

overexpression of IDO. The mRNA expression of COX-2 in AOM-treated rat was also 

inhibited by EGCG treatment [323].

EGCG inhbits the JAK/STAT signaling pathway. Pre-treatment with EGCG lead to 

suppression of STAT1 phosphorylation and IRF-1 expression on different cancer cell lines 

such as mammary carcinoma, cervical carcinoma, and hepatocarcinoma [324,325]. STAT3 is 

associated with constitutive IDO expression in human cancer cells [326]. EGCG inhibits the 

phosphorylation and expression of both JAK3 and STAT3 proteins in pancreatic cancer cells 

[327]. EGCG decreases the levels of phosphorylated-STAT3 proteins stimulated by insulin-

like growth factors (IGFs) in hepatocellular carcinoma cells, possibly through inhibiting the 
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bioavailability of IGFs [328]. EGCG inhibits STAT3 in head and neck cancer [329] and 

breast cancer [330]. The inhibition of the JAK/STAT pathway through EGCG may be useful 

to regulate IDO.

EGCG has anti-cancer properties. The ability of EGCG to act as a multi-targeting agent in 

regulating JAK/STAT signaling and JAK/STAT-mediated IDO is remarkable. The 

combinative efficacy of EGCG with a number of chemotherapeutic drugs such as tamoxifen 

and paclitaxel has shown synergistic effect [331], EGCG is a candidate as a cancer therapy 

by targeting IDO.

 3.5 Genistein

Genistein (4′,5, 7-trihydroxyisoflavone), a polyphenolic isoflavone, is found in soy products 

and appears to modulate cholesterol metabolism. It has low bioavailability due to poor water 

solubility, extensive intestinal first-pass phase II metabolism, and subsequent excretion of 

their conjugated metabolites [332]. Epidemiological studies suggest that intake of soy rich 

diet may lower the incidence of breast and prostate cancer in Asian countries [333,334]. 

Genistein may mediate its anti-cancer effects through nuclear factor (NF)-κB modulation, 

reduction of AKT protein level, downregulation of androgen-mediated carcinogenesis, 

and/or more general antioxidation effects [334,335]. Genistein has potential anti-cancer 

activity against prostate [336,337], ovarian [338], breast [339], lung [340], and pancreatic 

cancer [341].

Elevated HMGR activity, mevalonate, and protein prenylation is associated with 

tumorigenesis [342]. Genistein has been shown to suppress HMGR and preent tumor growth 

[343,344]. Genistein also can increase LDL receptor and decrease HMGR expression in 

colon cancer cells [345]. Genistein has many other effects on lipid metabolism that could 

contribute to its anti-neoplastic properties [346]. However, it is important to note that 

genistein may have pro-proliferative effects in some contexts [347–350].

 3.6 Curcumin

Curcumin (diferuloylmethane), the active ingredient of the turmeric spice from plant 

Curcuma longa, belongs to the group of polyphenolic herbal compounds and has multiple 

beneficial effects including anti-tumorigenic action that appears to be related to VEGF 

inhibition. Powder of turmeric is widely used in Ayureveda, Unani, and Siddha medicine as 

a home remedy for various diseases [351]. In addition to curcumin, turmeric contains minor 

fractions such as demethoxycurcumin, bisdemethoxycurcumin, and the cyclocurcumin 

[352]. Curcumin has been implicated as suppressor of tumor initiation and promotion, 

angiogenesis, and metastasis [353,354].

Curcumin downregulates the expression of VEGF in prostate cancer cells in a dose-and 

time-dependent manner [355]. Osteopontin/integrin avb3 signaling through MMP9 

activation increases VEGF and angiostatin expression in prostate cancer cells and conversely 

curcumin reduces VEGF expression [355], suppresses MMP9 activity in prostate cancer 

cells. The curcumin-derived analogue CDF inhibits VEGF as well as IL-6 and cancer stem 

cell signature genes Nanog, Oct4, and EZH2 in vitro and in vivo [356]. Similarly, CDF 

reduced VEGF and IL-6 expression in prostate cancer cells [357]. Curcumin inhibited 
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migration and invasion of human lung cancer cells through inhibition of MMP-2 and 

MMP-9 and suppression of VEGF expression [358]. Long-term exposure to curcumin was 

investigated in the liver of lymphoma-bearing mice. Curcumin treatment induced activation 

stress activated genes HIF-1a, MYC, and LDH activity to normal levels. Furthermore, it led 

to inhibition of angiogenesis as evidenced by reduced MMP-2, MMP-9, PKC-a and VEGF 

levels [359].

Similar to IL-6, IL-1 signaling is crucial to inflammatory and malignancy processes. IL-1 

induced IkB alpha phosphorylation and inhibition of downstream NF-κB, which leads to 

expression of several genes that are associated with cell proliferation, invasion and 

angiogenesis [360]. Curcumin treatment blocked IL-1 and VEGF expression in 

chondrosarcoma cells. Further, curcumin inhibited IL-1 beta-induced angiogenesis and NF-

κB-related gene expression [361]. Curcumin is one of the main constituents of turmeric 

spice, which has been used for centuries. A phase 1 human trial with 25 subjects using up to 

8000 mg of curcumin per day for 3 months found no toxicity, and overall it has been 

considered to be safe in six human trials [362]. Curcumin has extremely low systemic 

bioavailability, owing to its low aqueous solubility and poor stability.

 3.7 Naringenin

Naringenin has good prospects as an ideal therapeutic agent vis-à-vis an influence on 

metastasis and specific effect on fibrosis [363]. Naringenin significantly reduces lung 

metastases in mice (C57BL/6 and BALB/c) with pulmonary fibrosis and increases their 

survival by improving the fibrotic-immunosuppressive environment and reducing regulatory 

T cells [364]. In HSC-T6 cells, naringenin exerts antifibrogenic effects by directly or 

indirectly downregulating Smad3 protein expression and phosphorylation through TGF-beta 

signaling [365] and the downregulation of vimentin, N-cadherin, MMP2 and MMP9 [366]. 

Naringenin inhibits the viral assembly and long-term production of infectious hepatitis C 

particles [367]. It possesses agonistic [368] and antagonistic activities towards estrogen 

[369]. This also might its protective value against the food contaminant bisphenol A [370]. 

Hence, naringenin exerts inhibitory effects on cancer cell growth, migration and invasion, 

and also possess chemopreventive property.

Naringenin has low bioavailability (2.8% of intake) due to high excretion and low Cmax in 

plasma. The principal metabolites, naringenin-7-O-glucuronide and naringenin-4′-O-

glucuronide peaks at 6h after intake [371]. The distribution of metabolites also varies due to 

binding of metabolites to human serum albumin [372]. The binding modulates the half-life 

in plasma and tissue distribution. A NRG glucuronide have same affinity for human serum 

albumin as naringenin. Efforts are in way to increase the bioavailability through various 

techniques like combining NRG with β-cyclodextrin through solid dispersion and self nano 

emulsifying drug (SNEDDS) technique [373]. The mixture and nanoparticles enhanced a 

significant increase in NRG absorption compared to NRG alone. Area under the drug 

concentration time curve (AUC) 0–24h was significantly higher for SNEDDS as compared 

with pure drugs. Even NRG-loaded nanoparticles showed enhanced anti-lipid peroxidative 

antiproliferative effect and antioxidant potentials owing to increased chemo-preventive 

efficacy compared to free naringenin in 7, 12-dimethylbenz(a)anthracene (DMBA)-induced 
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oral carcinogenesis [374]. Naringenin flavonoids present in GJF demonstrate multiple 

interactions with drugs leading to loss of the therapeutic effects or increased side effects 

through a competitive or mechanism based inhibition of gut wall CYP3A4 isoenzyme, P-

glycoprotein multi-drug resistance protein, and organic anion transporting polypeptide 

inhibition. Its safety has also been evaluated through in vitro and in vivo studies [375,376].

 3.8 Desoxyrhapontigenin

Desoxyrhapontigenin (3,5-dihydroxy-4′-O-methylresveratrol) is an antioxidant [377]. 

Desoxyrhapontigenin may be useful in the modulation of the tumor microenvironment. It 

inhibits cytochrome P450 enzymes [378,379], inflammation, ROS, and associated pathways 

[380–385].

Desoxyrhapontigenin affects ROS and inflammation. This occurs through increased 

expression of antioxidant enzymes [383] and the inhibition of NF-κB and AP-1, reduced 

production of COX-2, TNF-α, and IL-6, and reduced inflammation in a carrageenan-induced 

animal inflammation model [385]. Desoxyrhapontigenin is produced by plants [386] and its 

cyototoxic and anti-proliferative effects are dose-dependent [387–390]. Thus, 

desoxyrhapontigenin may be useful as a therapeutic agent for cance through its effects on 

ROS and inflammation.

 3.9 Piperine

Piperine (1-piperoyl piperidine) is the principal alkaloid in black (Piper nigrum) and long 

peppers (Piper longum) and has potentially multiple anti-cancer activities. It is widely used 

both as a spice in food as well as in traditional medicine [391].

Piperine has low toxicity [392]. Additionally, the in vitro absorption rate of piperine is 

relatively high compared with other natural products like curcumin without any metabolic 

modification of piperine during the absorption process [393]. Piperine is widely used as a 

bioavailability enhancer for a diverse group of therapeutic agents including the antimicrobial 

agent rifampicin [394], nevirapine which is a potent inhibitor of human immunodeficiency 

virus (HIV)-1 reverse transcriptase [395] and curcumin which has anticancer properties 

[396]. Piperine has various biological effects including antioxidant activity [397] anti-

inflammatory effect by inhibiting PMA-induced COX-2 [398].

Piperine has significant anti-cancer effects [399]. Different mechanisms have been 

suggested, including apoptosis and suppression of metastasis [400], inhibition of 

angiogenesis [401], and blocked invasion by downregulation of MMPs [402,403]. Piperine 

exerts chemopreventive activity against some carcinogens including benzo(a)pyrene-induced 

lung carcinogenesis [404] and DMBA- induced skin carcinogenesis [405]. Piperine, with its 

low toxicity and potent anti-angiogenic activity, may be considered as a possible therapeutic 

agent in cancer prevention and treatment.

 3.10 Zerumbone

Zerumbone, a sesquiterpene, exerts its anticancer effect through modulation of the JAK/

STAT pathway. In renal cell carcinoma cell lines and xenograft mouse model, zerumbone 
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dose- and time-dependently, inhibits the activity of STAT-3 through suppressing its upstream 

kinases c-SRC, JAK-1 and JAK-2. Pervanadate, a protein tyrosine phosphatase (PTP) 

inhibitor treatment reversed the zerumbone -induced downregulation of STAT3, suggesting 

the involvement of a PTP. SHP-1 tyrosine phosphatase interacts with STAT3 and is induced 

by zerumbone. Upon knockdown of SHP-1 by siRNA, the ability of zerumbone to inhibit 

STAT3 activation-mediated apoptosis was suppressed, suggesting the involvement of SHP-1 

in its action. Zerumbone not only suppresses STAT3 but also reduces the expression of 

downstream STAT3-regulated gene products that are involved in proliferation, survival, and 

angiogenesis [406]. Hence, zerumbone blocks STAT3 activation, leading to suppression of 

growth and sensitization of cancer cells.

Zerumbone is an inhibitor of constitutive JAK/STAT as well as IL-6 stimulated pathways, 

thereby blocking the activity of IL-6 in pancreatic carcinoma [407]. A synergistic effect of 

zerumbone with paclitaxel in prostate cancer cells is mediated through active JAK-2/STAT-3 

pathway [407,408]. Zerumbone with cisplatin showed a synergistic anticancer effect on 

cervical intraepithelial neoplasia in female BALB/c mice through serum IL-6 [409]. In some 

cases, inhibition of JAK -2/STAT-3- mediated signaling pathways induced cytotoxicity 

through PARP cleavage in a human prostate cancer cell line (DU 145) [407]. However, other 

apoptotic mechanisms have also been reported through induction of G2/M arrest and 

decreased cyclinB1/CDK1 protein level in HL-60 cells [410]. G2/M arrest and Fas- and 

mitochondria mediated-apoptosis have been observed in T-acute lymphoblastic leukemia 

cells [411] and leukemia cells [412], and Bax- and Bak- mediated apoptosis has been 

observed in human breast cancer cells and othotopic xenografts [413]. It may modulate the 

Bax/Bcl-2 ratio in liver cancer cells independent of functional p53 [414], TRAIL-induced 

death receptor in human colon cancer [415], and Gli-1/Bcl-2 pathway mediated apoptosis in 

human renal carcinoma [416].

Zerumbone inhibited CXC chemokine receptor-4 expression with subsequent inhibition of 

CXCL-12 induced invasion of breast and pancreatic tumor cells [417] and human tongue 

squamous cell carcinoma [417]. Zerumbone inhibited IL-6 and induces apoptosis in ovarian 

and cervical cancer cells [418]. It also decreased the levels of nitrite and prostaglandin (E2) 

with unchanged COX-1 expression in LPA and gamma irradiated increased NO synthase and 

COX-2 as well as release of TNF-α in RAW 264.7 mouse macrophages [419–421]. 

Zerumbone suppressed TPA-induced activation of EBV, LOX-1 mRNA expression [422], 

O2- anion generation through NADPH oxidase in DMSO differentiated human 

promyelocytic leukemia (HL-60) cells and through xanthine oxidase in AS52 Chinese 

hamster ovary cells [423]

The safety of zerumbone has been demonstrated in normal human cells [424]. On oral 

ingestion of zerumbone (20/40 mg/kg/day) for 8 weeks reduced hyperglycemia induced p38 

mediated inflammatory response (infiltration of macrophages and increased levels of IL-1, 

-6 and TNF-α) and also reduced expression of intercellular adhesion molecule-1, MCP-1, 

TGF-β1 and fibronectin in nephropathic rats. The proven in vitro and in vivo 
pharmacological efficacy of zerumbone provides a base to elucidate anticancer bioactivity. 

However to increase the bioavalability, zerumbone-loaded nanostructured lipid carriers have 

also been prepared and characterized for their antileukemic effect [410].
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 4. Discussion: Evaluating targets and approaches

We have identified 10 potential approaches to inhibit 10 identified targets to treat and 

prevent cancer by targeting specific aspects of the tumor microenvironment (Figures 1 and 2, 

Tables 1 and 2). Our list is not exhaustive but more illustrative. Several themes have 

emerged.

First, the consideration of the tumor microenvironment as a target for cancer prevention and 

treatment provides a unique perspective on both tumorigenesis and therapy of cancer. The 

majority of existing therapies have focused on the effect on the incipient cancer cell. 

However, the inhibition of biological programs that are associated with the tumor 

microenvironment may be critical to the prevention and treatment of cancer.

Second, there are many existing natural products that have been reported to have potential 

anti-neoplastic and/or tumor prevention properties. In many cases, these agents appear to 

have discrete and readily measurable effects on the host tumor microenvironment. However, 

it will be important to define the bioavailability as well as the kinetics of elimination of these 

compounds when used alone or in combination [425].

Third, the influence of agents that target the microenvironment requires the development of 

unique assays. Most targeted therapies can be evaluated through the examination of the 

expression and/or activity of the molecule that is being targeted. The consideration of the 

tumor microenvironment requires measurement of cellular, humoral, and cytokine mediated 

programs and this requires in situ analysis. For many clinical studies, this is a problem since 

it is not possible to obtain suitable clinical material for this evaluation. Hence, the 

development of therapies that target the microenvironment requires novel approaches to 

make these measurements either through more sensitive techniques that do not require direct 

examination of tumor material or through measurements in more easily obtained materials 

such as blood serum.

Fourth, the tumor microenvironment and incipient neoplastic cells coevolve temporally 

during tumorigenesis. Hence, in targeting the microenvironment, one must recognize that it 

is critical to consider when to introduce the therapeutic and to evaluate its efficacy at the 

right time. Thus, an agent that alters immune activation may be critical in preventing 

tumorigenesis. Hence, it would require examination of effects very early during tumor 

initiation as opposed to in a preclinical model or patient with an advanced cancer.

Fifth, the evaluation of agents that target the tumor microenvironment must be considered in 

the context of existing therapeutic approaches for tumor prevention. Thus, for many cancers 

there are accepted approaches for treating a primary or metastatic tumor, or for reducing the 

chance of early cancer lesions for progressing to more advanced cancers. Any considerations 

of the targets or approaches we suggest have to consider the current standard of care.

Sixth, the measurement of changes in the tumor microenvironment may be important 

endpoints for evaluating the preclinical and clinical efficacy of thereapeutics. Examining 

how individually or alone specific approaches are able to influence specific targets could 

provide intermediate measurements suggestive of therapeutic efficacy.
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Finally, we realized that a broad multi-discplinary approach was important for identifying 

both approaches and targets. The tumor microenvironment by its nature occurs in different 

biological programs across multiple scales (molecule, cell, organ, host) over a long time 

period. Investigators with skills across many disciplines are required to consider this 

complexity.
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Figure 1. Targets and approaches identified that could modulate the tumor microenvironment to 
prevent or treat cancer
Key therapeutic targets identified include the inhibition of cholesterol synthesis and 

metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, 

IDO regulation of DCs, VEGF regulation of angiogenesis, fibrosis inhibition, endoglin, and 

JAK signaling. Potential therapeutic targets that have been identified and cross-validated, 

include many natural products including berberine, resveratrol, onionin A, EGCG, genistein, 

curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone. These may warrant 

investigation as agents alone or in combination that target the tumor microenvironment for 

the treatment and prevention of cancer, although the specific target-approach combination as 

presented is not unique and other possibilities do exist.
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Figure 2. The structures of natural products identified that may target the tumor 
microenvironment for the treatment or prevention of cancer
Molecules shown include berberine, resveratrol, onionin A, EGCG, genistein, curcumin, 

naringenin, desoxyrhapontigenin, piperine, and zerumbone.
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