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Abstract

We develop a statistical model using extreme value theory to estimate the 2000–2050 changes in 

ozone episodes across the United States. We model the relationships between daily maximum 

temperature (Tmax) and maximum daily 8-hour average (MDA8) ozone in May–September over 

2003–2012 using a Point Process (PP) model. At ~20% of the sites, a marked decrease in the 

ozone-temperature slope occurs at high temperatures, defined as ozone suppression. The PP model 

sometimes fails to capture ozone-Tmax relationships, and so we refit the ozone-Tmax slope using 

logistic regression and a Generalized Pareto Distribution model. We then apply the resulting 

hybrid-EVT model to projections of Tmax from an ensemble of downscaled climate models. 

Assuming constant anthropogenic emissions at the present level, we find an average increase of 

2.3 days a−1 in ozone episodes (> 75 ppbv) across the United States by the 2050s, with a change of 

+3–9 days a−1 at many sites.

 1 Introduction

Temperature is the most important meteorological factor in driving ozone episodes in 

polluted regions [e.g. Camalier et al., 2007; Jacob and Winner, 2009, and references therein; 

Porter et al., 2015]. Lin et al. [2001] found that the probability of ozone exceeding a 

threshold increases with temperature; for example, during 1980–1998, the probability of 

daily maximum 8-hour average (MDA8) ozone exceeding 85 ppbv was 20% at 303 K and 

49% at 310 K in New England. More recently, high summer temperatures in the central 

United States in 2012 led to values of the annual 4th MDA8 ozone of 78.0 ppbv, more than 8 

ppb higher than the 2008–2014 average of 69.8 ppbv (http://www3.epa.gov/airtrends/

ozone.html). The 2012 enhancement occurred even though emissions of ozone precursors 

have declined dramatically in recent years [Kim et al., 2006; Bloomer, 2009]. In the coming 

decades, global climate change will likely cause more frequent and/or persistent heat waves 

in the United States [Meehl and Tebaldi, 2004; Steiner et al., 2010; Gao et al., 2013; Wu et 

al., 2014], and a key question is whether such trends will increase the frequency or severity 
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of ozone episodes. In this study we develop a statistical model based on extreme value 

theory (EVT) to calculate the 2000–2050 changes in temperature-driven ozone episodes at 

sites across the United States.

Surface ozone is produced via oxidation of volatile organic compounds and CO in the 

presence of nitrogen oxides (NOx), and the relationship of ozone with temperature arises 

from a set of complex chemical and biophysical mechanisms. In the eastern United States, 

surface ozone typically shows a linear relationship with surface temperature with slopes 

ranging from 2 to 6 ppbv/°C in the Northeast and Midwest, depending on emissions and 

meteorological regime [Camalier et al., 2007; Bloomer et al., 2009; Rasmussen et al., 2011; 

Sillman and Samson, 1995]. At extreme temperatures, however, the linear relationship 

between temperature and ozone can change. For example, Steiner et al. [2010] diagnosed 

suppression of ozone formation at high temperatures at sites in California. These authors 

hypothesized that suppression arises from (1) reduced isoprene emission due to bio-physical 

constraints at high temperatures and (2) saturation of ozone formation from the 

decomposition of peroxyacetyl nitrate (PAN), a reservoir of NOx. To date, the phenomenon 

of ozone suppression has not been reported elsewhere in the United States. In this study, we 

look for evidence of ozone suppression at high temperatures outside of California.

Most previous efforts examining the climate penalty on future ozone episodes have relied on 

chemical transport models (CTMs) or chemistry climate models (CCMs) [e.g., Wu et al., 

2008; Gao et al., 2013; Rieder et al., 2015], but such models have difficulty in capturing 

present-day ozone variability [e.g., Fiore et al, 2009; Doherty et al., 2013; Parrish et al., 

2014]. An alternative method is to use a statistical approach. Most previous statistical 

approaches for calculating surface ozone assumed linear relationships between ozone and 

the driving meteorological variables [e.g., Schlink et al., 2003; Holloway et al., 2008; Chang 

et al., 2014]. Rieder et al. [2013], however, pointed out that the extreme tails of surface 

ozone data are typically non-Gaussian, so linear regression likely underpredicts the present-

day number of exceedances. An alternative representation of extreme ozone events takes 

advantage of extreme value theory (EVT). Instead of fitting the entire dataset, EVT focuses 

on accurate simulation of extreme ozone tails. For example, Rieder et al. [2013] used EVT 

by applying a stationary generalized Pareto distribution (GPD) model to MDA8 ozone levels 

at sites across the United States. That study found that 1-year ozone return levels dropped by 

over 8 ppbv from 1988–1998 time period to 1999–2009 in the eastern United States. 

Applying GPD to the future ozone simulated by a CCM, Rieder et al. [2015] found that 

climate change could increase the 1-year return level of MDA8 ozone in the East by ~1 ppbv 

by the 2100s. The GPD model is appropriate in modeling the ozone distribution over a high 

threshold but cannot provide information on exceedance rates.

In contrast, the point process (PP) model, another approach, can simulate both the 

distribution above a specified threshold and the rate of exceeding this threshold. Here we 

apply PP to model the observed relationships between surface temperature and MDA8 ozone 

in May–September over 2003–2012. A novel feature of our approach is that it takes into 

account the possible suppression of ozone concentrations at extreme temperatures. The 

resulting hybrid-EVT model incorporates the non-stationarity of the ozone-temperature 

relationship. To calculate ozone exceedances in the 2050s, we apply our model to 
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projections from an ensemble of climate models. Use of the ensemble increases confidence 

in our results.

 2 Data

We obtain the 2003–2012 hourly ozone from the EPA Air Quality System (EPA-AQS, http://

www.epa.gov/ttn/airs/airsaqs/) and convert it to daily maximum 8-hour average (MDA8) 

ozone. The ozone season is defined as the period from May through September, when ozone 

episodes are most frequent [Bloomer et al., 2009]. We also compare the results in AQS with 

those in the EPA Clean Air Status and Trends Network (CASTNet, http://epa.gov/castnet/). 

Sites missing more than 10% of the data in this timeframe are discarded, resulting in 816 

AQS sites and 67 CASTNet sites across the United States.

The daily maximum temperature (Tmax) is from the North American Regional Reanalysis 

(NARR), with a grid resolution of 32 km×32 km [Mesinger et al., 2006]. CASTNet includes 

site-based hourly temperatures, so we use NARR temperature data to interpret only the AQS 

measurements. Future projections of daily maximum temperature are from the Coupled 

Model Intercomparison Project Phase 5 (CMIP5), under the representative concentration 

pathway (RCP) 4.5 scenario [Taylor et al., 2012]. The original CMIP5 outputs are available 

only at coarse horizontal resolution (e.g., ~200 km). In order to capture the fine-scale 

features of atmospheric circulation, we use the Bias-Correction and Constructed Analogues 

(BCCA) dataset, which includes meteorological variables statistically downscaled from the 

CMIP5 ensemble [Maurer and Hildago, 2008]. The BCCA database has a grid resolution of 

1/8°×1/8° (http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/; Bureau of Reclamation, 

2013). Here we use the BCCA daily maximum temperatures from an ensemble of 19 CMIP5 

models for the 2000–2009 and 2050–2059 time periods (Table S1).

 3 Observed ozone suppression

In this study, we define ozone suppression as a marked decrease in the ozone-temperature 

slope that occurs at high temperatures. To diagnose suppression, we check the stationarity of 

the ozone-temperature slopes at each AQS and CASTNET site using the Z test, as in 

Paternoster et al. [1998]. More specifically, we test whether there is a break in the slopes, 

with slopes in the higher temperature regime significantly less than the slopes in the lower 

temperature regime. The formula of the Z test is given by

(E1)

where the mH and mN are the ozone-temperature slopes at high and normal temperature 

regimes, respectively, and SEH and SEN are the standard errors of the slopes associated with 

the two regimes.

For each site, we first rank all daily Tmax values across the 10 years. We then test a series of 

temperature values, in increments of 0.1 K from the 95th to 97.5th percentile range, for the 

cutoff temperature Tx, above which ozone suppression occurs. Of the candidate Tx values 
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for each site, we choose the one that yields the minimum p-value for E1. The total number 

of observations at each site varies from 1377 to 1530, depending on the fraction of missing 

data. A p-value < 0.05 for E1 implies a significant reduction in slope, which we take as 

evidence of ozone suppression at high temperatures at that site. Figure 1 identifies those sites 

exhibiting ozone suppression in the AQS and CASNET networks over 2003–2012, with high 

similarity in the spatial distributions between these two networks. About 20% of the sites in 

AQS and 23% of sites in CASTNET show significant ozone suppression. Besides California, 

ozone suppression occurs in ~37% of sites in the Northeast, ~30% of sites in the Midwest 

and a few sites in the deep South. By testing with different temperature datasets and different 

preprocessing methods (Text S1 and Figure S1), we confirm that the spatial distribution of 

ozone suppression in Figure 1 is robust.

For California, a region with relatively frequent days with Tmax exceeding 310 K, Steiner et 

al. [2010] proposed two mechanisms to explain the observed ozone suppression. First, they 

posit that isoprene emissions may be reduced above 310 K due to denaturation at high 

temperatures of the enzymes needed for isoprene production [Guenther et al., 1993]. 

Second, they suggest that the temperature effect on the lifetime of PAN, an important 

reservoir for NOx, diminishes at very high temperatures, with ozone production leveling off.

We find that reduction in isoprene emissions at higher temperatures is unlikely to explain the 

observed ozone suppression in the Northeast and Midwest. In these regions, the change in 

slope of ozone-temperature occurs below ~305 K (Figure S2). The leaf temperatures at 

which the isoprene-temperature relationship flattens or reverses shows large interspecies 

variability, but all are greater than 308 K [Guenther et al., 1993; Sharkey et al, 1996; 

Singsaas and Sharkey, 2000; Rasulov et al., 2010]. The leaf-air temperature difference 

depends on many environmental variables, but at air temperatures above 306 K, the leaf 

temperature tends to be lower than air temperature [Idso et al., 1981; Andrews et al., 1992]. 

Taken together these observations suggest that the isoprene suppression is unlikely to occur 

at air temperatures of ~305 K and the cause of ozone suppression in the Northeast and 

Midwest must lie elsewhere.

We turn to a chemistry model GEOS-Chem to test whether the decrease in PAN lifetime in 

high temperature regimes can account for ozone suppression across the United States. The 

details of model setup can be found in Text S2. We conduct two 9-year simulations for May–

September from 2004 to 2012, a control simulation and a sensitivity simulation. In both 

simulations, we test for ozone suppression as described above. The control simulation (C) 

yields evidence of ozone suppression at high temperatures in gridsquares across the West, 

Midwest and Northeast, but not in the Southeast (Figure 2a). GEOS-Chem also diagnoses 

ozone suppression in the Intermountain West and northern Great Plains, where few 

observations exist. In the sensitivity simulation (S), surface air temperatures are increased 

everywhere by 1 K in the model. This adjustment affects only the chemistry processes and 

biogenic emissions, but has no effect on other meteorological fields. The ozone-temperature 

slopes at each site in high and more normal temperature regimes can be written as
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(E2)

where O represents the daily MDA8 ozone concentrations averaged over the high (H, > 95th 

percentile) and normal (N, 50th to 95th percentiles) temperature regimes; mH* and mN* 

represent the change in ozone per unit temperature for these two regimes; and C and S refer 

to the two simulations. If ozone suppression in the model occurs due to temperature alone, 

mH* should be less than mN*. Figure 2b, however, reveals only weak ozone suppression at 

high temperatures in the southern Great Plains.

Our results suggest that ozone suppression is not caused by temperature-dependent effects in 

chemistry or emissions as hypothesized by Steiner et al. [2010], but instead arises from 

meteorological processes that accompany high surface temperatures. Typically, ozone is 

linearly correlated with temperature, which, in turn is linearly correlated with other 

meteorological variables such as solar radiation, synoptic circulation, and stagnation [Jacob 

and Winner, 2009, and references therein]. At high temperatures, the linearity of these 

correlations among meteorological variables may begin to break down, changing the ozone-

temperature slope. The breakdown in such correlations would likely not be captured in a box 

model such as that used in Steiner et al. [2010]. Although 3-D chemistry models historically 

have had difficulty representing observed ozone variability [e.g., Fiore et al., 2009; Pfister et 

al., 2014; Rieder et al., 2015], they can better capture the full suite of meteorological effects 

on ozone episodes.

 4 Hybrid extreme value model

The extreme value model is used to study the high tail of the MDA8 ozone distribution, 

which has greatest relevance for ozone air quality management. We model the daily MDA8 

ozone concentrations conditionally on daily maximum temperature (Tmax), using a non-

stationary PP model, which formulates the Poison process limit of extreme ozone 

concentrations above a threshold [Coles, 2001; Rieder et al., 2013]. More details about this 

model can be find in the supplement text S3. We estimate the model parameters by 

maximizing the likelihood function L, which is given by

(E3)

(E4)
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(E5)

where yt is the daily observed MDA8 ozone from each individual AQS site, na is the number 

of observations in each year, μt,T is the location parameter conditioned on both time t (e.g., 

2003, 2004, etc.) and daily maximum temperature T, ϕT(> 0) is the scale parameter 

conditioned on Tmax, ξ is the shape factor, and f and g are linear functions. The value of na 

is 153, the total number of days from May 1 to September 30. I[yt >u] is one if the observed 

yt is greater than the threshold u (90th percentile values of ozone in this study), and zero 

otherwise. The numerical optimization is carried out using the extRemes package in R 

[Gilleland and Katz, 2011]. Application of the PP model to U.S. ozone air quality requires 

that we take into account trends in the emissions of ozone precursors. For example, ozone 

levels have declined concurrently with the ~40% reduction in power plant NOx emission in 

the eastern United States beginning in 2002 [Kim et al., 2006; Bloomer et al., 2009]. To 

include this trend in the PP model, we define the location parameter μ as a function of time t 
(E4). The responses of the scale and shape parameters to time are relatively weak, so we 

define the scale parameter as a function of just Tmax (E5) and fix the shape parameter to a 

constant value.

Because the single PP model is optimized by considering all available observations, it 

functions best when the ozone-temperature relationship shows little variability across 

different temperature regimes. Thus the PP model may fail to capture ozone suppression at 

extremely high temperatures. Here we use the Generalized Pareto Distribution (GPD) model 

to formulate the ozone distribution at those sites where ozone suppression occurs. The GPD 

accounts for only the intensity of values above the high threshold (u) and not the probability 

of ozone exceeding this threshold [Coles, 2001]. In order to account for the frequency of 

exceedances, we use a logistic regression model, which we call the hybrid-EVT model.

As an example of this problem and our approach to solving it, Figure S4a shows the 

distribution of mean daily MDA8 ozone concentrations and Tmax in May–September from 

2003 to 2012 in Nanticoke, PA (76.0W, 41.2N). The Z-test described in Section 3 suggests 

that ozone suppression occurs at Tmax > 303 K. The 90th percentile ozone at this site is 70 

ppbv (threshold u), and Figure S4b shows the observed and fitted fraction of ozone above 

this threshold, revealing a bias in modeled Tmax above 303 K. The bias suggests that the PP 

model fails to capture the ozone suppression at this site. To remedy this problem, we refit the 

part of data above the cut-off temperature (Tx) for ozone suppression using a logistic 

regression and a GPD. The GPD is defined by two parameters, the scale parameter ϕ* and 

the shape parameter ξ*, while the logistic regression is defined by two parameters denoted 

as θ1 and θ2. The probability density P of ozone is defined as

(E6)
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where Tx is the cut-off temperature for observed ozone suppression, the logit(T|θ1,θ2) is the 

probability of ozone exceeding Tx using a logistic regression conditioned on daily maximum 

temperature, and ϕ* and ξ* are the scale and shape parameters of the GPD. The number of 

data points characterized by ozone suppression is relatively limited, making it challenging to 

use a non-stationary GPD. For simplicity, we therefore use a stationary GPD with fixed scale 

and shape parameter. In the resulting hybrid-EVT model, the likelihood L of an ozone 

exceedance over the entire dataset is

(E7)

As seen from the equation, the likelihood consists of two parts, the PP model and logistic-

GPD. Because these two parts are independent of each other, the maximum likelihood 

estimation can be divided into two independent parts, reducing the computation complexity. 

We perform this calculation in extRemes [Gilleland and Katz, 2011]. We find that the 

distribution of ozone in the high tails can be adequately fitted using this hybrid-EVT model. 

For the model evaluation, we use a 10-fold cross-validation, in which we use observations in 

one year as the test data and the rest as training data. This process is repeated for every year 

in the time series. The coefficient of determination (R2) between annual mean observed and 

simulated ozone episodes across the United States is as high as 0.98, as seen in Figure S5.

 5 The 2000–2050 trend in ozone episode days in RCP4.5

Increasing greenhouse gases will lead to higher temperatures across North America, with 

potential implications for the frequency or duration of extreme ozone episodes. Figure S6 

shows the change in the mean and 99th percentile daily Tmax values for May–September 

across the United States, projected by 19 downscaled CMIP5 models from 2000–2009 to 

2050–2059 for RCP4.5. Mean daily Tmax increases by 2–2.5 K over much of the North in 

this timeframe, including the northern Intermountain West, northern Great Plains, the 

Midwest, and the Northeast. In the deep South and Southwest, mean daily Tmax increases 

~1.2–1.8 K.

To estimate the frequency of future ozone episodes, we apply the hybrid-EVT model to the 

CMIP5 future temperature projections. First, we assume the anthropogenic emissions of 

ozone precursors remain at the present level (2003–2012) during the 2050–2059 timeframe. 

Second, we apply a parametric bootstrap to the hybrid-EVT model and simulate the 2003–

2012 observed ozone observations 500 times. In each bootstrap step, the fitted hybrid-EVT 

model calculates the ozone concentration distribution as a function of Tmax at each site for 

the CMIP5 historical (2000–2009) and future scenarios (2050–2059). The ozone 

distributions over these timeframes are calculated by averaging the ozone distribution for all 

days. Third, we calculate the cumulative probability of ozone episode days for 2000–2009 

Shen et al. Page 7

Geophys Res Lett. Author manuscript; available in PMC 2017 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and 2050–2059 in each model and at each site. For all sites in the East and most sites in the 

West, an ozone episode day is defined as a day with MDA8 ozone greater than 75 ppbv. In 

California, where 53 sites experience MDA8 ozone of 75 ppb more than 20% of the time, 

we define an ozone episode day as the 90th percentile of 2003–2012 ozone concentrations. 

Fourth, we calculate the mean and standard deviation in the changes of ozone episode days 

across the 19 CMIP5 models at each site. These metrics can be written as

(E8)

(E9)

where Δxi,j is the changes in ozone episode days by 2050s in the ith (1 ≤ i ≤ 19) model and 

jth (1 ≤ j ≤ n) bootstrap simulations,  is the average change in ozone episode days across 

all models and all bootstrap simulations, σtotal is the standard deviation across all models and 

bootstrap simulations.

Figure 3a shows the predicted changes in the number of ozone episode days in May–

September from 2000–2009 to 2050–2059. We find that the number of episode days 

increases by an average of 2.3 days across all sites in the United States from 2000 to 2050, 

with many sites in the California, Northeast, and Great Lakes regions revealing increases of 

3 to 9 days a−1, with the relative change ranging from 40% to 100%. This spatial distribution 

of projected ozone exceedance days arises from two causes. First, the present-day number of 

ozone episodes is already large in some regions (e.g., Northeast, Midwest and Southwest, 

Figure S3a), implying a greater potential for more frequent ozone episodes as temperatures 

rise. Second, as shown in Figure S6, the Northeast, Midwest, and southern California 

regions all experience more frequent extreme temperatures in the future atmosphere, driving 

relatively large increases in ozone episode days in these areas. Changes in ozone episode 

days in the Southeast, however, are generally below 1 day a−1 or even negative. This result is 

consistent with Figure S3, which shows that surface ozone in the Southeast is relatively 

insensitive to changes in Tmax or even exhibits a negative response to increasing Tmax 
[Camalier et al., 2007; Bloomer et al, 2009; Wu et al, 2008; Porter et al., 2015]. In addition, 

the projected increases in temperature in the Southeast are 1–2 K less than elsewhere in the 

United States (Figure S6).

Figure 3b shows the total standard deviation (σtotal, E9) calculated from the 19 projections in 

different CMIP5 models over all bootstrap simulations. The uncertainty is greatest in the 

Northeast and Southwest, reaching 2–5 days a−1, but much less in other regions, showing a 

similar spatial pattern with the average changes of ozone episodes in Figure 3a. We further 

decompose the total standard deviation into two parts: the internal part caused by uncertainty 
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of the parameters in the hybrid-EVT model and the external part caused by different 

temperature projections (Text S4). As seen from Figure S7, the external standard deviation is 

much greater than the internal one in the Northeast, Midwest, and California, suggesting that 

the uncertainty in the projections of ozone episode days stems mainly from the range of 

Tmax projections in the CMIP5 ensemble. To test the robustness of our results, we repeat 

this analysis using the daily mean temperatures from CMIP5 instead of daily Tmax. As 

shown in Figure S8, the changes in ozone episodes calculated in this way exhibit a similar 

spatial pattern as those calculated with Tmax (Figure 3a), with an average of additional 1.9 

days a−1 by the 2050s across the United States. The 90th and 10th percentile changes in 

ozone episodes as calculated using Tmax from the 19 CMIP5 models are displayed in Figure 

S9.

 5 Discussion and conclusions

Using extreme value theory (EVT) and downscaled CMIP5 temperatures, we develop a 

hybrid-EVT model to examine the impact of 2000–2050 climate change on ozone episode 

days at 816 sites across the United States. We define an ozone episode day as those days 

when MDA8 ozone is greater than 75 ppbv, and use daily Tmax as the sole predictor. We 

first examine the stationarity of the ozone-temperature slopes using observed MDA8 ozone 

and daily Tmax during the ozone season (May–September) from 2003 to 2012. At very high 

temperatures (above the 95th percentile), we find that 20% of U.S. sites exhibit a significant 

decrease in the ozone-temperature slope. Our study marks the first time such ozone 

suppression has been detected not just in California [Steiner et al., 2010], but also in the 

Northeast, Southwest, and deep South.

Our hybrid-EVT model consists of two parts: (1) a point process model to simulate the 

ozone tails and (2) a logistic regression and a Generalized Pareto Distribution (GPD) model 

to capture the observed ozone suppression. Using this model, we find that observed and 

simulated ozone episode days closely correlate across the United States. Combining the 

model with future projections of statistically downscaled values for Tmax from CMIP5 

following the RCP4.5 scenario, we find that ozone episodes increase by 3–9 days a−1 in the 

Northeast, Midwest and Southwest from 2000 to 2050, and by 0–2 days elsewhere. Our 

method assumes constant anthropogenic emissions at present-day levels, and the climate 

penalty we report considers only the influence of climate change on ozone episodes. Our 

results point to the need for ambitious emission controls to offset this penalty, especially in 

the Northeast and Southwest.

This study represents the first time that statistically downscaled meteorology from a large 

ensemble of climate models has been used to project future changes in ozone air quality. 

Using the median results of such an ensemble significantly decreases uncertainty in our 

projections. To our knowledge, this study is also the first to quantify the relationship of 

ozone and temperature in the United States using a hybrid-EVT model that takes into 

account ozone suppression at extremely high temperatures. Drawbacks of the model include 

its assumption of constant anthropogenic emissions. The model also has difficulty predicting 

changes in ozone episodes in the deep South, where ozone and surface temperature exhibit 

relatively low correlation. Previous studies have shown that synoptic scale phenomena such 
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as the Bermuda High and the Great Plains low level jet control MDA8 ozone variability in 

the South [e.g., Shen et al., 2015], but the influence of these phenomena on ozone episodes 

is unknown. Despite such limitations, the hybrid-EVT model promises to serve as a useful 

tool to rapidly assess the climate penalty on U.S. ozone air quality.
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Key Points

• We use observed ozone-temperature relationships and extreme value theory 

to predict future ozone.

• An unexpected 20% of U.S. sites show ozone suppression at extremely high 

temperatures.

• Results from CMIP5 imply increases in U.S. ozone episodes by as much as 

3–9 days by the 2050s.

Shen et al. Page 13

Geophys Res Lett. Author manuscript; available in PMC 2017 April 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Distribution of EPA sites exhibiting “ozone suppression” at high temperatures in the (a) 

AQS and (b) CASTNET datasets during May to September for 2003–2012. Red points 

denote sites with significant ozone suppression at the p < 0.05 level, and black points are all 

other sites.
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Figure 2. 
(a) Simulated ozone suppression in GEOS-Chem (May–September, 2004–2012). Red points 

denote sites exhibiting significant ozone suppression at the p < 0.05 level. (b) Difference in 

the slope dO3/dT for two temperature regimes, high (> 95th percentile) and normal (50th to 

95th percentiles). The slopes are calculated by applying a uniform 1 K increase in surface 

temperatures in a sensitivity simulation. Positive values show where modeled dO3/dT is 

greater in the high temperature regime than in the normal regime. Negative values show the 

opposite, and reveal where the model predicts that ozone suppression at high temperatures 

takes place due solely to photochemical effects.
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Figure 3. 
(a) Mean changes from 2000–2009 to 2050–2059 in ozone episode days due to climate 

change in the RCP4.5 scenario, as calculated using statistically downscaled projections of 

daily maximum temperatures from 19 CMIP5 models. (b) The standard deviation of the 

changes in ozone episode days across the 19 CMIP5 models at each site. The sites where the 

inclusion of Tmax does not improve the EVT model for daily MDA8 ozone are denoted by 

black triangles.
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