Abstract
Angiogenesis is part of the healing process following an ischemic injury and is vital for the post-ischemic repair of the myocardium. Therefore, it is of particular interest to be able to noninvasively monitor angiogenesis. This might, not only permit risk stratification of patients following myocardial infarction, but could also facilitate development and improvement of new therapies directed towards stimulation of the angiogenic response. During angiogenesis endothelial cells must adhere to one another to form new microvessels. αvβ3 integrin has been found to be highly expressed in activated endothelial cells and has been identified as a critical modulator of angiogenesis. 68Ga-NODAGA-E[c(RGDyK)]2 (RGD) has recently been developed by us as an angiogenesis positron-emission-tomography (PET) ligand targeted towards αvβ3 integrin. In the present study, we induced myocardial infarction in Göttingen minipigs. Successful infarction was documented by 82Rubidium-dipyridamole stress PET and computed tomography. RGD uptake was demonstrated in the infarcted myocardium one week and one month after induction of infarction by RGD-PET. In conclusion, we demonstrated angiogenesis by noninvasive imaging using RGD-PET in minipigs hearts, which resemble human hearts. The perspectives are very intriguing and might permit the evaluation of new treatment strategies targeted towards increasing the angiogenetic response, e.g., stem-cell treatment.
Keywords: positron-emission-tomography, angiogenesis, myocardial infarction
Acknowledgments
Great thanks to Christian Joost Holdflod Moeller for his help with the induction of the myocardial infarction.
Conflicts of Interest
The authors declare no conflicts of interest.
References
- 1.Ja K.M.M., Miao Q., Zhen Tee N.G., Lim S.Y., Nandihalli M., Ramachandra C.J.A., Mehta A., Shim W. iPSC-derived human cardiac progenitor cells improve ventricular remodelling via angiogenesis and interstitial networking of infarcted myocardium. J. Cell. Mol. Med. 2016;20:323–332. doi: 10.1111/jcmm.12725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Chen H., Niu G., Wu H., Chen X. Clinical Application of Radiolabeled RGD Peptides for PET Imaging of Integrin alphavbeta3. Theranostics. 2016;6:78–92. doi: 10.7150/thno.13242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Dobrucki L.W., Sinusas A.J. Imaging angiogenesis. Curr. Opin. Biotechnol. 2007;18:90–96. doi: 10.1016/j.copbio.2007.01.005. [DOI] [PubMed] [Google Scholar]
- 4.Cai M., Ren L., Yin X., Guo Z., Li Y., He T., Tang Y., Long T., Liu Y., Liu G., et al. PET monitoring angiogenesis of infarcted myocardium after treatment with vascular endothelial growth factor and bone marrow mesenchymal stem cells. Amino Acids. 2016;48:811–820. doi: 10.1007/s00726-015-2129-4. [DOI] [PubMed] [Google Scholar]
- 5.Kiugel M., Dijkgraaf I., Kyto V., Helin S., Liljenback H., Saanijoki T., Yim C., Oikonen V., Saukko P., Knuuti J., et al. Dimeric [68Ga]DOTA-RGD peptide targeting alphavbeta 3 integrin reveals extracellular matrix alterations after myocardial infarction. Mol. Imaging Biol. 2014;16:793–801. doi: 10.1007/s11307-014-0752-1. [DOI] [PubMed] [Google Scholar]
- 6.Eo J.S., Paeng J.C., Lee S., Lee Y.S., Jeong J.M., Kang K.W., Chung J.K., Lee D.S. Angiogenesis imaging in myocardial infarction using 68Ga-NOTA-RGD PET: characterization and application to therapeutic efficacy monitoring in rats. Coron. Artery Dis. 2013;24:303–311. doi: 10.1097/MCA.0b013e3283608c32. [DOI] [PubMed] [Google Scholar]
- 7.Laitinen I., Notni J., Pohle K., Rudelius M., Farrell E., Nekolla S.G., Henriksen G., Neubauer S., Kessler H., Wester H.-J., et al. Comparison of cyclic RGD peptides for αvβ3 integrin detection in a rat model of myocardial infarction. EJNMMI Res. 2013;3 doi: 10.1186/2191-219X-3-38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Menichetti L., Kusmic C., Panetta D., Arosio D., Petroni D., Matteucci M., Salvadori P.A., Casagrande C., L'Abbate A., Manzoni L. MicroPET/CT imaging of αvβ3 integrin via a novel 68Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction. Eur. J. Nucl. Med. Mol. Imaging. 2013;40:1265–1274. doi: 10.1007/s00259-013-2432-9. [DOI] [PubMed] [Google Scholar]
- 9.Gao H., Lang L., Guo N., Cao F., Quan Q., Hu S., Kiesewetter D.O., Niu G., Chen X. PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AlF-NOTA-PRGD2. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:683–692. doi: 10.1007/s00259-011-2052-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Sherif H.M., Saraste A., Nekolla S.G., Weidl E., Reder S., Tapfer A., Rudelius M., Higuchi T., Botnar R.M., Wester H.J., et al. Molecular imaging of early αvβ3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. J. Nucl. Med. 2012;53:318–323. doi: 10.2967/jnumed.111.091652. [DOI] [PubMed] [Google Scholar]
- 11.Laitinen I., Saraste A., Weidl E., Poethko T., Weber A.W., Nekolla S.G., Leppänen P., Ylä-Herttuala S., Hölzlwimmer G., Walch A., et al. Evaluation of αvβ3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD for imaging of vascular inflammation in atherosclerotic mice. Circ. Cardiovasc. Imaging. 2009;2:331–338. doi: 10.1161/CIRCIMAGING.108.846865. [DOI] [PubMed] [Google Scholar]
- 12.Higuchi T., Bengel F.M., Seidl S., Watzlowik P., Kessler H., Hegenloh R., Reder S., Nekolla S.G., Wester H.J., Schwaiger M. Assessment of αvβ3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc. Res. 2008;78:395–403. doi: 10.1093/cvr/cvn033. [DOI] [PubMed] [Google Scholar]
- 13.Meoli D.F., Sadeghi M.M., Krassilnikova S., Bourke B.N., Giordano F.J., Dione D.P., Su H., Edwards D.S., Liu S., Harris T.D., et al. Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J. Clin. Investig. 2004;113:1684–1691. doi: 10.1172/JCI200420352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Oxboel J., Brandt-Larsen M., Schjoeth-Eskesen C., Myschetzky R., El-Ali H.H., Madsen J., Kjaer A. Comparison of two new angiogenesis PET tracers 68Ga-NODAGA-E[c(RGDyK)]2 and 64Cu-NODAGA-E[c(RGDyK)]2; in vivo imaging studies in human xenograft tumors. Nucl. Med. Biol. 2014;41:259–267. doi: 10.1016/j.nucmedbio.2013.12.003. [DOI] [PubMed] [Google Scholar]
- 15.Rasmussen T., Follin B., Kastrup J., Christensen T.E., Hammelev K.P., Kjaer A., Hasbak P. Myocardial perfusion of infarcted and normal myocardium in propofol-anesthetized minipigs using Rubidium PET. J. Nucl. Cardiol. 2016;23:599–603. doi: 10.1007/s12350-016-0453-z. [DOI] [PubMed] [Google Scholar]
- 16.Makowski M.R., Ebersberger U., Nekolla S., Schwaiger M. In vivo molecular imaging of angiogenesis, targeting αvβ3 integrin expression, in a patient after acute myocardial infarction. Eur. Heart J. 2008;29 doi: 10.1093/eurheartj/ehn129. [DOI] [PubMed] [Google Scholar]
- 17.Luo Y., Sun Y., Zhu Z., Li F. Is the change of integrin αvβ3 expression in the infarcted myocardium related to the clinical outcome? Clin. Nucl. Med. 2014;39:655–657. doi: 10.1097/RLU.0000000000000426. [DOI] [PubMed] [Google Scholar]
- 18.Sun Y., Zeng Y., Zhu Y., Feng F., Xu W., Wu C., Xing B., Zhang W., Wu P., Cui L., et al. Application of 68Ga-PRGD2 PET/CT for αvβ3-integrin imaging of myocardial infarction and stroke. Theranostics. 2014;4:778–786. doi: 10.7150/thno.8809. [DOI] [PMC free article] [PubMed] [Google Scholar]