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Novel genetic causes for cerebral visual impairment

Daniëlle GM Bosch1,2,3,4, F Nienke Boonstra2,4, Nicole de Leeuw1, Rolph Pfundt1, Willy M Nillesen1,
Joep de Ligt1,3,5, Christian Gilissen1,3, Shalini Jhangiani6, James R Lupski6,7,8,9, Frans PM Cremers1,3

and Bert BA de Vries*,1,4

Cerebral visual impairment (CVI) is a major cause of low vision in children due to impairment in projection and/or interpretation

of the visual input in the brain. Although acquired causes for CVI are well known, genetic causes underlying CVI are largely

unidentified. DNAs of 25 patients with CVI and intellectual disability, but without acquired (eg, perinatal) damage, were

investigated by whole-exome sequencing. The data were analyzed for de novo, autosomal-recessive, and X-linked variants, and

subsequently classified into known, candidate, or unlikely to be associated with CVI. This classification was based on the Online

Mendelian Inheritance in Man database, literature reports, variant characteristics, and functional relevance of the gene. After

classification, variants in four genes known to be associated with CVI (AHDC1, NGLY1, NR2F1, PGAP1) in 5 patients (20%)

were identified, establishing a conclusive genetic diagnosis for CVI. In addition, in 11 patients (44%) with CVI, variants in one

or more candidate genes were identified (ACP6, AMOT, ARHGEF10L, ATP6V1A, DCAF6, DLG4, GABRB2, GRIN1, GRIN2B,
KCNQ3, KCTD19, RERE, SLC1A1, SLC25A16, SLC35A2, SOX5, UFSP2, UHMK1, ZFP30). Our findings show that diverse

genetic causes underlie CVI, some of which will provide insight into the biology underlying this disease process.
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INTRODUCTION

Cerebral visual impairment (CVI) is one of the major causes of visual
impairment in Western countries, as it accounts for 27% of low vision
in childhood.1 CVI is a collective term of visual disorders, resulting
from damage or malfunctioning of cerebral parts of the visual system,
such as the optic tracts, optic radiations, and the visual cortex. It is
diagnosed when no ocular abnormality can explain the impairment in
vision, which can consist of a reduced visual acuity and/or visual field
defects.2 In addition, abnormal visual behavior, such as staring into
light or delayed fixation, can be present. Deficits in higher perceptual
functions, for example, difficulties with recognition of objects and
faces, or visio-spatial disorders can occur and are sometimes the only
features of CVI.3–5 CVI can occur in isolation, but more often
additional features are present, such as intellectual disability (ID),
epilepsy and/or deafness.6–8 An important cause of CVI is acquired
damage to the brain, mainly the result of perinatal problems
(eg, cerebral hemorrhage or periventricular leukomalacia), but also
other types of acquired damage, such as congenital infection,
hypoglycemia, meningitis, or head trauma, can be causal.2 Further-
more, West syndrome and hydrocephalus can result in CVI.9,10 So far,
less attention has been paid to genetic causes of CVI, although
associations with several neurodegenerative causes and chromosomal
aberrations have been described.11 Recently, we reported in 7% of CVI
patients associations with copy number variants, among others
trisomy 21, 1p36 deletion, and 22q13.3 deletion (Phelan–McDermid
syndrome).12 Moreover, CVI was recently shown to be caused by
de novo variants in NR2F1, leading to the Bosch–Boonstra–Schaaf

optic atrophy syndrome (#615722, http://www.NR2F1gene.com).13

In other neurological disorders, such as ID, epileptic encephalopathies,
or autism, a high rate of (probably) disease-causing de novo variants
were identified by whole-exome sequencing (WES) by using a child–
parents trio approach.14–20 In addition, WES has also shown to be a
powerful tool for identifying autosomal-recessive and X-linked var-
iants in persons with ID.19–24 Here we used WES to identify
underlying genetic causes for CVI.

SUBJECTS AND METHODS
Twenty-five patients with CVI and a visual acuity ≤ 0.3 were included, and

WES was performed in the patients and their parents (detailed methods are

presented in the Supplementary Methods). After performing quality filtering,

the common variants (41%) were excluded, and the data were analyzed for

variants following a de novo, X-linked, and autosomal-recessive inheritance

pattern. Truncating variants and variants predicted to affect function were

validated by Sanger sequencing. The genes in which the variants were identified

were further classified partly based on the method reported by de Ligt et al15

and Gilissen et al.25 (Figure 1). A second, more stringent filtering was used for

the de novo and X-linked variants (frequency ≤ 0.1% in controls) and

truncating variants (frequency of truncating variants in controls across the

whole gene ≤ 0.1 or ≤ 1.0% (autosomal-recessive) in controls). This study was

approved by the Ethics Committee of the Radboud University Medical Center

(Commissie Mensgebonden Onderzoek, regio Arnhem-Nijmegen), and written

informed consent was obtained for all enrolled subjects. Three patients (12, 13,

and 23) were part of previous reports.13,26 The variants identified have been

submitted to the Leiden Open Variation Databases (LOVDs) (http://databases.

lovd.nl/, patient IDs #00025011 and #00039389–#000394012).
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RESULTS

The clinical characteristics of the 25 patients analyzed were as
described in Table 1 and in more detail per patient in
Supplementary Table S1. The mean age was 12 years (range 1–33
years) and one patient had a visual acuity o0.05, which is defined as
blindness by the WHO (http://apps.who.int/classifications/icd10/
browse/2015/en). In addition to CVI, all patients had ID, ranging
from mild to severe. In all patients, WES was performed by trio
approach with an average read depth of 120× (Illumina Hiseq 2000,
Illumina, San Diego, CA, USA), 115× (Illumina HiSeq, Illumina), or
72× (Solid 5500XL, Life Technologies, Carlsbad, CA, USA). A de novo
ratio could not be established, because only protein truncating variants
and missense variants predicted to affect function were validated. After
prioritization and validation of the identified variants in a patient and
its parents, further segregation analysis for the autosomal-recessive and
X-linked variants was performed in the families for whom this was
possible. The variants in one autosomal-recessive gene, ITPRIPL1, and
five variants in X-linked genes, CACNA1F, CNGA2, FLNA, PCDH11X,
and ZMAT1, could be discarded because of their presence in healthy
(male) family members (Supplementary Table S2).
In total, 52 variants fulfilling the prioritization criteria in 45 genes

were identified: 28 de novo variants in 27 genes, 19 autosomal-recessive
variants in 13 genes, and 5 X-linked recessive variants in 5 genes
(Supplementary Tables S3 and S4). Two of the de novo variants were,
based on the exome data and Sanger sequencing results, probably
mosaic variants: one stop variant in PPFIA4 and one missense variant
in SLC1A1. In addition, five de novo frameshift variants were identified
in AHDC1, AKAP9, DLG4, RAB11FIP1, and TRIOBP, one de novo
variant in AMOT with a possible splice effect and 20 de novo missense
variants. The autosomal-recessive variants consisted of 7 homozygous
and 12 compound heterozygous variants of several variant types. The
X-linked recessive variants consisted of four missense and one variant

in the translation-initiating Methionine. The latter variant was
identified in ALAS2, and other transcripts of this gene have alternate
start codons (Biosoftware Alamut, version 2.3 rev2, Interactive
Biosoftware, Rouen, France).
All 45 genes were classified, but 11 genes (AKAP9, ALAS2,

FAM166B, KAL1, MAP3K15, MUT, POF1B, PPFIA4, SLC6A13,
SPTBN5, and TRIOBP), which were excluded based on the more
stringent criteria (Supplementary Table S4), are not further discussed.
Of the remaining 34 genes, 14 have previously been indicated in
OMIM diseases (Figure 1).
For seven genes, the phenotype of the patients was in line with the

reported phenotype: CVI was reported previously in four genes,
AHDC1, NGLY1, NR2F1, and PGAP1, whereas the other three genes
were classified as candidate genes for CVI, GRIN2B, KCNQ3, and
SLC35A2.13,27–29

For five genes, HSPG2, PHKB, SRP72, SYNE1, and TENM3, the
reported phenotype in literature was not in line with the phenotype of
the patient, and those variants were classified as unlikely to be
causative for CVI in those patients (#224410, #255800, #261750,
#614675, #612998, #610743, #615145). In APOPT1, the phenotype
was also not in line with the reported phenotype (#220110). Moreover,
we identified a de novo heterozygous variant in this gene, whereas the
related OMIM disease has an autosomal-recessive inheritance pattern
and no second variant could be identified in the raw exome data. For
another OMIM disease gene, GRIN1 (#614254), de novo heterozygous
variants in this gene have been reported to cause ID; however, we
identified a homozygous variant. Therefore, this variant was further
classified according to the method by de Ligt et al15 and Gilissen et al25

as a candidate gene for CVI. This method was also used for the non-
OMIM disease-related genes (n= 20) and consisted of the assessment
of the variant characteristics (PhyloP/truncating variant) in combina-
tion with the functional relevance of the gene (GO-terms, MP-terms,

Figure 1 Flow chart of gene classification. *Inheritance does not fit with the reported OMIM disease (autosomal-recessive instead of the reported de novo
autosomal dominant). However, this variant is further classified according to de Ligt et al15 and Gilissen et al25; see Results section. †Frameshift, nonsense
or splice site variant.
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and brain expression), leading to a classification of 15 candidate genes
for CVI and 5 genes as unlikely to be related with CVI (Figure 1).
In total, 4 known CVI-associated genes, 19 candidate CVI genes,

and 11 genes unlikely to be related to CVI were identified (Table 2 and
Supplementary Table S3), and in five of the 25 patients (20%), a
genetic diagnosis for the CVI could be established. In another 11
patients (44%), one or more candidate genes for CVI could be
identified. Photographs of the patients in whom variants in known or
candidate genes were identified are shown in Figure 2 and their clinical
features are summarized in Table 1 and Supplementary Table S1.
Pictures of patients 12, 13, and 23 have previously been published.13,26

DISCUSSION

WES was performed in 25 patients with CVI and a visual acuity of
≤ 0.3, without acquired risk factors for CVI nor pathogenic copy
number variants. We identified variants in four known CVI-associated
genes, namely AHDC1, NGLY1, NR2F1, and PGAP1, and 19 candidate
genes for CVI. In some patients, multiple variants in more than one
gene were found. In addition, de novo variants in NR2F1 were
identified in two patients (13 and 23). The identification of variants
in known CVI-associated genes strengthened our hypothesis that WES
is the right approach to identify the underlying genetic causes in
patients with CVI. Moreover, several identified candidate genes have a
functional link with genes known to be associated with CVI.
Three genes, in which variants were identified, have been implicated

in glycosylation: NGLY1, SLC35A2, and PGAP1. Previously, CVI has
been reported as part of congenital disorders of glycosylation (CDG)
type 1a (PMM2), type 1q (SRD5A3), and type 1v (NGLY1).8,28,30,31

The phenotype of patient 2 with NGLY1 variants is similar to the
previously reported patients, including the microcephaly, hypotonia,

Table 1 Cohort characteristics

Characteristic Number of patients

Gender
Male 17

Female 8

Age group
o4 years 4

4–10 years 9

11–20 years 6

420 years 6

Visual acuity
≤0.3 and ≥0.05 24

o0.05 1

Fixation abnormalities
Yes 13

No 12

Visual field defects
Yes 17

No 8

Developmental delay and/or intellectual disability
Yes 25

No 0

Able to walk independently
Yes 15

No 10

Speak words
Yes 12

No 13

Microcephaly (o3rd centile)
Yes 4

No 20

Unknown 1

Macrocephaly (497th centile)
Yes 3

No 21

Unknown 1

Abnormality on brain MRI
Yes 14

No 8

Not assessed 3

Epilepsy
Yes 9

No 16

Hearing loss
Yes 1

No 23

Unknown 1

Table 2 Identified known and candidate genes for CVI per patient

Patient Dominant de novo Autosomal recessive

1 DLG4
2 NGLY1a

3

4

5

6 SLC35A2
7 AHDC1a

8 GABRB2, ARHGEF10L
9 AMOT
10 UHMK1
11 SLC25A16 GRIN1, DCAF6
12 PGAP1a

13 NR2F1a

14

15

16

17 SOX5, KCTD19
18

19 GRIN2B, ZFP30
20 ATP6V1A, UFSP2
21

22 RERE, SLC1A1b

23 NR2F1a ACP6
24 KCNQ3
25

aIdentified known CVI-associated gene.
bProbably mosaic mutation.
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movement disorder, and alacrima.28,32,33 Variants in SLC35A2 lead to
CDG type 2m, featured by ID, epilepsy, facial dysmorphisms, and
transient abnormalities in transferin testing.34–36 In the seven reported
patients with CDG type 2m, CVI has not been mentioned, but other
features, including the facial dysmorphism, epilepsy and severe ID
were present in patient 6. The third glycosylation gene in which a
variant was identified, PGAP1 (patient 12, reported elsewhere), is
important in the GPI-anchor synthesis pathway.26 Several other genes,
PIGA, PIGN, and PIGT, implicated in this pathway are known to be
implicated in CVI and ID as well,29,37–40 and recently, also PGAP1
variants were found to be associated with CVI and ID.29,41

RERE is another gene with a functional link with a gene known to
be aberrant in CVI. A de novo variant in this arginine-glutamic acid
repeats-encoding gene was identified in patient 22. RERE binds
directly to NR2F1, which has recently been identified to be aberrant
in Bosch–Boonstra–Schaaf optic atrophy syndrome, of which one of
the features is CVI.13,42 In addition, RERE null mice show severe
central nervous system abnormalities and defects of the optic
vesicles.43 Furthermore, RERE forms a complex with NR2F2 and
EP300 and positively regulates retinoic acid signaling in mice.44

Retinoic acid signaling induces optic vesicle and brain development
and Nr2f1 and Nr2f2 transcription in mice stem cells.45 These findings
indicate that RERE is a likely candidate gene for CVI (http://www.
REREgene.com).
Several other candidate genes, GRIN2B, GRIN1, KCNQ3, GABRB2,

and SOX5, have been implicated in neurological diseases other than
CVI. In GRIN2B, a de novo missense variant was identified in patient
19. Variants in GRIN2B have previously been found in individuals
with ID.46 GRIN2B encodes the subunit NR2B of the NMDA receptor,
which is present during development. In the first decade, during the
critical period of developing cerebral visual cortex, NR2B is replaced
by NR2A, encoded by GRIN2A.47 For GRIN2A, one 4-year-old girl has
been reported with low vision.48 So it might be expected that variants
in GRIN2B can lead to a disturbed development and subsequently
CVI. So far, 18 patients with GRIN2B variants have been
reported.17,18,46,49–52 In two patients with West syndrome, poor eye
contact was reported,50 whereas in the other patients no assessment
for CVI or visual acuity measurement was mentioned.
In patient 11, a homozygous missense variant in GRIN1 was

identified. GRIN1 encodes for NR1, which, together with NR2B or

Figure 2 Photographs of the patients in whom known or candidate genes for CVI were identified, except for patient 11 (consent to publish could not be
obtained).
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NR2A, forms the NMDA receptor. NR1 is an essential subunit for the
NMDA receptor, and full Nr1 knockout mice are not viable.53 So far,
only four patients with de novo heterozygous variants in GRIN1 have
been reported with ID with or without epilepsy.18,54,55 Those variants
are located in or nearby the transmembrane domains,54 in contrast to
the homozygous variant identified in patient 11, which is situated in
the extracellular ligand-binding domain of GRIN1 (http://www.ebi.ac.
uk/interpro).56 Whether the here identified variant might be con-
sidered as a hypomorphic variant, giving rise to an autosomal-recessive
disorder, awaits functional proof.
In patient 24, with ID and absence seizures, a de novo missense

variant in KNCQ3 was identified. The same variant was previously
reported in a patient with severe ID and multifocal abnormalities on
EEG.16 KNCQ3 encodes a potassium channel subunit and has been
implicated in benign epileptic seizures. Several families have been
reported with seizures that resolve before the age of 6 years without
CVI or ID.57–65 However, recently two additional families with
seizures and variants in KCNQ3 have been reported in which family
members had various IQ levels from severe ID to normal.66,67

Therefore, the phenotypic spectrum of KCNQ3 variants appeared to
be broader than benign epilepsy only and might well include CVI.
A de novo GABRB2 variant in the transmembrane domain was

identified in patient 8. In addition to CVI and ID, by EEG he had
continuous spike and wave during slow wave sleep epilepsy, a severe
epileptic encephalopathy, from the age of 6 years. One de novo
GABRB2 variant, in the N-terminal extracellular domain implicated in
GABA-binding, has been reported in a patient with ID and febrile
seizures, tonic clonic convulsions, and partial seizures.68 Variants in
other genes encoding GABA type A-receptor subunits have been
identified in different epilepsy syndromes, making GABRB2 a likely
explanation for the phenotype in our patient.
Finally, in patient 17 a de novo missense variant in SOX5 was

identified, located in the HMG-domain, which is important for DNA
and protein binding. Intragenic deletions in SOX5 have been reported
as a cause for ID.69–71 In one patient, optic nerve hypoplasia was
reported, which is in agreement with the slightly pale optic discs in our
patient. However, several intragenic deletions are reported in healthy
individuals in the Database of Genomic Variants (http://dgv.tcag.ca/
dgv/app/home).72 Without functional assays, it is difficult to ascertain
whether the here identified missense variant leads to loss or gain of
function.
In literature, several genes, for example, PAX6 and SOX2, are

reported to influence the structural development of eye and brain.73

These genes may affect other parts of the visual system as well.
However, whether aberrant genes lead to a vision disorder exclusively
owing to structural eye defects, or whether an additional cerebral
component is present, is difficult to distinguish. In the here presented
patients without structural eye abnormalities, no rare variants have
been identified in these genes.
In total, in 5 out of the 25 patients (20%) a genetic diagnosis for the

CVI could be established. The proportion of genetically solved cases is
lower than previously reported for ID, but this is probably due to the
fact that only a few CVI genes are yet known.15,16,19,20 In another 11
patients (44%), variants in one or more candidate genes for CVI could
be identified with several showing a functional link with known genes
for CVI. In addition, several candidate genes have been implicated in a
neurological disorder, such as ID and epilepsy. In those reported
patients, ophthalmological investigation has not always been per-
formed or mentioned, and especially in patients with ID CVI can
easily remain unnoticed.74 In addition, for some disorders only few
patients have been reported, and the full clinical spectrum and its

variability is probably not yet clear. Nevertheless, for the identified
candidate genes reported here it is of importance to find more patients
with CVI and a variant in the same gene to establish a causal
relationship. In combination with additional functional studies, this
will increase our insight into the development of the visual system. So
far, CVI has been mainly investigated in the light of acquired brain
damage. Previously, we associated several chromosomal aberrations
and NR2F1 with CVI.12,13 Here we show the importance of mono-
genetic disorders in the pathogenesis of CVI and the necessity to test
for genetic defects using genome-wide diagnostic tools.
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