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Abstract

When developing a causal probabilistic model, i.e. a Bayesian network (BN), it is common to 

incorporate expert knowledge of factors that are important for decision analysis but where 

historical data are unavailable or difficult to obtain. This paper focuses on the problem whereby 

the distribution of some continuous variable in a BN is known from data, but where we wish to 

explicitly model the impact of some additional expert variable (for which there is expert judgment 

but no data). Because the statistical outcomes are already influenced by the causes an expert might 

identify as variables missing from the dataset, the incentive here is to add the expert factor to the 

model in such a way that the distribution of the data variable is preserved when the expert factor 

remains unobserved. We provide a method for eliciting expert judgment that ensures the expected 
values of a data variable are preserved under all the known conditions. We show that it is generally 

neither possible, nor realistic, to preserve the variance of the data variable, but we provide a 

method towards determining the accuracy of expertise in terms of the extent to which the 

variability of the revised empirical distribution is minimised. We also describe how to incorporate 

the assessment of extremely rare or previously unobserved events.
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1 Introduction and Motivation

Causal probabilistic networks, also known as Bayesian networks (BNs), are a well 

established graphical formalism for encoding conditional probabilistic relationships among 

uncertain variables. The nodes of a BN represent variables and the arcs represent causal or 

influential relationships between them. BNs are based on sound foundations of causality and 

probability theory; namely Bayesian probability (Pearl, 2009).

It has been argued that developing an effective BN requires a combination of expert 

knowledge and data (Fenton & Neil, 2012). Yet, rather than combining both sources of 

information, in practice many BN models have been ‘learnt’ purely from data, while others 

have been built solely on expert knowledge. Apart from lack of data, one possible 

explanation for this phenomenon is that in order to be able to combine knowledge with data 

researchers typically require a strong background in both data mining and expert systems, as 

well as to have access to, and time for, the actual domain expert elicitation.

Irrespective of the method used, building a BN involves the following two main steps:

1. Determining the structure of the network: Many of the real-world 

application models that have been constructed solely based on expert 

elicitation are in areas where humans have a good understanding of the 

underlying causal factors. These include medicine, project management, 

sports, forensics, marketing and investment decision making (Heckerman 

et al., 1992a; 1992b; Andreassen et al., 1999; Lucas et al., 2000; van der 

Gaag, 2002; Fenton & Neil, 2012; Constantinou et al., 2012; 2015b; Yet et 

al., 2013; 2015; Kendrick, 2015).

In other applications such as bioinformatics, image processing and natural 

language processing, the task of determining the causal structure is 

generally too complex for humans. With the advent of big-data, much of 

the current research on BN development assumes that sufficient data are 

available to learn the underlying BN structure (Spirtes & Glymour, 1991; 

Verma & Pearl, 1991; Spirtes et al, 1993; Friedman et al., 1997; 2000; 

Jaakkola et al., 2010; Nassif et al., 2012; 2013; Petitjean et al., 2013), 

hence assuming the expert’s input is minimal or even redundant. Recent 

relevant research does relax this impression and allows for some expert 

input to be incorporated in the form of constraints (de Campos & Ji, 2011; 

Zhou et al., 2014a). It is, however, increasingly widely understood that 

incorporating expert knowledge can result in significant model 

improvements (Spiegelhalter et al., 2004; Rebonato, 2010; Pearl, 2009; 

Fenton & Neil, 2012; Constantinou et al., 2012; 2013; Zhou et al., 2014b), 

and this becomes even more obvious when dealing with interventions and 

counterfactuals (Constantinou et al., 2015a).

2. Determining the conditional probabilities (CPTs) for each node (also 
referred to as the parameters of the model): If the structure of the BN is 

learnt purely from data, then it is usual also for the parameter learning to 
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be performed during that process. On the other hand, if expert knowledge 

is incorporated into a BN then parameter learning is, most typically, 

performed (or finalised) after the network structure has been determined.

The parameters can be learnt from data and/or expert judgments. If the 

data has missing values, then parameter learning is usually performed by 

the use of the Expectation Maximisation algorithm (Lauritzen, 1995), or 

other variations of this algorithm (Jamshidian & Jennrich, 1997; Jordan, 

1999; Matsuyama, 2003; Hunter & Lange, 2004; Jiangtao et al., 2012), 

which represent a likelihood-based iterative method for approximating the 

parameters of a BN. Other, much less popular methods, include restricting 

the parameter learning process only to cases with complete data, or using 

imputation-based approaches to fill the missing data points with the most 

probable values (Enders, 2006).

When developing BNs for practical applications, it is common to incorporate expert 

knowledge of factors that are important for decision analysis but where historical data is 

unavailable or difficult to obtain. That is the context for this paper. Previous related research 

in expert elicitation extensively covers:

1. Accuracy in eliciting experts’ beliefs: It is often unrealistic to expect 

precise probability values to be provided by the expert. It is shown that 

participants with mathematical (or relevant) background tend to provide 

more accurate quantitative descriptions of their beliefs (Murphy & 

Winkler, 1977; Wallsten & Budescu, 1983). However, only few experts 

have sufficient mathematical experience and as a result, various 

probability elicitation methods have been proposed. These include 

probability scales with verbal and/or numerical anchors (Kuipers et al., 

1988; van der Gaag et al., 1999; van der Gaag et al., 2002; Renooij, 2001), 

iterative processes which combine whatever the expert is willing to state 

(Druzdzel & van der Gaag, 1995), use of frequencies such as “1 in 10” in 

situations where events are believed to be based on extreme probabilities 

(Gigerenzer & Hoffrage, 1995), visual aids (Korb & Nicholson, 2011), as 

well as estimating the probabilities based on the lower and upper extremes 

of the experts’ belief (Hughes, 1991).

2. Biases in experts’ beliefs: It has been demonstrated that limited 

knowledge of probability and statistics threatens the validity and reliability 

of expert judgments, leading to a number of biases (Johnson et al., 2010a). 

Various techniques for dealing with potential biases have been proposed. 

According to (Johnson et al., 2010b), these include provision of an 

example (Bergus et al., 1995; Evans et al., 1985; Evans et al., 2002; White 

et al., 2005), training exercises (Van der Fels-Klerx, 2002), use of clear 

instructions (Li & Krantz, 2005) or a standardized script (Chaloner, 1996), 

avoidance of scenarios or summaries of data, provision of feedback, 

verification, and opportunity for revision (O’Hagan, 1998; Normand, 

2002), and a statement of the baseline rate or outcome in untreated 
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patients (Evans et al., 2002). Further general guidelines in terms of how to 

reliably elicit expert judgments and minimise potential biases are provided 

in (Druzdzel & van der Gaag, 1995; O’Hagan et al., 2006; Johnson et al., 

2010b).

While the above previous relevant research deals extensively with the process by which 

expert judgments are elicited, it does so under the assumption that any resulting CPTs will 

solely be based on expert knowledge as elicited. This paper tackles a problem which does 

not seem to have been addressed previously. Specifically, we are interested in preserving 

some aspects of a pure data-driven model when incorporating expert knowledge.

For example, we may have extensive historical data about Return on Investment (ROI) (we 

will call this the dependent data node) given different types of investment (such as 

properties, bonds, shares), as captured in the very simple BN model shown in Figure 1.

If the data-driven ROI distribution given Investment is based on rich and accurate data that is 

fully representative of the context and is without bias, then we can be confident that the 

resulting marginal ROI distribution represents the true distribution. However, this 

distribution actually incorporates multiple dependent factors other than Investment type. If 

there is available expert knowledge about such factors such as, for example, Economic 
growth, then it is desirable to be able to incorporate such factors into an extended version of 

the BN as show in Figure 2.

A logical and reasonable requirement is to preserve in M′ as much as possible of the 

marginal distribution for the dependent data node (ROI in the example) when the expert 

variables (Economic growth in the example) remain unobserved. The paper describes a 

method to do this. In fact, for reasons explained in Section 2, it turns out that while it is 

possible to preserve the expected values of the marginal distribution under each of the 

known dependent scenarios, it is infeasible and unrealistic to preserve the variance. In 

Section 3, which describes the generic problem, we provide a method showing how to 

preserve the expectations. Section 4 demonstrates worked examples of the method. Section 5 

addresses the issues of variance of the data node and provides a method for validating the 

expert judgments in terms of ‘realism’. Section 6 demonstrates the applicability of the 

method to problems that, even though they are based on rich data, may still fail to capture 

extremely rare or previously unobserved events. Section 7 discusses limitations and 

extensions of the method, Section 8 discusses the scalability and practicality of the method 

for real-world applications, and we provide our concluding remarks in Section 9.

2 Why it is Reasonable to Preserve the Expected Value but not the 

Variance

The statistical expectations of the dependent data node are already influenced by the causes 

the expert might identify as missing variables and it makes sense to preserve these expected 

values. However, the same is not true of the shape and variance of the distribution To see 

why, Figure 3 presents two BN models, model A (left) and model B (right). Suppose that in 

this case, the variable b incorporated into model B is also based on data, rather than on 
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expert judgments. The data taken into consideration for learning the models is presented in 

Table 1. Note that,

1. The expected value of distribution a is preserved in model B;

2. The shape of distribution a is subject to amendments in model B, even 

though both models consider identical data with regards to the outputs of 

a;

3. The variance of distribution a increases in model B.

Figure A.1 and Table A.1 in Appendix A replicate this example with different values to 

simply demonstrate that the variance of distribution a in model B can also decrease.

From this we conclude that,

1. The expected value of a data-driven distribution in model A is already 

influenced by the causes that might be missing and hence, the expected 

value is preserved between models A and B;

2. The variance and the shape of a data-driven distribution in model A is not 

fully influenced by the causes that might be missing and hence, both the 

variance and the shape of the distribution are subject to amendments 

between models A and B (as stated earlier, this is simply because the 

number of mixture distributions taken into consideration by variable a 
changes between models).

As a result, we focus only on preserving the expected value of a data-driven distribution, 

when incorporating expert judgments into the model. This leads to the following generic 

challenge:

How do we introduce expert variables in a data-driven Bayesian network to 

improve decision analysis, but which will not affect the data-driven expectations of 

the model when these expert variables remain unobserved.

Formally this is equivalent to saying that the marginal expectations of the outcome variable 

should be the same before and after the introduction of the expert variable(s).

With regards to the variance of the data-driven distribution, while there is no incentive to 

fully preserve it, we are still interested in preserving some aspects of it. More specifically, 

we do not want the revised distribution in model M′ (i.e. which incorporates expert 

judgments) to have significant discrepancies, in terms of variability, from the respective 

distribution of model M.

3 Generic Description of the Problem and the Method

3.1 Description of the problem

The problem we are interested in solving is the general case where a discrete expert variable 

is inserted into a BN model as a parent of a discrete/continuous data variable. Note that 

while the description of the method provided below is based on the simplest form of a BN 

model, and based on the assumption that the data variable is continuous, the method is 
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applicable to any BN structure. However, when the data variable is discrete some limitations 

apply, and which we discuss in section 7.

Suppose we have a BN model fragment M as shown in Figure 4a, comprising two variables 

for which we have extensive data. This represents the simplest form of a BN mode. We 

assume that D is a discrete variable with states d1, …, dn, and R is a continuous variable. 

The model M represents empirically observed data about the influence of D on R.

In the example in Section 1, the states of D are the investment options {bonds, shares, 

properties} and R is the ROI, expressed as an observed distribution of values for each 

different investment option.

We assume that, from relevant data:

a) P(Di) = di is known1 for each i = 1, …, n

b) f(R|Di) is a known distribution for each i = 1, …, n

Hence, these are the parameters of the model M. Let the expected value E(f(R|Di)) = ri for 

each i = 1, …, n. For simplicity, we write this as E(R|Di) = ri. Hence, in model M the 

expected value of R is:

(Eq. 1)

Now consider the revised BN model M′, as shown in Figure 4b. Here X is an expert supplied 

variable with m states X1, …, Xm. We assume the expert provides the prior probabilities for 

X, i.e. P(Xj|Di) = pij for each i = 1, …, n and for each j = 1, …, m. When D and X are not 

linked, then instead of n × m priors we only need m priors P(Xj) = pj for each j = 1, …, m.

The challenge for the expert is to complete the conditional probability table (CPT) for R in 

M′ in such a way as to preserve all of the conditional expected values of R given D in the 

original model M, and also preserve the marginal expectation. Specifically, we require:

(Eq. 2)

Note that, if we can establish Equation 2, then it follows from Equation 1 that:

Specifically, Equation 2 is also sufficient to prove that the unconditional expected value2 of 

R is preserved in M’.

1Is known in the sense of being based on reliable relevant data.
2The expected value of R when D is unobserved.
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3.2 The method

The general form of the CPT for R in M′ can be written as a function fij, whose expected 

value is rij for each i = 1, …, n and j = 1, …, m, as shown in Table 2. Specifically,

Since each Xj is conditioned on Di we can use marginalisation to compute:

(Eq. 3)

Since by Equation 2 we require:

it, therefore, follows from Equation 3 that we require:

(Eq. 4)

Equation 4 thus expresses the necessary constraints on the expert elicited values for rij.

We can use Equation 4 as a consistency check on the expert elicited values if the user wishes 

to provide them all. However, in practice we would expect the user to provide a subset of the 

values and so use Equation 4 to solve for the missing values. There is a unique solution in 

the case when the expert is able to provide m − 1 of the required m values

To prove this, without loss of generality suppose that rim is the ‘missing value’. Then we can 

compute the value of rim necessary to satisfy Equation 4. We know, by Equation 4, that:

so:

thus:
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(Eq. 5)

For each i = 1, …, n Equation 5 thus provides the formula for computing the missing CPT 

values necessary to preserve in the model M′ all of the conditional expected values of R 
given D in the original model M.

4 Worked Example of the Method

Again using the ROI example introduced in Section 1, Figure 5, shows the BN model M and 

with the data-driven priors for the investment type (D) and the conditional distribution for 

ROI (R). We assume an investment firm provides this information to Peter – an expert 

investor. So R is represented by a mixture set of three Gaussian distributions N(μi, σi
2) for 

i=1,..,3.

From this model we know, for example, that historically properties have been the most 

popular investment (50%) but the best investment option, in terms of maximising ROI, 
would be Shares. Running the BN model3 in Figure 5 based on these priors indicates that 

the average investor has received a ROI (R) of 6.6%, on an annual basis.

4.1 Case 1: Incorporating expert node X that is independent from node D

Peter would like to incorporate an expert variable into the model - Economic growth, which 

is only available in the database to those who pay a fee. Instead of ignoring this important 

factor, however, Peter decides to use his own knowledge (as an experienced investor) to 

produce reasonable estimates with regards to the impact of economic growth on these 

potential investments. He remembers that over the past 10 years economic growth has been 

negative twice, and positive eight times. He, therefore, uses this information as the prior for 

node Economic growth (X) as shown in Figure 6.

Peter knows from experience that when economic growth is negative, ROI is, for each of the 

respective investment options; properties, bonds and shares, approximately 1%, 1.5%, and 

-15%. He, therefore, uses those suggestions to complete part of the CPT in Table 3, 

assuming Normality and as defined by data given D. Peter need not provide any suggestions 

with regards to how ROI is expected to change under a positive economic growth, since this 

is determined by the method of Section 2 and, in particular, Equation 5.

Specifically, Equation 5 determines the missing parameters of Table 3 in such a way as to 

ensure the model preserves the data-driven expectations when Economic growth remains 

unobserved. Namely, not only the prior expectations of ROI (i.e. 6.6%), but also the 

posterior expectations of ROI under each investment option (i.e. 6%, 3% and 10%).

3The model is run here in AgenaRisk which handles continuous nodes efficiently and accurately using the dynamic discretisation 
algorithm (Neil et al., 2007). The fully functional free version of AgenaRisk can be downloaded from agenarisk.com
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Using the notation of Section 2, in this example, the probability values of X are simplified 

from pij to pi since X is independent from D. Accordingly, and based on Equation 5:

We have now determined the impact on ROI under positive economic growth, given Peter’s 

judgments with respect to negative economic growth. Table 4 presents the completed CPT 

for node ROI after the method is applied to learn the missing values indicated in Table 3. As 

shown in Figure 6, the revised CPT of node ROI incorporates Peter’s judgments and 

successfully preserves the expected value of the distribution (i.e. 6.6%).

4.2 Case 2: The expert variable X is dependent on D

Now suppose that Peter were to incorporate the expert variable Tax allowances claimed, 

conditioned on the type of investment, for ROI assessment. Any type of investment may 

have some tax deductible allowances associated with them. For instance, the tax allowances 

associated with property investments are nowadays lower and more complex than those 

associated with certain types of share investment. Further, a person who invests in shares 

may be more likely to claim any full tax allowance than a person who invests in properties. 

Given that it is the investor’s responsibility to apply for the appropriate tax relief, there will 

be variations in the amount claimed even for the same type of investment due to people 

having different incentives about whether to bother applying for tax allowances.

Peter, therefore, introduces an arc from Investment to Tax allowances claimed4. As a result, 

in this example, X becomes dependent on D as shown in Figure 7. Once again, Peter makes 

use of his knowledge to inform the model with regards to how ROI is expected to be 

amended under all of the expertly defined states of Tax allowances claimed, except one, as 

shown in Table 5.

In order to preserve the data-driven expectations of M in M’, we must now account for the 

posterior marginal probabilities of X given D. The same method (i.e. Equation 5) can be 

used to learn the missing values of Table 5. Thus,

4It is crucial to note that the expert node is Tax allowances claimed and not Tax allowances. The former is something that the investor 
decides on and is influenced by the investment type (as well as other factors but which are not included for simplicity). On the other 
hand, Tax allowances influence Investment. If, for example, there are much more generous tax allowances for property investments 
then people are much more likely to invest in properties.
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Table 6 presents the revised CPT for node ROI, based on the modified model of Figure 7, 

and after using the method to learn the missing values of Table 5. Figure 7 confirms that the 

revised CPT of node ROI, which incorporates Peter’s latest judgments, successfully 

preserves the expected value of the distribution (i.e. 6.6%).

5 Assessing Expert Judgments for Realism

While the method is capable of preserving the data-driven expectations independent from 

expert judgments (i.e. a preservation will be achieved however the expert judgments are 

proposed), we still need to ensure judgments are ‘realistic’. In other words we require a 

consistency check between the shape and variance of a data-driven distribution in model M, 

and that of its revised version in model M′.

Consider the earlier model presented in Figure 6. The summary statistics of node ROI 
indicate that at the 5th percentile the value of the distribution is -15.3, and at the 95th 

percentile the respective value is 34.7. With this level of variability in mind, we could argue 

that the expert judgments provided in Table 4 under Negative economic growth, as well as 

the values learnt under Positive economic growth, are realistic. To assess whether this is the 

case, we plot the distributions of R generated under each state of X (as defined in Table 4) 

and examine their distance from the prior data mixture distribution, as shown in Figure 8. 

Figure 9 demonstrates an alternative scenario whereby the distributions of R generated under 

each state of X are based on expert judgments that could be described as being unrealistic 

(see the superimposed CPT in Figure 9).

Comparing Figure 8 to Figure 9, it is apparent that one of the expert weighted distributions 

of Figure 9 falls well outside of the variability of the prior data mixture distribution. More 

specifically, the expert judgment provided for state Negative of variable X seems to have 

been exaggerated towards higher losses. Measures such as the KL-divergence (Kullback & 

Leibler, 1951; Kullback, 1959) can be used for measuring the distance between distributions. 

For two discrete probability distributions P and Q, the KL divergence expectation is defined 

as:

and which represents the expectation of the logarithmic difference between probabilities P 
and Q. Note that the KL divergence is non-symmetric and hence, the divergence expectation 
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as defined above is based on probabilities P; i.e. the divergence from P to Q is not equivalent 

to the divergence of Q to P. For continuous distributions P and Q the divergence score is 

(Bishop, 2006):

where p and q are the densities of P and Q.

For example, from Figure 8, the KL divergence expectations between the Prior distribution 

and the Negative and Positive distributions are KL(Prior‖Negative) = 1.3 and 

KL(Prior‖Positive) = 9.22 respectively, and under the assumption that they fit a Normal 
distribution. On the other hand, KL(Prior‖Negative) = 23.58 from Figure 9.

The divergence expectation is highly sensitive to variance and distributional assumptions and 

hence, the ‘acceptable threshold’ for divergence between distributions should be agreed in 

advance and may well be dependent on the type of information the expert variable 

represents. In the case whereby the distance between the distributions is assessed as being 

unrealistic, then the method has also helped in identifying expert judgments that are either 

erroneous or biased. It is advisable that, under such circumstances, the expert judgments are 

revised in terms of impact. If the initial judgments are erroneous, then the same expert 

should be able to reassess them and provide improved estimates. If subsequent estimates do 

not improve, it might be the case that the judgments are based on biased beliefs, and it 

would be reasonable to seek judgments from additional expert/s. Eventually, all of the expert 

weighted distributions should have an acceptable distance from the overall prior data 

distribution. In a recent study where we have applied the method (see Section 8), we 

considered divergence threshold 10 as the point by which we seek to reassess the expert 

judgments incorporated, and which influence the shape of the particular distribution.

Note that what has been discussed in this subsection is trivial for states of X which are not 

captured by data, either because they represent extremely rare and/or previously unobserved 

events. This scenario is discussed in Section 6.

6 Application to Problems with Rare And/Or Previously Unobserved 

Events

In this section we discuss an entirely different concept in terms of how the method can be 

used. This involves the common problem whereby the application domain incorporates 

events that are extremely rare and/or previously unseen. Under such a scenario, even ‘big 

data’ may be insufficient to approximate the impact of these kinds of events, and which are 

typically overlooked. We demonstrate how the method can be exploited to provide improved 

assessments of uncertainty under circumstances of such events not captured by data.

Suppose the expert node X now includes states u1, …, uk, (where k ≥ 1) that have never (or 

only extremely rarely) been observed. In this case the problem is that, instead of having to 

preserve the expected value such that:
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we only have to ensure that:

So Equation 5 needs only to preserve the data-driven network in model M′ under the states 

of X for which the expert assumes that they are indirectly captured by data and hence, ignore 

any u1, …, uk. This implies that the states u1, …, uk of X, which are assumed not to have 

been captured by data, will now have added impact on R.

Suppose, for example, that Peter lives in a country within the Eurozone and fears that a 

possible Grexit5 will have a significant impact on his investment. He would like to 

incorporate this possibility into his calculations. However, he acknowledges that Grexit 
represents a previously unobserved event and hence, there is no relevant historical data 

available for him to consider for analysis in terms of its impact on his investments.

However, by knowing that Grexit represents a previously unseen event, Peter realises this 

implies that the historical records of ROI assume Grexit=No. He models the expert 

knowledge for node Grexit, making sure that the data-driven expectations of the model are 

preserved when Grexit=No, as shown in Figure 10 and Table 7.

Peter now has to incorporate into the model the impact on ROI under Grexit=Yes. He 

updates the CPT for node ROI given Grexit=Yes according to his beliefs, as shown in Table 

8. The CPT of Table 8 shows that, in addition to providing a revised expected value for each 

of the possible investment scenarios under Grexit=Yes, Peter also assumes that his estimates 

are highly uncertain and hence, the values provided for each σ2 are increased according to 

his lack of confidence. Figure 11 demonstrates the impact Grexit is expected to have on 

Profit, when Grexit is unknown, and as defined by Peter’s assumptions. The prior 

expectation of ROI declines from 6.6% to −0.48%. Therefore, the method provides decision 

makers with the ability to better manage and assess the impact of rare or previously unseen 

events which are not captured by data.

7 Limitations and Possible Extensions

In the previous sections we have described the method as well as demonstrated how to apply 

it. We have also illustrated a number of scenarios under which the method provides 

additional benefits that go beyond the preservation of expected values. In this section we 

discuss a number of limitations which arise under specific circumstances, as well as possible 

extensions for future research.

1. Expert judgments for the CPTs: The method we have described defines 

the constraints required for the CPT entries. If, for any given state of the 

5The withdrawal of Greece from Eurozone.
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node D and state of the node X, the expert is able to supply all of the 

entries of the CPT then the method provides a consistency check for the 

expert values. If the expert can supply all but one of the values then 

Equation 5 provides a unique solution for the missing entry. However, 

when there is more than one missing entry the solution to Equation 4 is not 

unique.

2. Discrete nodes: The method assumed the empirical data node R is 

continuous. The method is applicable to discrete nodes, but there is a 

limitation in this case. Since the expected values at each discrete state 

represent probabilities rather than utility values (as in the case of 

continuous nodes like ROI), the expert elicited entries have to satisfy not 

only the constraint of Equation 4 but the additional constraints that each 

must lie within the boundary [0,1]. This means, for example, that we 

cannot assume that the method will provide the ‘missing value’ once the 

expert supplies all but one of the expert CPT entries, since these may be 

inconsistent with all the constraints.

3. Ranked nodes: In describing the method in Section 2, we have shown how 

the solution works when the expert provides judgments for states up to and 

excluding Xm of the required m values for each set of states in R given Di. 

However, when the expert node follows a ranked/ordinal distribution (e.g. 

from Very low to Very high (Fenton et al., 2007)) there is a risk that the 

learnt value Xm will fail to respect the ordinal nature of the ranked 

distribution, in terms of impact on R, depending on what judgments the 

expert provides for Xm−1 states.

As in the general discrete case this is not strictly a limitation of the 

method. When this occurs, it may simply imply that the expert judgments 

are inadequate in terms of accuracy. We would advise that decision makers 

be mindful of this possibility and, when it occurs, they should revise their 

judgments to respect the ordinal nature from X1 to Xm in terms of impact 

on R.

4. Amending the BN structure: The type of models we are interested in this 

paper are those where the supplementary expert variable is a concomitant 

cause. In other cases, however, an expert variable that is inserted into a 

model will amend the data-driven structure. Figure 12 demonstrates such a 

simple example where the expert variable X is inserted between the data 

variables D and R. Under such scenarios, the method presented in this 

paper is not supposed to be applicable since the data-driven network is 

amended and hence, there is no data-driven network to preserve. However, 

in large scale BN models some data-driven model fragments might remain 

unaffected and hence, the method can still be applied to those fragments.

5. Preserving Variability: While the expectations of the empirical data node 

are preserved6 using the method we have described, the variance and/or 
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the shape of the revised data node distribution are subject to amendments 

as discussed in Section 5.

Without detailed data on the factors that the expert might identify as 

missing, it is not possible to know whether model uncertainty is supposed 

to increase or decrease. Since the model’s dimensionality is increased, one 

could argue that model uncertainty increases with it. However, in some 

cases there could be an argument against increasing the variance. As a 

result, such undesirable effects will have to be managed subjectively.

We explained in Section 2 why there is no incentive in preserving the 

variance of the data variables between models M and M’. However, in 

Section 5, we have proposed ways towards ensuring that the variability 

between distributions of the same data variable are reasonably correlated. 

In general, this is a problem that poses major challenges for future 

research.

8 Applying the Method to Real-World Models

In this section we aim to clarify under what scenarios the method presented in this paper 

becomes useful for real-world BN models.

8.1 Scalability of the method

There are a number of factors which determine the scalability of the method. Specifically :

1. Type of the model: Since the method is proposed for the purpose of 

preserving some features of a data-driven model when incorporating 

expert judgments, this implies that the method is useful only for models 

which incorporate both data and expert information. This method is not 

relevant for models that only rely on one of the two types of information; 

data or expert knowledge.

2. Size of the model: The method is independent of the size of the model. 

What is important is how the expert variable is introduced within the 

network. Linking an expert variable with three data-driven variables in a 

network consisting of just three variables represents a more challenging 

task than linking an expert variable with two data-driven variables in a 

network consisting of thousands of variables. The same applies to the 

number of expert variables introduced; incorporating n expert variables in 

a simple network is more complex than incorporating n − 1 variables in a 

large-scale network, under the assumption that the variables are 

incorporated in the same way.

3. Number of child nodes: The expert variable can influence any number of 

child nodes. In the case where the expert variable does not have any child 

nodes (i.e. only has parent nodes), then there is no need to make use of the 

6Note that the expected values are preserved however the variance is defined.
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method presented in this paper. This is because such a BN model already 

preserves its data-driven expectations, as long as the expert variable 

remains unobserved. The method becomes useful as long as the expert 

variable introduced is linked to at least one data-driven child node.

4. Number of parent nodes: Any number of data-variables can serve as 

parent nodes of the expert variable. Without parent nodes, the solution is 

simplified as demonstrated in Section 4.1. With n parent nodes, we must 

account for the posterior marginal probabilities of the expert variable 

given all of the parent nodes, as demonstrated in Section 4.2.

5. Number of states: The solution works for any number of states 

incorporated into the expert variable.

6. Type of nodes: Some restrictions apply when it comes to the type of 

variables being used by the method. Specifically, while any parent and 

child nodes of the expert variable can be represented by either a 

continuous or a discrete distribution, the expert variable itself must be 

discrete (so that one of its states can serve as state m to solve for 

preservation of the expected value of the child node).

8.2 Practicality of the method

The process can also be automated using equation 5. But this requires a number of expert 

inputs. Assuming that the data-driven network is already learnt, the process of incorporating 

an expert variable is as follows:

1. Incorporate the expert variable and link it to the child and (optional) parent 

nodes;

2. Parameterise the CPT of the expert node with expert judgments;

3. Parameterise the CPT of each child node with expert judgments for states 

up to m − 1 (i.e. entry m stays empty);

4. Use equation 5 to learn the probabilities or utility values/distributions for 

each state m of the data-driven variables serving as child nodes of the 

expert variable. The model should now preserve the expected values of the 

data-driven variables.

8.3 Real-world examples

The proposed method is especially useful for adding explanatory power to medical 

diagnostic models, such as those that incorporate a diagnostic test result. For example, 

extensive data are available on mammographic screening test results given the presence of 

breast cancer (Hofvind et al., 2012). But, as in the ROI example of Section 2, these data hide 

influential factors which can be exploited by expert knowledge, such as the impact of benign 

cysts driving up the false positive rate (see Figure 13).

Another typical real-world example where the method is useful is that in (Fenton & Neil, 

2012) where the authors consider data from the US department of transport, that shows 
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(counter-intuitively) that fatalities in car accidents is strongly negatively correlated with 

temperatures. The authors recognise that, in the absence of relevant explanatory variables, 

we run the risk of having models proposing it is safer to drive during the winter when the 

weather is worst. Incorporating the expert variables proposed in (Fenton & Neil, 2012), in 

conjunction with the method presented in this paper, we can preserve the expectation 

relating to the risk of an accident and at the same time explain the observations based on 

additional expert explanatory variables such as Driving conditions and Driving speed as 

illustrated in Figure 14.

8.3.1 Applying the method to another study—We have already made use of the 

method in a real-world setting. This involves a dynamic time-series BN model used to assess 

football teams in terms of fluctuations in team strength (Constantinou & Fenton, 2016). The 

assessment is based on events that occur between seasons (e.g. player transfers) as well as 

events that occur during the season (e.g. injuries) and which may influence the actual 

strength of the team. The whole model consists of 34 variables, both discrete and 

continuous.

Figures 15, 16, and 17 present fragments of this real-world BN which incorporate expert 

variables. The expert variables, along with arcs introduced as a result of the expert variables, 

are indicated by dashed lines. All of the expert variables have been incorporated following 

the method presented in this paper, hence preserving the expected values of the data-

variables, as long as the expert variables remain unobserved. In brief,

1. Squad instability: Figure 15 illustrates the process by which the impact of 

changes in players is measured. Historical data indicates that increasing 

net transfer spending and increasing team wages (higher relative to other 

teams) generally result in improved team strength. However, sometimes 

the scale of such changes in a short period of time results in instability 

within the team and reduced team performance immediately after the 

changes occur. This scenario is not captured by available data, hence the 

incorporation of Squad instability as demonstrated in Figure 15.

2. Managerial ability: Figure 16 illustrates the process by which the impact 

of changes in management is measured. In this case, we were able to 

assess managerial instability from data. However, the data fails to capture 

whether the arriving manager is superior or inferior to the departing 

manager, in terms of managerial skills. As a result, the expert variable 

Managerial ability is incorporated, to deal with this important missing 

factor subjectively, as illustrated in Figure 16.

3. Team stress and fatigue: Figure 17 illustrates the process by which the 

model assesses the impact of European (EU) match involvement has on 

team performance in the league. While historical data indicates that, 

overall, involvement in EU competitions negatively influences league 

performance, this is not true for all of the teams (especially for the high 

performing teams). One hypothesis is that teams experience the effect of 

EU competition with different levels of stress and fatigue, and this may 

Constantinou et al. Page 16

Expert Syst Appl. Author manuscript; available in PMC 2016 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



also depend on the type of EU competition (e.g. some teams send their 

reserves to travel around Europe when participating in the Europa league). 

Figure 17 illustrates how this hypothesis is captured subjectively by 

incorporating the expert variable Team stress and fatigue.

The expert explanatory variables incorporated into the BN of (Constantinou & Fenton, 

2006), and which are based on the method presented in this paper, form part of the Smart-
Data method which seeks to improve predictive accuracy and resulting decision making that 

goes beyond the capabilities of what Big-Data can provide. This is achieved using BN 

models that have two subsystems: a) a knowledge-based intervention for informing the 

model about real-world time-series facts, and b) a knowledge-based intervention for data-

management purposes to ensure data adheres to the structure of the model.

9 Concluding Remarks

We have described a method that allows us to incorporate expert variables in a data-driven 

Bayesian network without affecting the model’s expectations, as generated from data, as 

long as the expert variables remain unobserved. The method assumes that:

1. the data variables are based on sufficiently rich and accurate data and thus 

represent a good approximation of the true distribution (hence, the desire 

to preserve the expectations);

2. the expert variables are factors that are important for decision analysis but 

which historical data fails to capture (hence, the desire to incorporate these 

variables into the model as supplementary expert judgments, but which 

will not affect the model as long as they remain unobserved).

In addition to meeting this main objective we have demonstrated that the benefits of the 

method extend to answering questions about accuracy of expertise and how the assessment 

of extremely rare or previously unobserved events can be addressed:

a) Realism of expert judgments: We have shown the method can be used along 

with variability to validate the expert judgments in terms or ‘realism’. More 

specifically, to assess whether the expert judgments provided for newly 

incorporated states within the model satisfactorily fall within reasonable 

boundaries as defined by the variability in the data driven model. Section 5 

demonstrates this case with examples.

b) Handling rare or previously unobserved events: The method allows for better 

management of problems for which big-data is available, but which still fails to 

capture rare or previously unseen events. Under such circumstances, this is 

achieved by preserving the data-driven expectations of the model under the 

assumption that these known rare or unobserved events are set to false within 

the model. Section 6 demonstrates this case with examples.

It is important to note that the method is not proposed as a solution to any probabilistic 

network which incorporates expert knowledge along with data. Namely, if a data variable is 

believed not to capture the true distribution with sufficiently high accuracy, either because of 
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limited or poor-quality data, then there is no incentive to use this method and preserve its 

expectations. Nevertheless, while the method might not be useful for every single data 

variable, it will still be useful for every single model that incorporates at least one data 

variable for which decision makers would like to preserve its expectations.
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Appendix A: The problem with preserving the variance of a data-driven 

distribution.

Figure A.1. 
The outputs of the data-driven BNs (Models A and B left and right respectively) based on 

the data presented in Table A.1.

Table A.1

The data considered by the BNs presented in Figure A.1

Model A Model B

a a|b1 a|b2

3 3 12
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Model A Model B

a a|b1 a|b2

4 4 13

5 5 10

2 2 9

5 5 8

4 4 15

12 -

13 -

10 -

9 -

8 -

15 -

Mean 7.5 3.83 11.17

Variance 18.45 1.37 6.97
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Figure 1. 
Purely data-driven BN model M of the investment problem.
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Figure 2. 
Extending model M from Figure 1 to model M′ to include expert knowledge about economic 

growth.
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Figure 3. 
The outputs of two data-driven BNs (Models A and B left and right respectively) based on 

the data presented in Table 1.
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Figure 4. 
Graphical representation illustrating the concept of the method, where Model M, with data 

variables D and R, is extended to alternative Model M′ which incorporates expert variable X 
(the dashed arc is optional, indicating that expectations are preserved even if X is dependent 

on another data variable).
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Figure 5. 
The data-driven BN model M for the example with conditional and marginal probabilities 

superimposed.
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Figure 6. 
Extending model M of Figure 5 into model M′ presented in this figure, by incorporating 

expert knowledge for node Economic growth.
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Figure 7. 
Modifying the investment example such that X becomes dependent on D.
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Figure 8. 
The distributions under Negative and Positive economic growth, superimposed against the 

prior data distribution, based on the Model of Figure 6.
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Figure 9. 
The distributions under Negative and Positive economic growth, superimposed against the 

prior distribution, based on the Model of Figure 6, and by taking into consideration the new 

hypothetical CPT (which also preserves data expectations) presented below the figure.
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Figure 10. 
Replacing the expert node of Figure 6 with the expert node Grexit, which represents a 

previously unobserved event. The model preserves the data-driven expectations when the 

previously unobserved event is set to No (i.e. Grexit=No).
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Figure 11. 
The expectations of the model of Figure 10 when the observation of Grexit=No is removed.
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Figure 12. 
The case where the expert variable X is incorporated into the data-driven model in a way 

that amends the data-driven structure.
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Figure 13. 
Adding expert knowledge Benign cyst to breast screening, while preserving data 

expectations.
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Figure 14. 
Adding expert knowledge Driving conditions and Driving speed to the fatal car crashes 

problem (Fenton & Neil, 2012), while preserving data expectations.
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Figure 15. 
The BN fragment which incorporates the expert variable Squad instability (Constantinou & 

Fenton, 2016).
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Figure 16. 
The BN fragment which incorporates the expert variable Managerial ability (Constantinou & 

Fenton, 2016).
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Figure 17. 
The BN fragment which incorporates the expert variable Team stress and fatigue 
(Constantinou & Fenton, 2016).
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Table 1

The data considered by the BNs presented in Figure 3.

Model A Model B

a a|b1 a|b2

34 34 12

5 5 13

56 56 10

34 34 9

12 12 8

32 32 15

12 - -

13 - -

10 - -

9 - -

8 - -

15 - -

Mean 20 28.83 11.17

Variance 238.55 330.56 6.97
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Table 2

The CPT for R in M′

D D1 … Di … …Dn

X X1 X2 … Xm−1 Xm … X1 X2 … Xm−1 Xm … X1 X2 … Xm−1 Xm

R f11 f12 … f1m−1 f1m fi1 fi2 … fim−1 fim fn1 fn2 … fnm−1 fnm
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Table 3

The CPT for node ROI based on the model presented in Figure 6 and Peter’s expert judgments under negative 

economic growth.

D Properties Bonds Shares

X Neg. Pos. Neg. Pos. Neg. Pos.

R N(1, 50) ? N(1.5, 1) ? N(-15, 500) ?
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Table 4

The CPT for node ROI based on the model presented in Figure 6.

D Properties Bonds Shares

X Neg. Pos. Neg. Pos. Neg. Pos.

R N(1,50) N(7.25,50) N(1.5,1) N(3.375,1) N(-15,500) N(16.25,500)
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Table 5

The CPT for node ROI based on the model presented in Figure 7 and Peter’s expert judgments under None (N) 
and Some (S) tax allowance claimed.

D Properties Bonds Shares

X N S A N S A N S A

R N(4,50) N(5,50) ? N(2,1) N(2.5,1) ? N(5,500) N(7,500) ?
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Table 6

The CPT for node ROI based on the model presented in Figure 7.

D Properties Bonds Shares

X N S A N S A N S A

R N(4,50) N(5,50) N(8.66,50) N(2,1) N(2.5,1) N(4.66,1) N(5,500) N(7,500) N(12.66,500)
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Table 7

The CPT for node ROI given Grexit=No, and based on the model presented in Figure 10.

D Properties Bonds Shares

X No No No

R N (6, 50) N (3, 1) N (10, 500)
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Table 8

The CPT for node ROI given Investment, assuming Grexit=Yes, and based on the model presented in Figure 

11.

D Properties Bonds Shares

X Yes Yes Yes

R N(-10, 100) N (0, 1) N (-40,1000)
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