Skip to main content
. Author manuscript; available in PMC: 2016 Jul 3.
Published in final edited form as: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2015 Jun;2015:2207–2216. doi: 10.1109/CVPR.2015.7298833

Algorithm 2 Multi-label learning (ML)

Input: Training data D={(xi,yi)}i=1N, PL matrix W1, Lagrange multiplier of ADMM ρ and U, learning rate η2, penalty parameter β2, and accuracy control parameter μ.
Output: ML matrix W2 ∈ ℝD×L.
1: W2(0)=1D1D×L,V(0)=1D1D×L,a(0)=1,t=0; // Init.
2: while not convergence do
3: U(t)=(1a(t))W2(t)+a(t)V(t);
4: Hμ = 0L×D;
5: for i = 1, … , N do
6:    zi=min(1,max(1,U(t)xiμ));
7:    qi=znU(t)xiμ2zi22;
8:    Hμ=Hμ+qi(zixi);
9: end for
10: V(t+1)=V(t)1η2(Hμu+ρ(W1U(t)))+PC(U(t));
11: W2(t+1)=(1a(t))W2(t)+a(t)V(t+1);
12: a(t+1)=2t+1;
13: t = t + 1;
14: end while