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Abstract

Ecosystem service-based management requires an accurate understanding of

how human modification influences ecosystem processes and these relationships

are most accurate when based on functional traits. Although trait variation is

typically sampled at local scales, remote sensing methods can facilitate scaling

up trait variation to regional scales needed for ecosystem service management.

We review concepts and methods for scaling up plant and animal functional

traits from local to regional spatial scales with the goal of assessing impacts of

human modification on ecosystem processes and services. We focus our objec-

tives on considerations and approaches for (1) conducting local plot-level sam-

pling of trait variation and (2) scaling up trait variation to regional spatial

scales using remotely sensed data. We show that sampling methods for scaling

up traits need to account for the modification of trait variation due to land

cover change and species introductions. Sampling intraspecific variation, strati-

fication by land cover type or landscape context, or inference of traits from

published sources may be necessary depending on the traits of interest. Passive

and active remote sensing are useful for mapping plant phenological, chemical,

and structural traits. Combining these methods can significantly improve their

capacity for mapping plant trait variation. These methods can also be used to

map landscape and vegetation structure in order to infer animal trait variation.

Due to high context dependency, relationships between trait variation and

remotely sensed data are not directly transferable across regions. We end our

review with a brief synthesis of issues to consider and outlook for the develop-

ment of these approaches. Research that relates typical functional trait metrics,

such as the community-weighted mean, with remote sensing data and that

relates variation in traits that cannot be remotely sensed to other proxies is

needed. Our review narrows the gap between functional trait and remote sens-

ing methods for ecosystem service management.

Introduction

Evaluation of ecosystem service policy and management

requires understanding the consequences of human modifi-

cation on ecosystem processes and dependent ecosystem

services at regional scales (sensu Forman and Godron 1986;

Chazdon 2008; Daily et al. 2009). To this end, functional

trait approaches have the potential to be more accurate

than species-based approaches due to the continuous nat-

ure of functional traits and the direct link between traits
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and ecosystem processes (McGill et al. 2006; Westoby and

Wright 2006). The use of functional traits to inform ecosys-

tem service policy and management requires the scaling-up

of plot-scale data from local to regional scales (Lavorel

et al. 2011). Nevertheless, we currently lack consensus on

how to estimate functional trait variation at regional spatial

scales relevant to land use planning and policymaking. In

this study, our main goal is to review concepts and meth-

ods for scaling local plot-scale functional trait composition

to regional scales relevant to ecosystem service policy and

management. In particular, we review and synthesize the

knowledge necessary for sampling local plot-level func-

tional trait variation and the available remote sensing

methods that can be used to scale up this local trait varia-

tion to regional scales (Fig. 1).

Methods for assessing the effects of human modifica-

tion on ecosystem services typically rely on correlating

vegetation type with ecosystem processes (Daily et al.

2009). For example, change from forest to pasture vegeta-

tion affects local water fluxes by modifying interception

and transpiration (Foley et al. 2003). These local changes

can be scaled up to regional scales vis-�a-vis vegetation

type to assess the effects on ecosystem services such as the

regulation of peak flood and low flow events (Foley et al.

2007). However, this approach is limited because it does

not incorporate the fine-scale functional trait variation

within vegetation types, which can constitute up to 75%

of the variation in trait values (Kattge et al. 2011). Traits

such as tree biomass, crown diameter, and leaf area affect

water fluxes and can vary significantly across and within

vegetation types (Meinzer et al. 2005; Park and Cameron

2008; Abelleira 2015). In addition, tree species composi-

tion may change but trait composition may not, or vice

versa, within a given vegetation type due to trait variation

at the individual, species, and community levels (Albert

et al. 2010; Messier et al. 2010). Vegetation classifications

are also insufficient for determining changes in ecosystem

services that depend on the effect traits of highly mobile

organisms, whose movement is influenced by habitat

heterogeneity and landscape structure (Leyequien et al.

2007; Keitt 2009). For example, traits such as body size

affect the foraging range and dispersal capacity of bees,

and dependent ecosystem services such as crop pollina-

tion (Wray et al. 2014; Martins et al. 2015).

Current research in ecosystem services aims to resolve

these issues by focusing on metrics of effect functional

traits, such as the community-weighted mean (CWM) or

functional diversity indices, rather than vegetation types

(Grime 1998; Lavorel and Garnier 2002; Lavorel et al.

2013). These metrics can be related to the ecosystem pro-

cesses of interest based on experimental data gathered at

local plot scales, and subsequently to dependent ecosys-

tem services according to the values placed on ecosystem

properties or fluxes by stakeholders (D�ıaz et al. 2007;

Lavorel et al. 2011; Finegan et al. 2015). Nevertheless, it

is unclear how sampling should be conducted to capture

the necessary functional trait variation in highly heteroge-

neous human-modified regions and whether it is even

possible to model the corresponding fine-resolution trait

data at the regional scale with currently available methods

(Garnier et al. 2007; Van Bodegom et al. 2012). These

concerns limit the adoption of functional trait approaches

to quantify ecosystem processes at regional scales relevant

for ecosystem service management and policy design

(Daily et al. 2009; Fremier et al. 2013; Rollin et al. 2015).

A promising alternative approach is the fine-resolution

regional mapping of functional traits using remote sensing

(Fig. 1). Currently available remote sensing methods can

provide a direct link between local plot-scale functional

trait variation and regional-scale ecosystem service manage-

ment because they are repeatable across time and space,

and capable of producing fine-resolution data across broad

areas (Ustin and Gamon 2010; Asner et al. 2011a; Homo-

lov�a et al. 2013). In particular, remote sensing can facilitate

scaling up functional trait variation in highly heteroge-

neous human-modified regions where land cover and

climate change are disrupting original patterns in trait vari-

ation and where ecosystem service assessments are most

needed (Daily et al. 2009; Hobbs et al. 2009; Keitt 2009).

Although technological advances have improved the avail-

able array and capabilities of remote sensing methods, their

application to functional trait mapping for assessing

Figure 1. The use of functional traits to inform ecosystem service

policy and management requires the scaling-up of plot-scale data

from local to regional scales. In this review, we outline (1; purple

dashed arrow) the sampling considerations for capturing the

necessary variation in functional trait composition across space so that

these proxies can be used for (2; brown dashed arrow) the fine-

resolution scaling-up of trait composition from local to regional scales

via remote sensing methods.
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ecosystem services at regional scales has not become wide-

spread (Ustin and Gamon 2010; Galbraith et al. 2015).

To better understand the application of functional

traits to ecosystem service assessments in human-modified

regions, our objectives are to review (1) the current con-

ceptual understanding of trait-based approaches for sam-

pling trait variation across spatial scales and (2) existing

remote sensing-based methods that can be used to scale

up trait variation from plot to regional scales. We begin

our first objective by reviewing the sources of functional

trait variation found across ecological levels of organiza-

tion that span individuals, species, communities, and

landscapes. We then synthesize how these sources com-

bine to structure functional trait variation across space in

light of human modification, and the implications that

the resulting spatial trait variation has for the design of

local plot-scale sampling methods. We structure our sec-

ond objective around groups of remotely sensible traits

that correspond to different sets of available remote sens-

ing methods. In general, phenological and chemical plant

traits can be sampled by optical-based remote sensing

while plant structural traits can be sampled by active

laser-based remote sensing. Animal traits may be inferred

by combining remote sensing of plant and vegetation

structural traits with landscape structure. We illustrate the

applicability of some of these methods by citing examples

of how variation in plant and animal traits has been sam-

pled and scaled up to regional scales. We end our review

by providing a brief synthesis of results, identified knowl-

edge gaps, and outlook for further development of these

methods to improve ecosystem service assessments.

Sampling Trait Variation

Sources of trait variation

Functional traits can vary across individuals, species, com-

munities, and landscapes. A better understanding of the

sources and spatial scales in which most of the effect trait

variation is found will allow for better allocation of sam-

pling effort in trait-based approaches. Although we cannot

logistically measure all trait values across all ecological

levels, understanding the magnitude of trait variation

sources will reduce uncertainty when scaling from local

plot-scale estimates of trait values to broader spatial scales.

Individuals and species

Intraspecific variation in functional traits arises from

microsite environmental variability and gradients occur-

ring across the geographical range of plant and animal

populations (Peat et al. 2005; Bolnick et al. 2011; Violle

et al. 2012). Intraspecific trait variation can rival

interspecific variation (Hulshof and Swenson 2010; Ruiz-

Jaen and Potvin 2011). The plant trait variation attributa-

ble to intra- versus interspecific sources can vary by spe-

cies, trait, or community type (Albert et al. 2010; Kattge

et al. 2011; Kazakou et al. 2014). Determining the varia-

tion attributable to intra- versus interspecific sources in

mobile animals is hampered by the challenge of obtaining

a fully random sample (De Bello et al. 2011).

Communities and landscapes

Environmental gradients produced by soil properties,

topography, and climate drive functional trait variation

across and within natural plant communities (Cornwell and

Ackerly 2009; Ordo~nez et al. 2009; Swenson et al. 2011;

Baraloto et al. 2012). This structuring is less evident at fine

spatial scales within communities (≤100 m2) due to founder

effects and successional processes (Swenson et al. 2007;

Yang et al. 2014). Land cover change can disrupt the natural

trait variation found within and across plant communities

by altering site conditions, successional status, landscape

structure, and by species introductions (Fig. 2; Gira~o et al.

2007; Leishman et al. 2007; Lebrija-Trejos et al. 2010; Lasky

et al. 2014). If previous land use intensity and successional

stage are accounted for, patterns in trait composition and

diversity still emerge across environmental gradients (May-

field et al. 2005, 2006; Lohbeck et al. 2013). However, there

are no consistent patterns in the plant trait composition of

successional vegetation across landscapes of varying envi-

ronmental conditions and land use history (Mayfield et al.

2013).

Overlaying environmental gradients and land use his-

tory is the confounding effect of animals on plant trait

composition, and vice versa. The functional trait compo-

sition of plants can be mediated by the functional diver-

sity of organisms at higher trophic levels and, in turn,

have feedback effects on the trait composition of animal

communities across the landscape (Gira~o et al. 2007; Car-

dinale et al. 2012). Pollinators and seed dispersers, which

include a wide array of animal groups, affect the trait

composition of plant communities in ways that are begin-

ning to be understood (Suding et al. 2008; Lavorel et al.

2013). The trait composition of pollinators and seed dis-

persers is determined by habitat suitability and landscape

structure variables such as patch size and isolation

(Tscharntke et al. 2008; Barbaro and van Halder 2009;

Bommarco et al. 2010; Jauker et al. 2013). Although the

effects of landscape structure on plant trait composition

are not as evident as those of environmental gradients

and land use history, the loss of pollinator or disperser

functional groups due to fragmentation can eventually

modify the trait composition of plant communities

(Fig. 2; Gira~o et al. 2007; Sutton and Morgan 2009).
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Trait variation across space: impact of
human modification

Trait variation is partitioned similarly across intraspecific,

interspecific, and community sources, and higher trait vari-

ation exists within than across communities due to redun-

dancy across communities (De Bello et al. 2009; Messier

et al. 2010; Freschet et al. 2011; Kattge et al. 2011). Less is

known about how trait variation is partitioned across spa-

tial scales, yet the steepness of environmental gradients

within the spatial extent of interest, rather than the spatial

scale itself, appears to drive trait variation (Willis et al.

2010; Freschet et al. 2011; Swenson et al. 2011). Thus, envi-

ronmental gradients drive functional trait variation across

all ecological levels and spatial scales, and natural or

anthropogenic disturbances act across levels and scales to

counteract trait convergence due to these gradients.

Human modification can alter the trait variation found

across ecological levels at the regional scale (Fig. 2). Land

cover and climate change can result in the dominance of

introduced species possessing traits for which there is no

native analog and lead to the emergence of novel commu-

nity types (Leishman et al. 2007; Hobbs et al. 2009;

Abelleira 2011; Drenovsky et al. 2012). Within novel

communities, dominant introduced species may increase

the magnitude of intra- versus interspecific trait variation

(Fig. 2; Hillebrand et al. 2008). Managed systems, such as

plantations and agriculture, may perpetuate the domi-

nance of introduced species, which can also lead to higher

trait variation across community types within a region.

The functional traits of novel and managed communities

can thus differ from the original communities they

replaced and increase the magnitude of trait variation

across communities relative to other sources (Fig. 2).

Concurrently, functional trait homogenization may occur

in regions that have suffered extensive land conversion

and high rates of species extinctions and introductions

(Olden et al. 2004; Grass et al. 2014). Homogenization

may result in trait values closer to the global mean and

increase trait divergence between relatively undisturbed

and highly human-modified regions (Fig. 2).

Implications for trait sampling

Quantifying intraspecific variation may be unnecessary for

capturing trait effects on ecosystem processes. However,

this variation can be important when one or few species

dominate certain community types across environmental

gradients (Hillebrand et al. 2008). In such cases, metrics

derived from in situ sampling can capture intraspecific

trait variation appropriately (Albert et al. 2011). The use

of database values for dominant species may miss impor-

tant intraspecific trait variation effects on ecosystem pro-

cesses in regions where environmental gradients are steep

and few species dominate common community or land

cover types (Hillebrand et al. 2008). As species that

become dominants are frequently introduced, database

values from regions with different environmental condi-

tions may be inaccurate (Drenovsky et al. 2012).

Sampling stratification by community types of varying

successional status, novelty, land use history, and manage-

ment intensity is necessary to capture the effect trait vari-

ation in human-modified regions (Fig. 2; Garnier et al.

2007). Sampling needs to be efficient at capturing cross-

community variation without compromising other trait

variation sources. One plot (e.g., ~500 m2 for forest tree

communities) per site per community type (≥3 sites per

community type) at selected points across the prevailing

environmental gradients can be enough to capture the

necessary effect trait variation into CWM or trait diversity

indices (Ackerly and Cornwell 2007; Lavorel et al. 2008;

Messier et al. 2010). Dominant species (those

Figure 2. Range of functional trait variation and deviation from a

global mean value corresponding to individual, species, community,

and landscape ecological levels of a given biome under natural and

human-modified conditions. Black empty bars represent the

proportional range of trait variation found across ecological levels

under natural undisturbed conditions for two given regions within a

biome (hypothetical estimates based on Freschet et al. 2011). Green-

colored bars represent a region (case A) where land cover change and

species introductions have resulted in a relative decrease of trait

variation found across the species level due to localized extinctions of

species coupled with a relative increase in trait variation found across

the individual, community, and landscape levels due to the

dominance of introduced species, novel and managed community

types, and landscape fragmentation, respectively. Red-colored bars

represent another region (case B) where land cover change and

species extinctions and introductions have acted to homogenize trait

variation by increasing trait values that deviate less from the global

mean trait value for the biome at each ecological level. Divergence in

trait values between natural and human-modified regions is higher in

case B.
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contributing >80% of the CWM) should be adequately

sampled as outlined by protocols (Cornelissen et al. 2003;

Pakeman and Quested 2007). For subordinate species

(those contributing <20% of the CWM; Grime 1998) in

species-rich communities, such as old-growth or mature

tropical secondary forests, sampling of one individual per

species per plot per site is enough to capture the neces-

sary effect trait variation (Baraloto et al. 2010). In plant

communities exhibiting high species dominance and low

species richness, database values may be appropriate to

estimate effect traits of subordinate species but not of

dominant ones (Pakeman and Quested 2007; Lavorel

et al. 2008).

At higher trophic levels, landscape structure has

greater influence on effect traits by affecting dispersal

capacity of highly mobile organisms (Bommarco et al.

2010; Jauker et al. 2013). In the case of mobile animals,

CWM and trait diversity indices are typically based on

in situ species abundance estimates across community

types accounting for variation in landscape structure

(Vandewalle et al. 2010). Measuring traits directly

among the communities being studied is often not pos-

sible due to logistical constraints (e.g., behavioral traits

within diverse insect communities). In such cases, traits

can be inferred from phylogeny or published keys (Mor-

etti et al. 2009; Vandewalle et al. 2010; Wray et al.

2014). This is more acceptable when trait diversity

indices rather than a CWM are used to infer ecosystem

services, as the mean trait values in a community may

differ from database values depending on variables such

as climate and resource availability (Peat et al. 2005;

Gagic et al. 2015).

Scaling up Traits via Remote Sensing

Remote sensing facilitates the scaling-up of functional

trait variation by fine-resolution mapping of trait-related

data across broad spatial extents. The traits that can be

mapped directly with remote sensing are currently limited

to plant canopy phenological and chemical traits, and

structural traits of plants and vegetation. In general, phe-

nological and chemical traits can be mapped with optical-

based passive remote sensing while structural traits can be

mapped with laser-based active remote sensing. Along

with the mapping of land cover and landscape structure,

plant phenological, chemical, and structural traits can be

related to resource availability for animals in order to

infer animal trait variation.

Canopy phenological and chemical traits

Plant canopy traits related to phenology and chemistry,

such as leafing and flowering periodicity, leaf mass per

area, leaf water, carbon and nutrient content, and leaf

area index (LAI), can be mapped using satellite-based

passive multi- to hyperspectral remote sensing (Fig. 3;

Ustin and Gamon 2010; Homolov�a et al. 2013). Passive

sensors such as AVHRR and MODIS have high tempo-

ral resolution capable of quantifying the periodicity of

leafing and flowering phenology (Fig. 3; Vieira et al.

2003; Kalacksa et al. 2007; White et al. 2009). Landsat

can also be used for resolving phenological periodicity

due to its spatial and temporal resolution (Kennedy

et al. 2012; Melaas et al. 2013). However, most plant

canopy phenological and chemical traits cannot be

directly retrieved from passive remotely sensed data but

inferred by their relationship to canopy spectral proper-

ties using empirical or physical models based on statis-

tical relationships or spectral processes, respectively

(Gray and Song 2012; Homolov�a et al. 2013). Empirical

and physical models may be used to estimate the

spatial variation of similar phenological and chemical

traits including leaf mass per area, leaf carbon, cellulose,

lignin, nitrogen, phosphorous, photosynthetic pigment,

and water content, and LAI and may be used in tan-

dem to facilitate or improve the estimation of other

traits (Fig. 3; Colombo et al. 2008; Asner and Martin

2009; Asner et al. 2011b,c).

Figure 3. Remote sensing methods for mapping plant and animal

functional traits at different ecological levels. The area of the solid

boxes covers the ecological levels where remote sensing methods

coupled with field sampling and validation allow for the mapping of

the following plant functional traits: leaf phenology (brown), leaf

chemical content and mass per area (green), plant height (orange),

and crown diameter (blue). Dashed boxes cover the ecological levels

where remote sensing methods allow for the mapping of the

following proxies that relate to animal functional trait diversity:

habitat and vegetation structure (e.g., tree density and biomass;

yellow), leaf area index (purple), and landscape structure (e.g., patch

size, isolation, and perimeter-to-area ratio; red).
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Empirical models

Empirical models use regression analysis to establish statis-

tical relationships between field measurements of traits

and passive remote sensing data. A limitation of empirical

models has been that most multispectral sensors sample

few portions of the electromagnetic spectrum at band-

widths too wide to capture important features for the dis-

crimination of canopy traits (Ollinger 2011). This

limitation is addressed by hyperspectral sensors, which

sample a high number of contiguous, narrow spectral

bands and can be used to derive phenological and chemi-

cal traits such as leaf chlorophyll, nitrogen, phosphorous,

and water content (Fig. 3; Townsend et al. 2003; Malen-

ovsk�y et al. 2007). With hyperspectral data, the effects of

soil background, illumination, or albedo may be reduced

with spectral transformations to enhance absorption fea-

tures of interest (Schlerf et al. 2010). The most important

limitation of empirical models is that the relationships

between remotely sensed data and field observations of

traits can be time-, site-, and species-specific and lack

causality, robustness, and transferability across regions

(Homolov�a et al. 2013). Combining data from multi- to

hyperspectral sensors that capture information at different

spatial resolutions and extents (e.g., IKONOS and Land-

sat) with concurrent ground-based measurements can help

solve this problem (Fig. 3; Anderson et al. 2004; Williams

et al. 2008; Gray and Song 2012). The effects of canopy

structure on leaf chemical traits are difficult to correct in

empirical models, yet a solution is to combine empirical

with physical models (Asner and Martin 2008, 2009).

Physical models

Physical models of radiative transfer account for light

absorption and scattering processes to simulate leaf to

canopy reflected or emitted optical spectral properties

based on multi- or hyperspectral data (Malenovsk�y et al.

2007; Baret and Buis 2008; Jacquemoud et al. 2009; Ollin-

ger 2011). The coupling of leaf and canopy radiative

transfer models allows the spectral and directional varia-

tion of canopy reflectance to be described as a function

of leaf chemistry and canopy structure. This inverse mod-

eling allows for the retrieval of fine-resolution plant

canopy functional traits from plot scale to broader spatial

extents (Colombo et al. 2008; Croft et al. 2013; Homo-

lov�a et al. 2013). Incorporating soil radiative transfer

models imposes a strong spectral constraint on the inver-

sion process, decreasing the number of unknown variables

and enhancing spectral consistency (Baret and Buis 2008;

Jacquemoud et al. 2009). The main drawback of inverse

modeling is high uncertainty because several combina-

tions of canopy traits could lead to similar remotely

sensed signals (Koetz et al. 2005). Using field data to con-

strain the distribution and limits of variables can improve

the stability and reliability of solutions (Baret and Buis

2008). As radiative transfer models do not incorporate all

sources of variability in leaf spectra, the retrieval by inver-

sion is limited to those traits that are directly involved in

the modeled process, such as leaf mass per area, chloro-

phyll content, and water content (Fig. 3; Asner et al.

2011b,c; Homolov�a et al. 2013).

Plant structural traits

Individual plant structural traits such as height and crown

diameter can be mapped with active remote sensing

methods, particularly with LiDAR (Fig. 3; Popescu et al.

2003; Popescu and Wynne 2004; Falkowski et al. 2006;

Koch et al. 2006; Popescu and Zhao 2008), LiDAR typi-

cally underestimates plant height due to laser returns

missing the highest point of tree crowns although the

error remains constant (~0.15 m) and is mostly negligible

for tall forest canopies (Asner et al. 2012). The sensing of

tree and shrub crown diameter with LiDAR remains lim-

ited in closed canopy conditions (>50% cover), yet finer

postspacing of LiDAR returns (<1 m) may improve the

sensing of this trait (Falkowski et al. 2008). Conducting

sampling campaigns during the leaf-off period could also

improve tree crown diameter detection with LiDAR in

deciduous forests (Brandtberg et al. 2003). Tree crown

diameter has been mapped with some success using mul-

tispectral aerial photography albeit with the same prob-

lems as LiDAR (Strand et al. 2006; Garrity et al. 2008).

Vegetation structural traits such as LAI, tree density,

and biomass can also be mapped with LiDAR (Ria~no

et al. 2004; Martinuzzi et al. 2009; Zhao and Popescu

2009). LiDAR has been used in conjunction with passive

remote sensing to scale aboveground carbon stocks in for-

ests from plot to regional and global scales with high

accuracy (Asner et al. 2011a; Baccini et al. 2012). Due to

its accuracy in sensing forest structure across heteroge-

neous terrain, LiDAR can be used to map forest type,

successional status, and potentially tree species diversity

(Asner and Martin 2009; Castillo et al. 2012; Martinuzzi

et al. 2013; Hern�andez-Stefanoni et al. 2014). Links

between plant structure and function can be derived

directly from combining the three-dimensional location

data of returned LiDAR pulses with return intensity,

which can open new opportunities for fine-resolution

mapping of leaf chlorophyll and N content, and photo-

synthetic performance (Eitel et al. 2010, 2011; Magney

et al. 2014). Improvements in airborne and terrestrial

LiDAR technology have increased their utility in charac-

terizing structural traits of low-stature vegetation such as

shrublands and tundra (Streutker and Glenn 2006;
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Vierling et al. 2012; Greaves et al. 2015). Other active

remote sensing methods, such as satellite-based LiDAR

(Lefsky et al. 2005), high-density laser scanning (Maltamo

et al. 2004), and synthetic aperture radar (Santos et al.

2003), can be used to map traits such as canopy height,

yet their development lags behind compared to airborne

LiDAR (Fig. 3).

Animal traits

Mapping plant phenological, chemical, and structural

traits along with land cover variables, such as successional

status and landscape structure, can be useful for predict-

ing the functional traits of animals because they move

across landscapes depending on resource availability, and

on traits such as foraging range and dispersal abilities

(Fig. 3; Leyequien et al. 2007; Jarnevich et al. 2014; Pet-

torelli et al. 2014). Some optical satellite sensors such as

Landsat, IKONOS, and WorldView-2, which have been

typically used for mapping discrete land cover classes and

landscape structure, have high enough spatial resolution

to resolve the successional status of vegetation (Kennedy

et al. 2012).

Vegetation structure variables derived from airborne

LiDAR can be used for mapping animal trait diversity by

describing horizontal and vertical (three-dimensional)

habitat structure across landscapes. Some useful LiDAR-

derived structural variables include understory vegetation

density, LAI, canopy architecture, snag size and density,

and tree biomass and basal area (Fig. 3; Turner et al.

2003; Vierling et al. 2008; Bergen et al. 2009; Galbraith

et al. 2015). In situ field data on the abundance of animal

functional groups can be combined with structural vari-

ables to scale up animal trait diversity based on field-vali-

dated models (Hinsley et al. 2002; Martinuzzi et al. 2009;

M€uller and Brandl 2009; Newton et al. 2009). Coupled

with passive sensors that can map leaf phenology and

chemistry, the potential for LiDAR to relate plot-scale

structural properties, such as plant canopy height, crown

diameter, and aboveground biomass, can facilitate the

spatial scaling-up of multiple plant and animal traits

(Fig. 3; Zhao and Popescu 2009; Asner et al. 2011a; Gray

and Song 2012; M€uller et al. 2014).

Conclusion

Our review found and synthesized various issues to con-

sider and corresponding viable approaches for scaling up

plant and animal traits from plot to regional scales using

remote sensing (Table 1). Deciding which of these

approaches is more suitable will depend on the traits

needed and selected for the ecosystem service assessment.

A key issue is the regional context dependency of the

relationships between functional trait variation, degree of

human modification, and remotely sensed data. Our

review shows that functional trait sampling needs to

account for the regional modification of trait variation

due to dominant introduced species, managed and novel

community types, diverse land use history, and heteroge-

neous landscape structure. Statistical relationships that

link local trait variation to regional environmental gradi-

ents can fail to capture these anthropogenic effects on

trait variation and be of limited use in human-modified

regions. Methods that rely on environmental gradients to

integrate field-sampled functional trait variation into

land cover types have been used in ecosystem service

assessments (Lavorel et al. 2011). These methods may be

significantly improved by applying developments in

remote sensing that allow for fine-resolution regional

mapping of trait variation and that directly account for

the effects of human modification. Eventually, dynamic

vegetation models may reproduce the spatial variation in

Table 1. Summary of issues to consider and approaches for scaling up functional traits that resulted from the objectives of this review.

Objective Issues to consider Approach

1. Field sampling

of functional

trait variation

Natural sources of plant trait variation are

compounded by human modification that

results in dominance of introduced species

and heterogeneous landscapes

Quantification of intraspecific variation and

sampling stratification by successional status,

land use history and management intensity

may be required

Land cover change can affect animal traits

by modifying the dispersal

capacity of mobile organisms

Account for landscape variables related to animal

traits, which may be inferred from phylogeny or

published keys if necessary

2. Scaling up

trait variation

via remote sensing

The relationships between plant trait

variation and remotely sensed data

depend on regional context and more

so due to human modification

Remote sensing and ground-truthing by in situ

sampling of trait variation needs to occur

independently for regions with different levels

of human modification

Remotely sensed data cannot be directly

related to animal trait variation

Animal trait variation may be inferred from the

combination of different types of remotely

sensed data on vegetation and landscape structure
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functional traits after their response to environmental

gradients, land cover and climate change (Suding et al.

2008; Van Bodegom et al. 2012). However, the science is

not there yet. In situ sampling of trait variation is still

needed and more so in highly human-modified

regions for which ecosystem service assessments are most

relevant.

Our review focused on the objectives of conducting

field sampling of trait variation and scaling up trait varia-

tion using remotely sensed data with the ultimate goal of

improving ecosystem service assessments. An important

knowledge gap implicitly found by our review is the lack

of research directed toward linking the functional trait

metrics that are typically related to ecosystem processes

and services, the CWM and functional diversity indices,

with remotely sensed data. We could not find any papers

on this topic, and this remains a next step to improve the

utility of functional traits for ecosystem service manage-

ment. In addition, most of our review of methods for

scaling up traits applied to traits that can be remotely

sensed. Other plant traits that may be useful for ecosys-

tem service assessments, such as wood density or below-

ground biomass, still would need to be inferred based on

their relationship to environmental variables or to other

traits via modeling approaches akin to the inference of

animal traits as illustrated by our review. Nevertheless,

fusion of passive and active remote sensing along with

technological developments that increase sensor spectral,

spatial, and temporal resolutions can improve the map-

ping of sensible plant functional traits and animal traits

related to landscape and vegetation structure. At present,

remote sensing is a powerful tool for capturing variation

in functional traits at multiple spatial scales and, to

improve their accuracy, ecosystem service assessments

should take advantage of traits that can be remotely

sensed.
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