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Abstract

While the importance of epistasis is well established, specific gene-gene interactions have rarely 

been identified in human genome-wide association studies (GWAS), mainly due to the low power 

associated with such interaction tests. In this chapter, we integrate biological knowledge and 

human GWAS data to reveal epistatic interactions underlying quantitative lipid traits which are 

major risk factors for coronary artery disease. To increase power to detect interactions, we only 

tested pairs of SNPs filtered by prior biological knowledge, including GWAS results, protein-

protein interactions, and pathway information. Using published GWAS results and 9,713 European 

Americans (EA) from the Atherosclerosis Risk in Communities (ARIC) study, we identified an 

interaction between HMGCR and LIPC affecting high-density lipoprotein cholesterol (HDL-C) 

levels. We then validated this interaction in additional EA cohorts from the Framingham Heart 

Study and the Multi-Ethnic Study of Atherosclerosis (MESA). We also validated the interaction in 

the ARIC African American sample and in the Hispanic American sample from MESA. Both 

HMGCR and LIPC are involved in the metabolism of lipid and lipoproteins, and LIPC itself has 

been associated with HDL-C. Moreover, the interaction affects HDL-C twice as much as the 

marginal effect of LIPC, with the effect of the two genes and their interaction combined explaining 

0.8% of the variation in HDL. These results suggest the potential of the biological knowledge-

driven approach to detect epistatic interactions in human GWAS, which may hold the key to 

exploring the role gene-gene interactions play in connecting genotype and phenotype in current 

and future genetic association studies.
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 Introduction

As of February 2013, over 1,489 publications and 8,271 single nucleotide polymorphisms 

(SNPs) have been collected in the catalog of genome-wide association studies (GWAS) [1]. 

Though these SNPs are significantly associated with human diseases and traits, most of them 

have a small effect and in aggregate account for a low proportion of the heritable variance 
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[2,3,4,5,6]. Four lipid traits, total cholesterol (TC), low-density lipoprotein cholesterol 

(LDL-C), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) levels, are 

among the most important risk factors for coronary heart disease. Recently, several meta-

analyses of many GWAS, with a combined sample size of up to 100,000, have detected 

hundreds of loci associated with the levels of the four lipids [7,8]. However, these loci 

collectively only explain 25–30% of heritable variance of each lipid [7,8]. Many hypotheses 

have been offered to explain such missing heritability, including rare and structural variants, 

gene-environment interactions, epigenetics, and complex inheritance [2,3,4,5]. The missing 

heritability may also be partially attributed to epistatic or gene-gene interactions [9,10,11], 

and we seek to identify examples of pairwise SNP by SNP interaction effects on any of the 

four lipid levels in this study.

Since Bateson’s first discovery in 1905 that some genes suppress the effects of other genes 

[12], researchers have been investigating the effect of epistasis in order to better understand 

the complex relationship between genotype and phenotype. Studies of model organisms 

suggested epistasis or gene-gene interactions to be a common phenomenon [13,14,15,16], 

and a number of gene-gene interactions have been reported in gene mapping studies in 

animals, plants, and other model organisms [17,18,19,20]. However, gene-gene interactions 

have proven difficult to find in humans [21,22], mainly due to low statistical power caused 

by the small effect size, the low minor genotype frequency of the multiple-SNP 

combinations, the large combinatorial number of interaction tests required [14,23], and the 

lack of control of environmental conditions. Hence, in order to improve the power of 

detection of gene-gene interactions in human GWAS, many approaches have been developed 

to prioritize candidate genes or SNPs using biological knowledge from established GWAS 

hits [6,24], protein-protein interactions (PPIs) [25,26], and pathway information [27].

Tests of gene-gene interactions are not as powerful as tests of single-marker association, so a 

judicious strategy is essential for a successful epistasis analysis in human GWAS [11,14,15]. 

One fundamental limitation to the analysis of epistasis is that the statistical power of each 

particular test can be easily eroded by the performance of vast numbers of pairwise or 

higher-order interaction tests. In order to achieve a similar success for interaction analysis as 

one obtains with single-marker tests in GWAS, we are limited to performing a similar 

number of tests (~1 million), assuming the nominal per-test power to detect interaction is the 

same as that of a single-marker association test. This limitation prevents us from conducting 

an inclusive all-by-all interaction analysis in current human GWAS, which typically 

examines millions of SNPs. If one were to attempt all-by-all epistasis tests, the result is such 

reduced power that only the most exceptionally strong interactions could be detected. 

Therefore, we recommend epistasis analysis be done on a reduced number of SNPs, using 

prior biological knowledge as the simplest way to restrict SNP numbers. The selection of 

candidate genes or SNPs can be based on any factor(s) that the biologist or medical 

practitioner chooses. So long as the gene choice is not based on the tests of interactions 

itself, winnowing down the gene set will not inflate the type I error and can increase the 

power when the underlying interactions are enriched between the candidate genes or SNPs. 

Criteria such as SNP density, local linkage disequilibrium (LD), and data quality can further 

supplement primary knowledge of gene function, pathway position, connectedness to 

networks, etc. in selecting genes.
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We illustrate the biological knowledge-driven approach with examples from analysis of large 

consortium cohort studies of cardiovascular disease [6]. We tested for pairwise SNP by SNP 

epistatic interactions affecting the level of four lipids, TC, LDL-C, TG, and HDL-C, based 

on prior knowledge of published GWAS hits, PPIs, and pathway information. Based on 

GWAS hits, we detected an interaction between HMGCR and a locus upstream of LIPC in 

their effect on HDL-C levels in the discovery data set from the Atherosclerosis Risk in 

Communities (ARIC) study. Using a locus-based replication procedure, we validated this 

interaction in cohorts from the Framingham Heart Study (FHS) and from the Multi-Ethnic 

Study of Atherosclerosis (MESA). In summary, a biological knowledge-driven approach 

might be crucial to the detection of epistatic interactions underlying complex traits and 

diseases in human GWAS.

 Methods and Results

 Descriptions of GWAS data

Three GWAS data sets were considered in this study, the Atherosclerosis Risk in 

Communities (ARIC) study, the Framingham Heart Study (FHS), and the Multi-Ethnic 

Study of Atherosclerosis (MESA). The ARIC study is a multi-center prospective 

investigation of atherosclerotic disease [28]. This analysis included 9,713 European 

Americans (EA) in the discovery study and 3,207 African American (AA) individuals in the 

validation study. The FHS is a prospective cohort study to evaluate cardiovascular disease 

(CVD) risk factors, which has been described in detail previously [29]. This analysis 

included 6,575 EA subjects in the validation study, while accounting for their familial 

relatedness (see Test of statistical interactions below). MESA is a prospective cohort study 

of individuals aged 45-84 years without clinical CVD recruited from 6 US centers [30], 

which is designed to study the characteristics of subclinical CVD and its progression. 

Participants of MESA self-reported their race or ethnicity group as EA, AA, Chinese 

American, or Hispanic American (HA). In total 2,685 EA, 2,588 AA and 2,174 HA 

individuals were included in the validation. All of the included subjects from the three 

GWAS studies have both genotypes and phenotypic (lipid) measurements available, as 

described in the following sections.

 Genotype data

Genotyping of samples was obtained from the ARIC study and MESA by Affymetrix 6.0 

SNP array. Affymetrix 6.0 SNP array genotyping of MESA samples and Affymetrix 500K 

SNP array genotyping of FHS samples were obtained from dbGaP (MESA SHARe, 

downloaded in May 2011; Framingham Cohort, downloaded in April 2010) [31]. Standard 

quality control (QC) filters were applied across each of the samples and SNPs, including: (1) 

exclusion of subjects with >10% missing data; (2) removing SNPs with call rates < 90%; (3) 

removing SNPs with minor allele frequencies (MAF) ≤ 1%; and (4) removing SNPs with 

Hardy-Weinberg Equilibrium (HWE) test with P < 10−6. For the SNP pairs to be tested, we 

also required: (1) sample size of each of the nine two-SNP combinations greater than 20 in 

the discovery analysis and greater than 10 in the validation study; and (2) LD measure of r2 

< 0.1 between the two candidate SNPs.
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When necessary, untyped SNPs was imputed using IMPUTE2 [32] with HapMap3 [33] and 

1000 Genomes [34] reference haplotypes, which resulted in about the same set of SNPs 

across the three studies. No imputation was performed in MESA HA samples due to the lack 

of appropriate reference haplotype panels. SNPs with information score < 0.6 were excluded 

and each genotype was imputed with the genotype with the highest posterior probability. 

When the highest posterior probability is less than 0.8, the genotype was treated as missing.

 Phenotype data

Four quantitative lipid measurements, total cholesterol (TC), LDL cholesterol (LDL-C), 

triglyceride (TG), and HDL cholesterol (HDL-C), were considered in the analysis. Each 

lipid level is measured at multiple time points and the average level per individual was used 

in all studies. A log transformation was applied to TG levels to normalize its distribution 

because of the skewness in the original distribution. Individuals self-reported to be taking 

lipid-lowering medications were excluded. Sex, age, age squared, body mass index (BMI) 

were included as covariates in all analyses. The average values for age, age squared, and 

BMI were also used whenever multiple measurements were available. Plate number is also 

included as a covariate factor in the ARIC data due to its correlation with some of the lipid 

levels (known as “plate effect”).

 Test of statistical interactions

Statistical interactions between pairs of SNPs were tested on a quantitative trait. For each 

individual, let Y denote the trait of interest and Gi denote the genotype of the ith SNP (i = 1, 

2). Gi is the number of copies of the reference allele, thus with possible values 0, 1, or 2. 

Two indicator variables, xi and zi, were defined for each of the two SNPs as,

Two linear models were fitted and compared for testing of interaction. The first model (M1) 

included additive and dominance effect terms for each of the two SNPs without including 

any interaction effects between the two SNPs; The second model (M2), on top of M1, allows 

for four classic forms of epistatic interactions (additive × additive, additive × dominance, 

dominance × additive, and dominance × dominance), as follows:

(M1)

(M2)

Here, β0 is a vector of the intercept and possible non-genetic covariates. ai and di are the 

additive and dominance effects of the ith SNP. iaa, iad, ida, and idd denote the four classic 

interaction effects between the two SNPs. The existence of an epistatic interaction of any 
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combination of the four types was tested by an F-test comparing M1 and M2 with four 

degrees of freedom [6,35]. This classical test of statistical interactions is similar to the “--

epistasis” option in PLINK [36], except that only additive effects and additive × additive 

interaction are considered, such that an F-test with one degree of freedom is performed in 

PLINK.

Potential population stratification was corrected by principal component (PC) approach and 

familial relationship in FHS was accounted for using a mixed model approach [22,37]. PC 

analysis was conducted using EIGENSOFT [37] and the top 10 PCs were included in the 

analysis as covariates to account for population stratification in ARIC and MESA samples. 

For FHS, a mixed model approach was first applied to account for familial relatedness and 

then pairwise interaction was tested on the residuals from the mixed models [22].

 Locus-based validation of interactions

We sought to validate (replicate) the interactions detected in the discovery study using data 

from FHS, MESA and another AA sample from the ARIC study. “Validate” rather than 

“replicate” was used here because linked and proximate SNPs were included in the 

validation in addition to the original SNPs, as follows. For a significant interaction between 

two SNPs (e.g. A and B) in the discovery study, we perform the following possible stages of 

tests in the validation study: (i) Test for interaction directly between SNP A and SNP B; (ii) 

If the interaction is not significant in Stage (i), test for interaction between SNP A and each 

SNP less than 200 kb away from SNP B, and similarly between SNP B and each SNP 

surrounding SNP A; (iii) If no test in Stage (ii) is significant following multiple-testing 

correction, test for interaction between each SNP less 100kb away from A and each SNP 

less than 100kb away from B. Assume there are n1 and n2 SNPs respectively surrounding 

SNPs A and B, the number of statistical tests to be conducted is 1, n1 +n2, and n2 in the three 

validation stages respectively. To reduce the number of tests and the cost of multiple-testing 

correction on power, the validation process proceeds sequentially and stops at any stage 

where significant results were found after multiple-testing correction.

 Prioritize SNP pairs using biological knowledge

Though only pairwise interactions are considered, the total number of possible interaction 

tests across 2.5 million SNPs is still huge, at more than 3×1012 tests. Due to the severe 

reduction in power entailed by stringent multiple-testing correction for such a large number 

of tests, it is crucial to restrict the total number of tests for the whole study. Therefore, 

through the following three strategies, we aimed to reduce the total number of interaction 

tests and to enrich interaction signals in the fewer number of tests considered.

 1. Lipid GWAS results—In total, 95 genetic loci have been recently reported to be 

associated with TC, LDL-C, TG, or HDL-C in a GWAS meta-analysis [7]. We considered 

125 SNPs in the 95 loci and tested each pair of SNPs on TC, LDL-C, TG, and HDL-C in the 

discovery sample of 9,713 EAs from the ARIC study. The 125 SNPs have been previously 

associated with any of the four lipid levels [7]. Using this approach, we tested ~7,748 

pairwise interactions for each trait. We identified one significant interaction affecting LDL-C 

levels and one interaction on HDL-C. The interaction on LDL-C was between rs2247056 
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and rs1030431 (Pc = 0.03 after Bonferroni correction). Both rs2247056 and rs1030431 were 

marginally associated with LDL-C, TG, and TC [7,38]. We then performed fine mapping 

analysis in the two loci surrounding the two SNPs to find the most significant interaction to 

be between rs2853928 and rs1993453 (Pc = 0.01). We tried to validate this interaction on 

LDL-C in additional replication samples from ARIC, FHS, and MESA, but had no success.

The interaction on HDL-C was between rs12916 and rs1532085 (Pc = 0.008) in the 

discovery study and was successfully validated in the replication samples (Table 1). To 

further explore the interaction between the two loci, we tested interaction between each SNP 

surrounding rs12916 and each SNP surrounding rs1532085 within a 100 kb distance. While 

many of these SNP pairs show significant interactions due to LD, the strongest signal was 

between rs3846662 and rs2043085 (Pc = 0.002). SNP rs3846662, located in the intron of 

gene HMGCR, has been previously associated with TC and LDL-C [7,39], but not with 

HDL-C. Rs3846662 has also been shown in vitro to be associated with a 2.2-fold change in 

HMGCR expression [40] and affect alternative splicing of exon 13 [41]. The other SNP, 

rs2043085, has been found to be marginally associated with HDL-C [7]. Rs2043085 is 

located upstream of LIPC and associated with the expression of the gene [6]. On top of the 

marginal effects, the interaction between the two SNPs affects HDL-C twice as much as the 

effect of LIPC alone: While on average individuals with TT genotype at rs2043085 show an 

increase of 2.63 mg/dl in HDL-C, subject with TT at rs2043085 and AA at rs3846662 

exhibits an average increase of 5.72 mg/dl. The linear model with these two SNPs and their 

interaction has an r2 value of 0.8%, meaning that these two SNPs and their interaction 

combined explain a 0.8% of phenotypic variation in HDL-C. Using the locus-based 

validation procedure, the interaction between rs3846662 and rs2043085 on HDL-C was 

successfully validated in Stage (ii) for MESA EA samples and in Stage (iii) for FHS EA, 

MESA HA and ARIC AA cohorts (Table 1). It did not validate significantly after multiple-

testing correction for the MESA AA sample with a smaller sample size.

 2. Protein-protein interactions (PPIs)—Over 3,000 high-confidence human PPIs 

were carefully assembled [42]. For each gene pair indicated by a PPI, we exhaustively tested 

all pairwise interactions between each SNP in the first gene and each SNP in the second one. 

Suppose n1 and n2 are the numbers of SNPs in the first and second genes respectively, the 

number of possible pairwise interactions is n1 × n2. To map SNPs to genes, gene information 

(hg18) was obtained from the UCSC genome browser [43] and we considered all SNPs 

located between 5 kb upstream and 5 kb downstream of a gene. For each of the four lipid 

traits, we performed ~6 million pairwise interaction tests according to the ~3,000 PPIs, 

which, however, resulted in no significant interactions following multiple-testing correction.

 3. Lipid pathway information—We hypothesized that possible gene-gene interactions 

are enriched between genes in the lipid related pathways. To test this hypothesis, we used 

the metabolism of lipids and lipoproteins pathway as an example. There are a total of 228 

genes in this pathway [44] and 12,716 SNPs are mapped to the 228 genes. We tested all 

pairwise interactions among the 12,716 SNPs, resulting in a total of ~27 million interaction 

tests for each lipid trait. Hence, it is not surprising that we found nothing significant after 

multiple-testing correction. However, there is a deviation in the QQ plot of the P values for 
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interactions underlying TC levels. The interaction between rs4804546 and rs914196 is the 

strongest, though not significant following correction for the ~27 million tests (Pc = 0.14). 

The interaction is between two genes, CARM1 and AGPAT3, from the metabolism of lipids 

and lipoproteins pathway. Gene AGPAT3 has been associated with the level of phospholipid 

[45], and CARM1 has not been found to be associated with any lipid levels.

 Notes

To ensure accuracy and power, quality control is of crucial importance in genetic association 

studies, as well as in epistasis analysis [46,47]. Non-normality and outliers in the 

distribution of the phenotypes can potentially lead to false positive interactions with very 

small P values, particularly when the individuals carrying the minor multi-SNP genotype 

incidentally are also outliers in phenotype. When both outliers and low-frequency SNPs 

exist in the data, the chance of false positives will be greatly increased. Therefore, a minor 

multi-SNP genotype frequency filter (20 in discovery and 10 in validation in this study) is 

necessary when testing for interactions, much like the MAF filtering in typical GWAS.

While the interaction we identified was replicated in multi-ethnic populations, it has a small 

effect size, which is about the same magnitude as the marginal effect discovered in GWAS 

for complex diseases and traits. If this is the case for general epistatic interactions, we will 

have even lower power for detecting epistasis than marginal associations, which also 

explains why so few interactions have been detected and replicated in human GWAS.

Note that the interaction we detected in this study was validated in part by proximate SNPs, 

thus indicating the power of integrating information from a genomic region surrounding the 

target SNPs, like a gene-based test for marginal associations. Recently, a series of gene-

based interaction testing methods have been developed in the literature [48,49,50,51,52], 

which can be employed to increase power of detecting and replicating interactions.

In this study, we detected significant interactions after multiple-testing correction only in < 

10k tests guided by GWAS results, but found nothing significant in 6 million and 27 million 

tests respectively using PPI and pathway information. By noticing that the discovery study is 

already powerful with a sample size of ~10k, multiple measurements of the phenotypic 

values, and a genome-wide 1 million SNP genotyping, we only afford to perform <10k tests. 

In conclusion, a small-scale biological knowledge-driven study with higher enrichment of 

putative signals may hold the key to identifying gene-gene interactions underlying complex 

diseases or traits in current and future human association studies.
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