|
|
Algorithm 2 Multi-label learning (ML) |
|
|
Input: Training data
, PL matrix W1, Lagrange multiplier of ADMM ρ and U, learning rate η2, penalty parameter β2, and accuracy control parameter μ. |
|
Output: ML matrix W2 ∈ ℝD×L. |
| 1: |
; // Init. |
| 2: |
while not convergence do
|
| 3: |
; |
| 4: |
Hμ = 0L×D; |
| 5: |
for
i = 1, … , N
do
|
| 6: |
; |
| 7: |
; |
| 8: |
; |
| 9: |
end for
|
| 10: |
; |
| 11: |
; |
| 12: |
; |
| 13: |
t = t + 1; |
| 14: |
end while |
|