Skip to main content
. 2016 Jul 1;11(7):e0158203. doi: 10.1371/journal.pone.0158203

Table 2. Model evaluation of the nine species distribution methods (see the methods section for abbreviations) and their ensemble prediction (EP).

Model AUC TSS BI
ANN 0.917 ± 0.006* 0.807 ± 0.071* 0.802 ± 0.032*
BRT 0.972 ± 0.027* 0.891 ± 0.043* 0.873 ± 0.041*
CTA 0.915 ± 0.023* 0.849 ± 0.057* 0.811 ± 0.022*
FDA 0.905 ± 0.025* 0.803 ± 0.002* 0.918 ± 0.014*
GAM 0.947 ± 0.021* 0.864 ± 0.077* 0.873 ± 0.041*
GLM 0.911 ± 0.086* 0.805 ± 0.011* 0.982 ± 0.017*
MARS 0.904 ± 0.066* 0.801 ± 0.021* 0.909 ± 0.057*
MAXENT 0.942 ± 0.056* 0.865 ± 0.082* 0.964 ± 0.035*
RF 0.998 ± 0.002* 0.989 ± 0.011* 0.804 ± 0.088*
EP 0.951 ± 0.048* 0.902 ± 0.022* 0.981 ± 0.019*

Area Under the Curve (AUC) ranges between 0 and 1 (worse than a random model and best discriminating model, respectively). True Skill Statistic (TSS) and Boyce’s Index (BI) ranges between −1 and 1 (higher values indicate a good predictive accuracy, while 0 indicates random prediction). Average values ± standard deviations are shown (*: P < 0.001).