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Abstract

Mixture modeling is a popular technique for identifying unobserved subpopulations (e.g., 

components) within a data set, with Gaussian (normal) mixture modeling being the form most 

widely used. Generally, the parameters of these Gaussian mixtures cannot be estimated in closed 

form, so estimates are typically obtained via an iterative process. The most common estimation 

procedure is maximum likelihood via the expectation-maximization (EM) algorithm. Like many 

approaches for identifying subpopulations, finite mixture modeling can suffer from locally optimal 

solutions, and the final parameter estimates are dependent on the initial starting values of the EM 

algorithm. Initial values have been shown to significantly impact the quality of the solution, and 

researchers have proposed several approaches for selecting the set of starting values. Five 

techniques for obtaining starting values that are implemented in popular software packages are 

compared. Their performances are assessed in terms of the following four measures: (1) the ability 

to find the best observed solution, (2) settling on a solution that classifies observations correctly, 

(3) the number of local solutions found by each technique, and (4) the speed at which the start 

values are obtained. On the basis of these results, a set of recommendations is provided to the user.
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Finding subgroups in data is a popular analytic goal in exploratory data analysis. Although 

many techniques are available to partition a data set, one of the most commonly 

implemented is mixture modeling (also known as latent profile analysis or finite mixture 
modeling). The most common iterative algorithm to find maximum likelihood parameters 

for a mixture model is the expectation-maximization (EM) algorithm (Dempster, Laird, & 

Rubin, 1977), which relies upon a set of initial starting values. A poor set of starting values 

for the EM algorithm can significantly impact the quality of the resulting solution 

(Biernacki, Celeux, & Govaert, 2003; Seidel, Mosler, & Alker, 2000). Considering that 

mixture models also suffer from a prevalent local-optima problem (Hipp & Bauer, 2006; 

McLachlan & Peel, 2000; Shireman, Steinley, & Brusco, 2015), the choice of starting values 

in mixture modeling is paramount to finding a solution that is accurate. The goal of this 
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article is to assess the quality of a variety of commonly implemented techniques to generate 

starting values for estimating a mixture model.

To gain a deeper understanding of the properties of the methods used to initialize mixture 

models, four different characteristics of starting values will be examined: (1) the abilities of 

the techniques to provide values that lead to the best observed solution (noting that the true 

solution, or global optimum, is unknowable); (2) the abilities of the techniques to provide 

values that lead to a solution with an accurate classification of observations; (3) their 

propensities to find locally optimal solutions; and (4) the speeds at which the techniques 

provide initial values. We will begin by describing mixture modeling and the EM algorithm, 

followed by a description of the initialization strategies included in this study. The 

simulations and their results are then explained in detail, followed by a discussion.

Mixture model

Mixture modeling is the process of fitting a chosen number of probability density functions 

(pdfs) to data. If X is an n × p matrix of observed variables, then the population density,

is a mixture of K independent pdfs (also referred to as components, mixtures, classes, or 

groups), fk of which each contain a proportion, πk, of the total population. The proportions 

must sum to unity ( ), and each must be greater than zero (i.e., there are no 

empty classes; πk > 0, k = 1, …, k). In the common case of mixtures of multivariate normal 

distributions (e.g., Gaussian mixture modeling), each fk is the Gaussian density, and ϑk 

contain the p × 1 mean vector μk and the p × p covariance matrix Σk for the kth cluster. For a 

full treatment of Gaussian mixture modeling and several variants, we refer readers to the 

definitive text by McLachlan and Peel (2000).

EM algorithm

As we mentioned above, the EM algorithm is commonly employed to obtain maximum 

likelihood estimates for the parameters of the mixture model (for more details on the EM 

algorithm, we refer readers to McLachlan & Krishnan, 1997, and McLachlan & Peel, 2000). 

After obtaining initial parameter estimates, the EM algorithm alternates between (a) 

estimating the posterior probability of an observation belonging to each mixture by 

assuming that the parameters are fixed (the E-step), and (b) updating estimates of the 

parameters by fixing the posterior probabilities of class membership (the M-step). The 

algorithm continues until the change in the likelihood criterion is below a set tolerance level, 

or until a maximum number of iterations has been reached.

The EM algorithm is guaranteed to arrive at a local maximizer of the likelihood function 

(i.e., a local optimum, although in rare instances the algorithm can settle on a saddle point; 
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McLachlan & Krishnan, 2008). Whether or not this value is the globally optimal solution is 

unknown.1 Additionally, researchers have typically explored several models, with different 

numbers of clusters and increasing numbers of covariance parameters (like the nine 

covariance decompositions used in the mixture modeling program “mclust”; Fraley & 

Raftery, 2006). This leads to a large number of models to choose from,2 and selecting 

among these models is typically done with a fit statistic, the most common of which is the 

Bayes information criterion (BIC; Schwarz, 1978).

The EM algorithm is deterministic, meaning that upon repeated initializations, a given set of 

starting values will necessarily converge to the same solution. Consequently, given its 

influence on the final solution, appropriately choosing starting values is paramount. At this 

point, the influence of starting values on the performance measures mentioned above (the 

goodness of fit and quality of the resulting solution, as well as the speed to return the start 

values) has been underevaluated. Given the propensity for mixture models to arrive at local 

solutions (Shireman, Steinley, & Brusco, 2015), it is unlikely that any particular solution 

(regardless of the initialization strategy) will be globally optimal. However, by generating 

data with a known cluster structure, the quality of any given initialization strategy can be 

assessed in terms of its recovery of that structure (Steinley & Brusco, 2011a). Steinley and 

Brusco (2007) used a similar dual assessment to determine which initialization strategy for 

k-means clustering was best, in terms of both the objective function and cluster recovery 

(see also Steinley, 2006b). The need for such guidance is made clear by the fact that Steinley 

and Brusco (2007) is the second most cited article (107 Citations) in the Journal of 
Classification since the article’s original publication.3

Initialization strategies

The existing techniques for initialization can be thought to follow two distinct philosophies. 

We will refer to the first as “uninformed” by the data; it contends that the use of a brute-

force search technique will find the globally optimal solution by examining the entire 

landscape of the likelihood function. The other will be referred to as “informed” by the data, 

and it uses a directed-search approach to find the globally optimal solution (perhaps more 

quickly than an uninformed technique).

This article expands prior work investigating the efficacy of different initialization 

techniques for mixture models (Biernacki, Celeux, & Govaert, 2003; Karlis & Xekalaki, 

1Global optimality, although it is the main yardstick by which developers of initialization techniques create their algorithms, is 
perhaps not the “correct” solution (Gan & Jiang, 1999). However, we assume that if a researcher observes results that have a higher 
likelihood (or higher value on a fit index), the researcher will more than likely prefer it to any model with a lower likelihood. 
Therefore, we use the evaluation of “fit” using the Bayes information criterion (BIC), which does not completely correspond to the 
mathematical goal of global optimality, but in the case that the researcher has found the globally optimal likelihood, we assume that 
this would be the preferred, and thus the interpreted, solution. We refer to this as the “goal of global optimality,” and present the 
results of the best observed BIC to put our study into the context of the literature of other works examining initialization techniques. 
However, we believe that our inclusion of other measures of solution quality, such as the classification of individuals in the sample into 
groups, attenuates this focus on global optimality and widens the discussion of what should be considered the “best” initialization 
technique. We thank an anonymous reviewer for bringing up this important point.
2With one to four clusters and nine covariance matrix types, there are already 36 models to compare, not considering potential local 
solutions.
3This citation information was taken from a Google Scholar search on December 4, 2014, searching for articles published in the 
Journal of Classification from 2007 to 2014.
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2003; Melnykov & Melnykov, 2012) and clustering algorithms (Steinley & Brusco, 2007). 

Biernacki et al. examined the performance of initialization techniques for mixture modeling, 

but the techniques examined were limited to alternative instantiations of the EM algorithm. 

Karlis and Xekalaki, and Melnykov and Melnykov, investigated specific initialization 

approaches under a limited range of settings, with the former focusing only on univariate 
Gaussian mixtures and the main focus of the latter was determining the number of clusters 

present in the data. Steinley and Brusco (2007) examined 12 procedures for initializing the 

k-means clustering algorithm. k-means clustering is a similar analysis procedure to a 

mixture model (and is equivalent in the case of homogeneous, spherical clusters; see 

Steinley & Brusco, 2011b, for a discussion). Their examination included both techniques 

that were uninformed by the data (Faber, 1994; SPSS, 2003; Steinley, 2003) and that were 

informed by the data (Bradley & Fayyad, 1998; Milligan, 1980), concluding that an 

uninformed technique was sufficient for k-means clustering. The following investigation 

expands the work by Biernacki et al. by examining initialization techniques that were not 

included in their simulation but that are commonly employed in available software, while 

incorporating the proposed method of Karlis and Xekalaki in a broader comparison below 

(viz., an iteratively constrained technique).

What follows is a description of each of the initialization strategies, an illustration with real 

data, and two simulation comparisons of the techniques: one in which the amount of time to 

generate starting values was constrained, and another in which the techniques were allowed 

to take as long as required. The initialization strategies chosen for the comparative 

investigation are those that appear in the most commonly implemented software (two R 

packages “mclust” and “mixture,” and the statistical computing software LatentGOLD and 

Mplus); in fact, one would be hard-pressed to find software that did not utilize one of the 

following five approaches.

1. Random starting values—A common initialization technique in methodological and 

substantive research is the use of random values to initialize a mixture model. Random 
starting values in this context refer to randomly classifying each observation to one of k 
clusters, each cluster receiving an equal number of observations. The parameters (both the 

group-specific mean vectors and covariance matrices) estimated from this initial cluster 

assignment begins the first E-step of the EM algorithm. Considering the high prevalence of 

local solutions in mixture models, two solutions resulting from this technique are likely to be 

quite different from one another. For this reason, a researcher initializing a mixture model 

with random values should start many times4 and interpret the best solution obtained by 

using a fit criterion such as the BIC. Random starting values have been shown to have 

performance similar to or better than other initialization techniques involving restricted 

iterations of an alternative form of the EM algorithm (such as the classification EM or 

4It has been shown that a minimal number of starting values in order to arrive at an adequate solution should exceed 1,000 for some 
data types; see Steinley and Brusco (2007) and Shireman, Steinley, and Brusco (2015). However, given the breadth of the present 
simulation study, such a large number of initializations was infeasible; consequently, 100 random initializations were used. There exist 
so-called “global” optimizing algorithms to fit a mixture model that are designed to remove the guesswork of selecting the number of 
initializations required (De Boer, Kroese, Mannor, & Rubinstein, 2005; Heath, Fu, & Jank, 2009; Hu, Fu, & Marcus, 2007). However, 
these techniques are not yet implemented in popular software (e.g., SAS, 2012; the “mclust” package for the R computing software, 
described by Fraley & Raftery, 2006; or Mplus, Muthén & Muthén, 2012), nor are they immune from arriving at locally optimal 
solutions.
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stochastic EM, the details of which are omitted here; see McLachlan & Peel, 2000, and 

Biernacki et al., 2003).

There are ways of generating random starting values alternative to the one studied here. 

Many involve generating starting parameter values from a uniform distribution around some 

bounds informed by the data (see Hipp & Bauer, 2006; Muthén & Muthén, 2012); however, 

in the context of k-means clustering, Steinley (2003) found that random starting values that 

used only one observation per cluster increased the chances of being located in a “poor” part 

of the parameter space. Similarly, Karlis and Xekalaki (2003) found that randomly drawing 

parameters from their respective distributions exhibited poor performance.

Although random values have been shown to have decent performance, the main weakness 

of this initialization technique stems from the fact that many random starts must be 

implemented before a solution can be settled on. In addition, no existing technique can 

determine when the number of initializations is sufficient to ensure a full examination of the 

likelihood function.

2. Iteratively constrained EM—This technique makes the assumption that given a set of 

random values to initialize the algorithm, the quickest increase in likelihood will provide a 

better solution than random initializations that increase less rapidly. The technique involves 

running several iteratively constrained EM algorithms (themselves initialized with random 

starting values), thereby constraining the search space for the global optimum (see Lubke & 

Muthén, 2007, for a simulation application). The parameters of the best-fitting of these 

restricted solutions is used to start values in a mixture model that is allowed to iterate until 

convergence. A similar technique is used as the default for providing starting values in the 

statistical software Mplus Version 7 (Muthén & Muthén, 2012).5 This approach is a variant 

to the short-EM algorithm proposed in Biernacki et al. (2003), which was found to be the 

best-performing method.

There are a few drawbacks with the choice of an iteratively constrained technique. First, the 

user must choose the number of iterations in the initial-stage EM. The value chosen could 

then be sufficient for some likelihood functions, but perhaps not others (this is in contrast to 

initial values provided by an EM with large convergence criteria, which would not be as 

susceptible to this problem; see, e.g., Biernacki et al., 2003). An additional drawback is the 

selection of the number of initial-stage EM algorithms to run, which greatly increases the 

amount of time required for computation. Mplus defaults to 20 random starts, constrained to 

ten iterations of the EM algorithm. Finally, the same drawbacks from using random values 

still apply to the use of an iteratively constrained technique, since this technique is still 

susceptible to local optima and, by construction, only searches a limited part of the 

parameter space.

3. K-means clustering—The k-means clustering technique uses an alternative clustering 

solution from the data to provide its starting values. Considering the demonstrated 

5Mplus differs from the described examination in that it generates its initial random starting values from uniform distributions (see 
Hipp & Bauer, 2006, for a discussion) and also uses an accelerated quasi-Newton algorithm in conjunction with the typical EM 
algorithm for estimation.
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agreement between the results of a k-means cluster analysis and a mixture model (Steinley 

& Brusco, 2011b), the results from the k--means algorithm can provide close to accurate 

parameters when they are used as initial values for the EM algorithm. This technique is 

implemented in the R package “mixture” (Browne, ElSherbiny, & McNicholas, 2014) and 

has been recommended by McLachlan and Peel (2000) as a viable initialization strategy.

This clustering initialization is implemented by performing a k-means cluster analysis a 

number of times, perhaps hundreds, and using the classifications from the solution with the 

lowest sum of squared errors (the most cohesive clusters, a typical way of choosing the best 

k-means solution) as initial values in the first M-step of the EM algorithm. For more detail 

about the computation of a k-means cluster analysis and the issues therein, see Steinley 

(2006a).

As with the other techniques, there are drawbacks to the k-means initialization technique. K-
means clustering has been criticized for its inclination to find spherical clusters (e.g., the 

clustering counterpart of a latent profile mixture model) and its use of an ad-hoc clustering 

criterion (Lubke & Muthén, 2005). When the clusters are highly heterogeneous and non-

spherical, the results of a k-means clustering may not be an accurate representation of the 

data, and thus may not provide adequate starting values. In addition, k-means clustering is 

subject to locally optimal solutions, so it shares some of the difficulty of the methods 

previously described, that the number of initializations (and the number of times to start the 

k--means within the procedure) is still a subjective determination made by the researcher.

4. Agglomerative hierarchical clustering—Another common way to generate starting 

values using an alternative clustering of the data is with agglomerative hierarchical 

clustering. A hierarchical cluster analysis is performed, and a partition is provided of the 

chosen number of clusters. The parameters of these groups are used for the first, E-step of 

the mixture model estimation (for more detail on hierarchical clustering, see Everitt, Landau, 

Leese, & Stahl, 2011). A program utilizing hierarchical clustering for starting values is the 

“mclust” package, provided by Fraley and Raftery (2006) for the computing software R 

(www.r-project.org).

Hierarchical clustering may be an accurate way to describe data that are organized 

hierarchically (e.g., biological taxonomies), but some researchers have disputed the accuracy 

of classifications based on this form of cluster analysis (Edelbrock, 1979). It has been 

demonstrated, however, that starting values based on hierarchical clustering classifications 

perform well for a k-means cluster analysis (Dasgupta & Raftery, 1998; Fraley, 1998; 

Steinley & Brusco, 2007). In addition, the use of only one set of starting values can be a 

negative in some cases, since it restricts the search for a solution to only one possible result.

5. Sum scores—This technique finds initial class memberships by utilizing the sum score 

as a representation of the data. After calculating a sum score for each individual, the data are 

split into k equally sized ordered groups, and these groups are used for the M-step of the EM 

algorithm (for more detail, see Bartholomew, Knott, & Moustaki, 2011).6
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Although, in the case of relatively small sample sizes and data dimensionality, this technique 

is simple and quick to implement, the drawbacks to using it for initialization are the same as 

those for hierarchical clustering and k-means—the sum score may not be an adequate 

representation of the data. If the clusters are not organized by increasing means on the 

manifest variables, these clusters will not be nearly accurate. However, this technique’s 

merit lies in its speed. A sum score will take a very short time to calculate, and since there is 

only one possible set of starting values, there is no need for several initializations.

Assessment of performance

To examine the ability of each initialization procedure to obtain an adequate solution, the 

performance for the following simulation was assessed in four ways: (1) the ability for the 

techniques to find the best-fitting solution (i.e., the best BIC), (2) the ability for the 

techniques to find a correct classification of individuals, (3) the propensity for the techniques 

to arrive at locally optimal solutions (i.e., solutions that have BICs differing by more than 1 

× 10−16), and (4) the time the techniques require to provide initial parameter values.

Best-fitting solutions—Although optimizing algorithms like the EM algorithm cannot 

guarantee the finding of a globally optimal solution, but only a locally optimal one, the 

highest BIC (Schwarz, 1978) observed in all initializations across techniques is the best 

estimation we have of this theoretical value. The quality of the initialization techniques will 

be assessed in terms of the percentages of times the best solution found by a technique was 

the best found by all techniques within a given data set over all initializations. That is, if the 

best BIC found over all techniques for all initializations of the EM algorithm on a single data 

set was −4,567, only those techniques that had found a solution corresponding to this BIC 

would receive a “1” for this data set; all others would receive a “0.” Note that all techniques 

might receive a “1” if they all obtained a solution with the maximum BIC, but for each data 

set only one technique must necessarily receive a “1.” The proportion of “1”s for a given 

factor condition would be used as the measure of the propensity of the technique to find 

“optimal” solutions (the maximum BIC being a proxy for the optimal solution). We will 

refer to this measure as the “percent of maximum BICs,” or pmax. The pmax for the jth 

technique on a factor condition of interest is formally given as

where F is the number of data sets with the factor condition of interest, d is the number of 

estimated parameters, n is the sample size, L(x, θ) is the log likelihood, i indexes over each 

factor condition, and j indexes over each technique.

6This technique was implemented in a previous edition of the latent variable modeling software Latent GOLD (Vermunt & Magidson, 
2000).
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Classification assessment—Initialization techniques for mixture modeling have 

previously been evaluated on their ability to arrive at the global optimum (Biernacki et al., 

2003). A common application of a mixture model is to use the modeled densities to classify 

the individuals in a sample to one of the k substantively interesting groups. An initialization 

technique might find a solution with accurate classifications, but not optimal fit. In addition, 

although a brute-force searching algorithm might find the globally optimal solution, using 

the data to create informed starting values could result in a solution with types of clusters 

that have more substantive validity (see Steinley & Hubert, 2008).

Following Steinley and Brusco (2007, 2011a), the classification quality of the mixture model 

solution will be evaluated with the Hubert–Arabie adjusted Rand index (ARI; Hubert & 

Arabie, 1985; Steinley, 2004). The ARI is a measure of cluster solution agreement with a 

maximum value of 1, indicating identical solutions. An ARI of 0 indicates agreement 

between two solutions that is equivalent to chance. The ARI is computed as

where a is the number of pairs of individuals in the same group in both solutions, d is the 

number of pairs in different groups in both solutions, and b and c are the numbers of pairs 

that are discordant between the two solutions (same–different and different–same, 

respectively). We note that Steinley (2004) has demonstrated that the ARI avoids many of 

the pitfalls associated with misclassification rates, providing more support for its use. In the 

simulations to follow, the results will be compared with the true cluster memberships, so the 

ARI can be interpreted as the accuracy of the classifications.

Local optima—Local optima is a useful measure for evaluating the solution of a clustering 

algorithm, and a large number of local optima can be indicative that the algorithm has not 

been able to find the optimal solution (Shireman, Steinley & Brusco, 2015; Steinley, 2004). 

The percent of unique solutions is referred to as plo and is calculated as follows:

where I is the number of initializations on the same data set. Not all of the initialization 

procedures are subject to unique solutions. The initialization strategies of sum scores and 

hierarchical clustering only produce one set of starting values, and thus only lead to a single 

solution, so those techniques will not be included in the analysis of unique solutions.

Time—Elapsed time can be used to examine the efficiency of each technique. This is an 

important consideration in the applicability of initialization techniques, because as 

computation time increases, the likelihood that applied researchers will be willing or able to 
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conduct repeated initializations decreases. The time in CPU seconds was measured from 

when the initialization technique began until it provided the initial classifications.

Simulation I: Timed initializations

The first simulation examined the differential performance of each of the techniques in a 

variety of data situations, while constraining each technique to create its starting values 

within 20 s. A limit of 20 s was chosen because it gives more than sufficient time for the 

quick techniques (sum score and random values) and is just sufficient for the longer 

initialization techniques of hierarchical clustering and iteratively constrained EM. The goal 

of this first simulation was to examine each technique’s performance in terms of identical 

conditions.

The data were generated with a known cluster structure and a mixture model that was fit 100 

times for each initialization technique (assuming that the correct number of components is 

known but the covariance model is not). A model was fit to the nine covariance matrix 

decompositions provided in “mclust,” which describe restrictions on the spectral 

decomposition of Σ (see Celeux & Govaert, 1995, for more description).

Data generation

The data for these simulations were generated using a MATLAB (MathWorks, 2012) 

adaptation of the cluster generation procedure described by Qiu and Joe (2006a). This 

program is flexible, in that (1) it can incorporate varying degrees of separation of the 

clusters, based on univariate projections (described in Qiu & Joe, 2006b); (2) it does not 

force the isolation of clusters on any manifest variable (a constraint imposed by a previously 

famous cluster generation procedure described in Milligan, 1985); and (3) it allows for 

general shapes of the clusters (i.e., no constraints on the equality of the covariance matrices). 

These qualities make the data generated from this program more realistic and allow the 

simulation results to generalize more easily to real-world data situations.

Factors

To gain an understanding of how each initialization technique can be affected by different 

data structures likely to be encountered in real analyses, several factors were varied in the 

data generation process.

The factors varied in this simulation were (1) the number of clusters (two, four, and six), (2) 

the number of variables (two, four, and six), (3) the sample size (100, 500, and 800), (4) the 

relative cluster density, and (5) the minimum cluster separation.

The relative cluster density refers to the percentage of the total observations generated in 

each cluster. Milligan (1980), Milligan and Cooper (1988), and Steinley (2003, 2006b) 

showed that the relative densities of each cluster can affect the recovery of clustering 

algorithms. The cluster densities were varied so that (1) all clusters contained equal numbers 

of observations, (2) one cluster contained 10% of the observations and the rest of the clusters 

were equally sized, and (3) one cluster contained 60% of the observations and the rest of the 

clusters were equally sized.
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Qiu and Joe (2006b) proposed a cluster separation measure (alternatively referred to as 

cluster overlap) based on a set of one-dimensional projections used in conjunction with their 

data generation program, the technical details of which are omitted here. This separation 

index has a minimum of −1 (the separation of one cluster from itself) and a theoretical 

maximum of 1 (two clusters whose means are separated by an infinite distance). Qiu and Joe 

(2006b) also laid out conventions for this measure, in which J = .01 indicates close clusters 

and J = .342 indicates well-separated clusters. Their cluster generation procedure allows the 

user to indicate a minimum separation of the clusters. This minimum separation was varied 

in our simulation to be J = .01, .171, and .342, indicating close, moderately separated, and 

well-separated clusters.

A completely balanced design resulted in 3 (number of clusters) × 3 (number of variables) × 

3 (sample size) × 3 (relative cluster density) × 3 (cluster separation) = 243 unique data 

conditions. Three data sets of each type were created, resulting in 729 data sets. 

Furthermore, for each data set, nine candidate mixture models were considered (each with a 

different covariance structure, but all assuming the correct number of clusters/components)

—for a total of 6,561 mixture models to be fit to the data. Each model was fit with each 

initialization procedure, resulting in 32,805 models by initialization conditions. However, for 

three of the initialization conditions (random starts, iteratively constrained, and k-means 

clustering), 100 random initializations were used. The other two initialization conditions 

(sum scores and hierarchical clustering) were deterministic conditional on the observed data. 

This resulted in millions of mixture models being estimated, making this by far the largest 

and most extensive examination of initializations of finite mixture modeling to date. All 

analyses were conducted in MATLAB r2012a (MathWorks, 2012).

Results from Simulation I

When it comes to finding the global optimum, the technique with the highest pmax is the 

iteratively constrained technique, pmax = .55 (see Table 1). That is, for 55% of the data sets, 

the best solution arrived at by the iteratively constrained technique is the best solution found 

by all techniques. However, we do note that achieving the best solution only 55% of the time 

leaves much room for improvement. The only factors that led the iteratively constrained 

technique not to have the highest pmax were well-separated clusters and a small sample size. 

In these two conditions, random initializations provided the highest pmax.

The techniques of iteratively constrained EM and random values both resulted in the best 

classifications (see Table 2), averaging over all data types (ARI = .47). The differences in 

classification quality between the techniques were minute, however. Performance for all 

techniques improved when the clusters become more separated (as should be expected). The 

only exception to the overall performance patterns was the sum score technique, whose 

performance decreased when one cluster was larger than the rest, whereas the other 

techniques were less affected by this change. As we noted regarding the cluster generation 

technique, the structure of these groups was most realistic, in terms of not imposing arbitrary 

constraints on their shapes and/or overlap. As a result, many of the ARI values are 

considered low (Steinley, 2004, indicated that a “good” solution would have an ARI of at 

least .60 or .65). This difficulty that mixture models have with finding a known cluster 
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structure has been noted in several other studies (Shireman, Steinley, & Brusco, 2015; 

Steinley & Brusco, 2008, 2011b).

The iteratively constrained and random-value techniques have much larger plos (see Table 

3). These techniques are designed to examine the landscape of the likelihood function, so 

this discrepancy is not surprising. However, the plo for the iteratively constrained technique 

was consistently lower than that for random values, indicating that it was indeed 

constraining the search space for the global optimum. Furthermore, the greater performance 

of random starting values and iteratively constrained starting values, when compared to 

starting values provided by k-means clustering, hierarchical clustering, and sum scores, is 

not surprising, since the latter methods have already constrained the search space to an even 

more narrow region.

Simulation II: Initializations without time constraint

The previous simulation constrained each technique to find the best solution within 20 s. 

This was a disadvantage mostly to the iteratively constrained EM and hierarchical clustering 

techniques, which require relatively long computation times. The next simulation removed 

this constraint, allowing each technique to take as long as it needed to produce starting 

values. Considering that the differences in the results within each factor did not vary a great 

deal from technique to technique, the factors were cut down to increase the speed of 

computation. For the following simulation, the data sets were varied according to the 

following factors: (1) variables (two, four, and six), (2) sample size (100, 500, and 800), (3) 

relative cluster densities (equal-sized clusters, one with 10%, and one with 60%), and (4) 

minimum cluster separation (close, moderately separated, and well-separated). The number 

of clusters was kept constant at 2. In the case of iteratively constrained EM, the iteratively 

constrained stage was again allowed ten iterations of the EM algorithm, but it was given 20 

random starts for this stage (the default in Mplus). For the k-means initialization technique, 

the start values were the results from the best of 100 runs of the algorithm.

Results from Simulation II

The ordering by performance of the techniques did not vary by factor (i.e., there were no 

interactions between techniques and factors). In lieu of a table of the results for each data 

type, the average pmax, ARI, plo, and elapsed CPU seconds for each technique are given in 

Table 4.

As in Simulation I, the techniques of random values and iteratively constrained EM provided 

the most unique solutions. When the iteratively constrained technique was allowed 20 

starting values to choose from, it found fewer local optima than when it was allowed as 

many as it could within the 20-s time limit, indicating that the search space for the global 

optimum was constrained further. This increase in the number of “initial”-stage starts did 

not, however, result in better solutions (i.e., a higher pmax) than in Simulation I. A 

supplemental simulation was conducted to examine the impact of increasing the number of 

starts, and showed that as the number of initial-stage starts increased (to > 30), the iteratively 

constrained technique consistently found the best solution more often than did the random-
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values technique. However, at this level, the iteratively constrained technique required more 

than 1,000 times as much computing time to find starting values.

The techniques of random values and sum score take, on average, less than a hundredth of a 

second to generate their starting values, and the initialization technique of k-means cluster 

analysis takes on average less than half a second. The iteratively constrained and hierarchical 

clustering techniques take significantly more time to generate their starting values. 

Hierarchical clustering required 20 s on average, and the iteratively constrained EM over 30 

s on average. However, the iteratively constrained technique used its extra time to buy more 

optimality: The iteratively constrained technique found the best solution 36% more often 

than the hierarchical clustering technique (pmax = .10 for hierarchical clustering vs. .46 for 

iteratively constrained EM).

On the other hand, if the primary concern is cluster recovery, then a strong recommendation 

can be made to initialize the mixture model with k-means clustering, since it obtains the 

same ARI as both the random-initialization approach and the iteratively constrained EM 

algorithm. Even though it only achieves the best found solution 7% of the time, it still yields 

the same quality of final partitioning, but 60 times faster than the iteratively constrained 

approach.

Empirical illustration

To illustrate the practical impact of starting values on the resulting solutions, the above 

initialization techniques were implemented on data from the National Epidemiologic Survey 

of Alcohol and Related Conditions (NESARC; Grant et al., 2003).

Participants and procedure

NESARC contains data concerning the etiology and comorbidity of substance use disorders, 

measured at two time points (e.g., waves). The first wave of the NESARC consists of data 

from 43,093 population-representative individuals collected in face-to-face interviews 

between 2001 and 2002. The analyses here utilized the 11 dichotomous criteria for alcohol 

use disorder outlined in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5; 

American Psychiatric Association, 2013). For these analyses, Wave 2 data were used, with 

men7 and past-year abstainers from alcohol excluded (a final sample size of N = 11,782). 

The 11 criteria and their descriptions are given in Table 5.

Analysis

A latent class analysis (LCA; a mixture model assuming heterogeneous clusters for 

dichotomous data) was fit 1,000 times to these data for each of the initialization techniques. 

Only the three-class solution will be examined, since previous analyses of the 11 diagnostic 

criteria has shown support for the three-class solution (Beseler, Taylor, Kraemer, & Leeman, 

2012; Chung & Martin, 2001; Sacco, Bucholz, & Spitznagel, 2009).

7Men were excluded on the basis of significant differential item functioning between genders (Saha, Chou, & Grant, 2006).
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Results

The results for this illustration are given in Table 6. The best BIC of the 1,000 initializations, 

the proportion of local optima, and the times that the program required to generate starting 

values are given. The technique that found the best BIC was iteratively constrained EM. The 

technique with the fewest locally optimal solutions was k-means initialization, and the 

technique that took the shortest amount of time to generate its starting values was the 

random-values technique. Of the techniques that needed to calculate information from the 

data, the fastest technique was sum score, taking only two hundredths of a second, on 

average, to generate starting values. Clearly, the technique at a disadvantage with this 

measure was hierarchical clustering, which, due to the large sample size, took 418 s to create 

starting values (although this solution was nearer to the best BIC found than was the sum 

score or k--means technique).

Table 7 shows the agreement between the final solutions provided by each initialization 

scheme in terms of the ARI. Random values and iteratively constrained EM resulted in 

identical solutions. This is striking, especially considering the difference in the times these 

techniques require to generate the start values: Random starting values took less than a 

hundredth of a second, and iteratively constrained EM required over 12 s per initialization, 

but the solutions were identical. In addition, the classifications agree poorly between the 

“uninformed” and “informed” initialization techniques (ARI = .69 or worse). This indicates 

that although the classifications were of comparable quality in the preceding simulations, 

these classifications were not similar.

Discussion

Generally, although investigations of competing methods (in this case, the initialization of 

mixture models) via simulation are helpful, it is necessary to understand their applicability 

to a “real-world” setting. As George Box famously said, “Essentially all models are wrong, 

but some are useful”; in this case, it is incumbent to determine whether the results of the 

study presented here can aid in ensuring that the mixture model will be a useful, replicable 

technique. As Milligan and Cooper (1988) indicated when comparing approaches for 

choosing the number of clusters, for an approach to be seriously considered and used by 

research analysts, it is necessary that it exhibit good performance in cases with well-defined 

cluster structures. In this case, the simulation represents an idealized world where the true 

number of classes and their membership are known, and the performance of competing 

initialization approaches was assessed on the basis of that information alone.

Unfortunately, that is almost never the case when analyzing an empirical data set. First, it is 

rare that the true number of classes (e.g., mixtures) is known. Second, even if the number of 

classes is known, it is exceedingly rare—almost never—that the distributional form of each 

of the mixtures is known. As such, the results presented herein should be considered the 

best-case scenario, in terms of the overall performance of the mixture model itself. As the 

model and data begin to diverge, one would often observe an increasing number of local 

optima (see Steinley, 2003, 2006b). In those cases, it appears that initializing mixture models 

via k-means clustering is most effective in finding the best solution. This finding is 

Shireman et al. Page 13

Behav Res Methods. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



supported by the results of Steinley and Brusco (2011a, b) showing that k-means clustering 

is less sensitive to departures from the model assumptions.

The potential disconnect between model and data raises another interesting question. 

Namely, if the data do not conform to either mixtures or the correct distributional form of 

the mixtures themselves, how useful is the mixture model? And by extension, how useful is 

knowing the best way to initialize the model? McLachlan and Peel (2000) noted that mixture 

modeling can be used for two primary purposes: (1) trying to identify the true, underlying 

set of groups present in the data (the most common use), and (2) approximating the density 

of a multivariate data set through a series of mixtures, most typically Gaussian mixtures. In 

the latter case, the results presented here will always be relevant, since it is desirable to 

choose the initialization procedure that leads to the best goodness-of-fit statistic. In the 

former case, we conjecture that the results will be broadly relevant and robust, since 

researchers will be interested in using the results of the mixture model for predictions of 

external covariates.

There is no theoretical reason to believe that the recommendations outlined below will 

change depending on the model being fit to a particular data set. If the number of mixtures is 

either under- or overspecified, that will lead to an increase in the number of locally optimal 

solutions (Shireman, Steinley, & Brusco, 2015) and result in the general recommendation of 

using k-means clustering to initialize the mixture model (discussed further in the 

Recommendations below). Furthermore, candidate mixture models should be subjected to 

the appropriate tests of reliability and generalizability. We do not see choosing the 

appropriate initializing method as obviating that need; rather, it is the first step in a broader 

series of steps to ensure that the best model (in terms of fit indices and/or the quality of the 

solution) is subjected to those tests of reliability and generalizability. Disregarding the 

method of initialization as an important choice will likely introduce greater error to the 

modeling process.

Recommendations

The choice of starting values for a mixture model is not a decision to be taken lightly or to 

be left to the defaults of any given program. Although the classification results do not vary a 

great deal between the different techniques, the ability to find the globally optimal solution 

(or at least the best observed solution) varies a great deal on the basis of the choice of 

starting values. In terms of specific recommendations, we offer the following guidelines:

• We recommend the use of the iteratively constrained approach tested herein to 

generate initial values. Additionally, if it is computationally feasible, we 

recommend that the number of starting configurations be set to 30, to ensure that 

the quality is more likely to surpass that of a random-values technique. Although 

Mplus uses an iteratively constrained initialization technique, its parameter 

estimates are generated using uniform distributions, which was not explicitly 

tested here and (considering the results from Steinley, 2003) may provide worse 

start values.

• A nearly equivalent form of initialization is the random-values technique, and it 

is recommended in the case when analyses need to be run quickly. Although the 
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iteratively constrained EM technique had the best performance, it only found the 

best observable BIC in 55% of data sets in the first simulation. It increases 

computation time by many orders of magnitude, but buys relatively little in terms 

of optimality.

• If it seems that there are numerous local optima, it may also be worthwhile to 

search more of the space with the k-means initialization approach, since it finds 

fewer local optima but settles on a solution that is of comparable quality.

• On the basis of the simulation results, caution should be employed when using 

the popular “mclust” package in R. The primary caution comes from its 

utilization of a hierarchical-clustering method as its initialization strategy; this 

approach was shown to be one of the least effective in terms of converging to the 

best observed BIC. A similar caution should be applied when using the classic 

method of sum scores for initializing mixture models.

Future research should focus on exploring the relationship between a broader range of fit 

statistics and cluster recovery.
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Table 3

All plo results for Simulation I

RV ICEM KM

Overall .74 .59 .23

Clusters

 2 .62 .32 .04

 4 .73 .62 .22

 6 .86 .83 .42

Variables

 2 .73 .63 .11

 4 .78 .63 .25

 6 .70 .51 .32

SS

 100 .64 .38 .21

 500 .77 .69 .26

 800 .80 .70 .21

Density

 Equal-sized .71 .57 .21

 1 Small .73 .58 .19

 1 Large .78 .62 .28

Overlap

 Close .91 .75 .32

 Moderate .69 .55 .19

 Well .61 .47 .17

Each cell is the average proportion of solutions with a unique BIC. Bold values indicate the lowest plo for the factor condition. RV, random values; 

ICEM, iteratively constrained EM; KM, k-means clustering; AHC, agglomerative hierarchical clustering; SS, sum score.
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Table 5

DSM-5 alcohol use disorder criteria

Abbreviation Description

TOL Tolerance of alcohol

WITHD Withdrawal after quitting or cutting down

LARGERLONGER Substance used more than intended

CUTD Desire or efforts to cut down on use

TIME Spent time using substance or recovering from effects

GIVEUP Important activities given up because of use

CONTINUE Continued use despite health problems

ROLE Failure to fulfill role obligations

HAZARD Use in physically hazardous situations

SOCIAL Use despite social/interpersonal problems

CRAVING Craving or a strong desire or urge to use alcohol
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	The existing techniques for initialization can be thought to follow two distinct philosophies. We will refer to the first as “uninformed” by the data; it contends that the use of a brute-force search technique will find the globally optimal solution by examining the entire landscape of the likelihood function. The other will be referred to as “informed” by the data, and it uses a directed-search approach to find the globally optimal solution (perhaps more quickly than an uninformed technique).This article expands prior work investigating the efficacy of different initialization techniques for mixture models (Biernacki, Celeux, & Govaert, 2003; Karlis & Xekalaki, 2003; Melnykov & Melnykov, 2012) and clustering algorithms (Steinley & Brusco, 2007). Biernacki et al. examined the performance of initialization techniques for mixture modeling, but the techniques examined were limited to alternative instantiations of the EM algorithm. Karlis and Xekalaki, and Melnykov and Melnykov, investigated specific initialization approaches under a limited range of settings, with the former focusing only on univariate Gaussian mixtures and the main focus of the latter was determining the number of clusters present in the data. Steinley and Brusco (2007) examined 12 procedures for initializing the k-means clustering algorithm. k-means clustering is a similar analysis procedure to a mixture model (and is equivalent in the case of homogeneous, spherical clusters; see Steinley & Brusco, 2011b, for a discussion). Their examination included both techniques that were uninformed by the data (Faber, 1994; SPSS, 2003; Steinley, 2003) and that were informed by the data (Bradley & Fayyad, 1998; Milligan, 1980), concluding that an uninformed technique was sufficient for k-means clustering. The following investigation expands the work by Biernacki et al. by examining initialization techniques that were not included in their simulation but that are commonly employed in available software, while incorporating the proposed method of Karlis and Xekalaki in a broader comparison below (viz., an iteratively constrained technique).What follows is a description of each of the initialization strategies, an illustration with real data, and two simulation comparisons of the techniques: one in which the amount of time to generate starting values was constrained, and another in which the techniques were allowed to take as long as required. The initialization strategies chosen for the comparative investigation are those that appear in the most commonly implemented software (two R packages “mclust” and “mixture,” and the statistical computing software LatentGOLD and Mplus); in fact, one would be hard-pressed to find software that did not utilize one of the following five approaches.1. Random starting values—A common initialization technique in methodological and substantive research is the use of random values to initialize a mixture model. Random starting values in this context refer to randomly classifying each observation to one of k clusters, each cluster receiving an equal number of observations. The parameters (both the group-specific mean vectors and covariance matrices) estimated from this initial cluster assignment begins the first E-step of the EM algorithm. Considering the high prevalence of local solutions in mixture models, two solutions resulting from this technique are likely to be quite different from one another. For this reason, a researcher initializing a mixture model with random values should start many times44It has been shown that a minimal number of starting values in order to arrive at an adequate solution should exceed 1,000 for some data types; see Steinley and Brusco (2007) and Shireman, Steinley, and Brusco (2015). However, given the breadth of the present simulation study, such a large number of initializations was infeasible; consequently, 100 random initializations were used. There exist so-called “global” optimizing algorithms to fit a mixture model that are designed to remove the guesswork of selecting the number of initializations required (De Boer, Kroese, Mannor, & Rubinstein, 2005; Heath, Fu, & Jank, 2009; Hu, Fu, & Marcus, 2007). However, these techniques are not yet implemented in popular software (e.g., SAS, 2012; the “mclust” package for the R computing software, described by Fraley & Raftery, 2006; or Mplus, Muthén & Muthén, 2012), nor are they immune from arriving at locally optimal solutions. and interpret the best solution obtained by using a fit criterion such as the BIC. Random starting values have been shown to have performance similar to or better than other initialization techniques involving restricted iterations of an alternative form of the EM algorithm (such as the classification EM or stochastic EM, the details of which are omitted here; see McLachlan & Peel, 2000, and Biernacki et al., 2003).There are ways of generating random starting values alternative to the one studied here. Many involve generating starting parameter values from a uniform distribution around some bounds informed by the data (see Hipp & Bauer, 2006; Muthén & Muthén, 2012); however, in the context of k-means clustering, Steinley (2003) found that random starting values that used only one observation per cluster increased the chances of being located in a “poor” part of the parameter space. Similarly, Karlis and Xekalaki (2003) found that randomly drawing parameters from their respective distributions exhibited poor performance.Although random values have been shown to have decent performance, the main weakness of this initialization technique stems from the fact that many random starts must be implemented before a solution can be settled on. In addition, no existing technique can determine when the number of initializations is sufficient to ensure a full examination of the likelihood function.2. Iteratively constrained EM—This technique makes the assumption that given a set of random values to initialize the algorithm, the quickest increase in likelihood will provide a better solution than random initializations that increase less rapidly. The technique involves running several iteratively constrained EM algorithms (themselves initialized with random starting values), thereby constraining the search space for the global optimum (see Lubke & Muthén, 2007, for a simulation application). The parameters of the best-fitting of these restricted solutions is used to start values in a mixture model that is allowed to iterate until convergence. A similar technique is used as the default for providing starting values in the statistical software Mplus Version 7 (Muthén & Muthén, 2012).55Mplus differs from the described examination in that it generates its initial random starting values from uniform distributions (see Hipp & Bauer, 2006, for a discussion) and also uses an accelerated quasi-Newton algorithm in conjunction with the typical EM algorithm for estimation. This approach is a variant to the short-EM algorithm proposed in Biernacki et al. (2003), which was found to be the best-performing method.There are a few drawbacks with the choice of an iteratively constrained technique. First, the user must choose the number of iterations in the initial-stage EM. The value chosen could then be sufficient for some likelihood functions, but perhaps not others (this is in contrast to initial values provided by an EM with large convergence criteria, which would not be as susceptible to this problem; see, e.g., Biernacki et al., 2003). An additional drawback is the selection of the number of initial-stage EM algorithms to run, which greatly increases the amount of time required for computation. Mplus defaults to 20 random starts, constrained to ten iterations of the EM algorithm. Finally, the same drawbacks from using random values still apply to the use of an iteratively constrained technique, since this technique is still susceptible to local optima and, by construction, only searches a limited part of the parameter space.3. K-means clustering—The k-means clustering technique uses an alternative clustering solution from the data to provide its starting values. Considering the demonstrated agreement between the results of a k-means cluster analysis and a mixture model (Steinley & Brusco, 2011b), the results from the k--means algorithm can provide close to accurate parameters when they are used as initial values for the EM algorithm. This technique is implemented in the R package “mixture” (Browne, ElSherbiny, & McNicholas, 2014) and has been recommended by McLachlan and Peel (2000) as a viable initialization strategy.This clustering initialization is implemented by performing a k-means cluster analysis a number of times, perhaps hundreds, and using the classifications from the solution with the lowest sum of squared errors (the most cohesive clusters, a typical way of choosing the best k-means solution) as initial values in the first M-step of the EM algorithm. For more detail about the computation of a k-means cluster analysis and the issues therein, see Steinley (2006a).As with the other techniques, there are drawbacks to the k-means initialization technique. K-means clustering has been criticized for its inclination to find spherical clusters (e.g., the clustering counterpart of a latent profile mixture model) and its use of an ad-hoc clustering criterion (Lubke & Muthén, 2005). When the clusters are highly heterogeneous and non-spherical, the results of a k-means clustering may not be an accurate representation of the data, and thus may not provide adequate starting values. In addition, k-means clustering is subject to locally optimal solutions, so it shares some of the difficulty of the methods previously described, that the number of initializations (and the number of times to start the k--means within the procedure) is still a subjective determination made by the researcher.4. Agglomerative hierarchical clustering—Another common way to generate starting values using an alternative clustering of the data is with agglomerative hierarchical clustering. A hierarchical cluster analysis is performed, and a partition is provided of the chosen number of clusters. The parameters of these groups are used for the first, E-step of the mixture model estimation (for more detail on hierarchical clustering, see Everitt, Landau, Leese, & Stahl, 2011). A program utilizing hierarchical clustering for starting values is the “mclust” package, provided by Fraley and Raftery (2006) for the computing software R (www.r-project.org).Hierarchical clustering may be an accurate way to describe data that are organized hierarchically (e.g., biological taxonomies), but some researchers have disputed the accuracy of classifications based on this form of cluster analysis (Edelbrock, 1979). It has been demonstrated, however, that starting values based on hierarchical clustering classifications perform well for a k-means cluster analysis (Dasgupta & Raftery, 1998; Fraley, 1998; Steinley & Brusco, 2007). In addition, the use of only one set of starting values can be a negative in some cases, since it restricts the search for a solution to only one possible result.5. Sum scores—This technique finds initial class memberships by utilizing the sum score as a representation of the data. After calculating a sum score for each individual, the data are split into k equally sized ordered groups, and these groups are used for the M-step of the EM algorithm (for more detail, see Bartholomew, Knott, & Moustaki, 2011).66This technique was implemented in a previous edition of the latent variable modeling software Latent GOLD (Vermunt & Magidson, 2000).Although, in the case of relatively small sample sizes and data dimensionality, this technique is simple and quick to implement, the drawbacks to using it for initialization are the same as those for hierarchical clustering and k-means—the sum score may not be an adequate representation of the data. If the clusters are not organized by increasing means on the manifest variables, these clusters will not be nearly accurate. However, this technique’s merit lies in its speed. A sum score will take a very short time to calculate, and since there is only one possible set of starting values, there is no need for several initializations.
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