Table 2. Model evaluation of the nine species distribution methods (see the methods section for abbreviations) and their ensemble prediction (EP).
Model | AUC | TSS | BI |
---|---|---|---|
ANN | 0.917 ± 0.006* | 0.807 ± 0.071* | 0.802 ± 0.032* |
BRT | 0.972 ± 0.027* | 0.891 ± 0.043* | 0.873 ± 0.041* |
CTA | 0.915 ± 0.023* | 0.849 ± 0.057* | 0.811 ± 0.022* |
FDA | 0.905 ± 0.025* | 0.803 ± 0.002* | 0.918 ± 0.014* |
GAM | 0.947 ± 0.021* | 0.864 ± 0.077* | 0.873 ± 0.041* |
GLM | 0.911 ± 0.086* | 0.805 ± 0.011* | 0.982 ± 0.017* |
MARS | 0.904 ± 0.066* | 0.801 ± 0.021* | 0.909 ± 0.057* |
MAXENT | 0.942 ± 0.056* | 0.865 ± 0.082* | 0.964 ± 0.035* |
RF | 0.998 ± 0.002* | 0.989 ± 0.011* | 0.804 ± 0.088* |
EP | 0.951 ± 0.048* | 0.902 ± 0.022* | 0.981 ± 0.019* |
Area Under the Curve (AUC) ranges between 0 and 1 (worse than a random model and best discriminating model, respectively). True Skill Statistic (TSS) and Boyce’s Index (BI) ranges between −1 and 1 (higher values indicate a good predictive accuracy, while 0 indicates random prediction). Average values ± standard deviations are shown (*: P < 0.001).