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Abstract

Objective: Rolandic epilepsy is a common genetic focal epilepsy of childhood

characterized by centrotemporal sharp waves on electroencephalogram. In pre-

vious genome-wide analysis, we had reported linkage of centrotemporal sharp

waves to chromosome 11p13, and fine mapping with 44 SNPs identified the

ELP4-PAX6 locus in two independent US and Canadian case–control samples.

Here, we aimed to find a causative variant for centrotemporal sharp waves

using a larger sample and higher resolution genotyping array. Methods: We

fine-mapped the ELP4-PAX6 locus in 186 individuals from rolandic epilepsy

families and 1000 population controls of European origin using the Illumina

HumanCoreExome-12 v1.0 BeadChip. Controls were matched to cases on eth-

nicity using principal component analysis. We used generalized estimating

equations to assess association, followed up with a bioinformatics survey and

literature search to evaluate functional significance. Results: Homozygosity at

the T allele of SNP rs662702 in the 30 untranslated region of PAX6 conferred

increased risk of CTS: Odds ratio = 12.29 (95% CI: 3.20–47.22), P = 2.6 9 10�4

and is seen in 3.9% of cases but only 0.3% of controls. Interpretation: The minor

T allele of SNP rs662702 disrupts regulation by microRNA-328, which is known
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to result in increased PAX6 expression in vitro. This study provides, for the first

time, evidence of a noncoding genomic variant contributing to the etiology of a

common human epilepsy via a posttranscriptional regulatory mechanism.

Introduction

Rolandic epilepsy (RE), or benign epilepsy of childhood

with centrotemporal spikes (BECTS) (OMIM #117100), is

the most common childhood epilepsy syndrome with a

prevalence of ~1 in 2500 children, showing onset of sei-

zures in a narrow age range of 4–12 years, and invariable

remission by 14 years.1,2 Another specific feature of focal

seizures in RE is the selective involvement of the vocal

tract, with both sensory and motor disturbances including

paresthesia and clonic movements of the lower face, dys-

arthria, and hypersalivation, and often a subsequent per-

iod of speech arrest. Seizures occur almost exclusively in

sleep at the transition between rapid eye movement

(REM) and non-REM cycles, and may secondarily gener-

alize. Approximately 30% of RE patients have an antece-

dent history of speech sound disorder (SSD,

developmentally inappropriate errors in speech produc-

tion that limit intelligibility, usually caused by a mild

speech dyspraxia3), and 42% meet ICD-10 criteria for

reading disorder.4 RE clinically overlaps with more severe

epilepsy syndromes in the “epilepsy-aphasia spectrum”

such as atypical benign partial epilepsy (ABPE, OMIM

#604827), continuous spikes in slow wave sleep (CSWSS),

and Landau–Kleffner syndromes (LKS, OMIM #245570)5

as well as atypical forms6 that all share the common elec-

troencephalographic (EEG) signature of centrotemporal

spikes (CTS). CTS is also seen in 2–4% of the school-

aged population7 and is over-represented in neurodevel-

opmental disorders such as autism8 and attention-deficit

hyperactivity disorder.9

While some question whether RE is genetically influ-

enced,10,11 rare Mendelian variants exist.12–14 Following

the success of exome sequencing in discovering mostly de

novo mutations15 for severe infantile epileptic encephalo-

pathies, several studies have identified GRIN2A mutations

in epilepsies of the epilepsy-aphasia spectrum, ranging in

frequency from 2.1% in RE to 20% in CSWSS.16 Other

very rare sequence mutations have been found in KCNQ2,

KCNQ3, RBFOX1, GABRG2, and DEPDC5.17–20 Recurrent
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structural genomic variation has been found at 16p11.2 in

1.3% of RE, but incomplete penetrance suggests the pres-

ence of additional genetic and/or environmental factors.21

Alternative approaches to identifying genetic contributors

to RE have focused on the genetic model of CTS, the

EEG signature necessary for diagnosis, which serves as an

electrophysiological endophenotype of RE. The inheri-

tance of CTS in RE is consistent with an autosomal dom-

inant pattern.22 Early candidate gene studies reported

linkage of CTS to chromosome 15q13.33,23 but we subse-

quently reported strong genome-wide linkage evidence for

CTS in RE families at 11p13,24 and found the locus to be

pleiotropic for speech dyspraxia in RE.3 Two small case–
control samples with limited SNP coverage allowed local-

ization of allelic association at the 11p13 locus to SNPs at

the ELP4-PAX624 locus which was not independently repli-

cated.25 Deep sequencing failed to reveal rare causative cod-

ing mutations at this locus,26 although the prevalence of

CTS (2–4%) in the general population7 renders a rare vari-

ant genetic model unlikely. Here we report localization evi-

dence of CTS at the ELP4-PAX6 locus in an expanded

sample, refining the association to a noncoding SNP previ-

ously reported to regulate PAX6 expression, and with

suggested evidence of a novel mechanism of epilepsy sus-

ceptibility via reduced microRNA binding affinity.

Subjects and Methods

Study design

Probands with RE (who have CTS by definition) and

their parents and siblings were recruited as described pre-

viously from the US, Canada, Argentina, France and the

UK24 with ethics approval by local institutional review

boards. Written informed consent was obtained from all

of the patients’ legal guardians to share clinical, neu-

roimaging, and electroencephalographic data and provide

blood and saliva when available. Briefly, cases with RE, as

defined in accordance with the International League

Against Epilepsy,28 were enrolled and their families

recruited (2005–2014); ascertainment was through the pro-

band, with no other family member required to be affected

with RE. Patients were excluded if the cause of the seizures

was determined to be due to alternative structural, inflam-

matory, or metabolic cause.29 In addition, cases with

unwitnessed episodes or with only secondary generalized

seizures were excluded. Siblings aged 4–16 years underwent

EEG to detect the presence of CTS, which has age-depen-

dent penetrance and is detectable between 4 and 16 years;22

the EEGs were assessed blind to identity by two indepen-

dent experts. This study analyzed two groups of case partic-

ipants of European descent (1) with only CTS (152 subjects

from 126 families), and (2) with either CTS or SSD (186

subjects from 128 families) to test for pleiotropy. Pheno-

typing for CTS and SSD was conducted as previously

reported.24,30 One-thousand population controls of Euro-

pean descent, determined by principal component analy-

sis,31 were selected at random from a pool of 4491

unrelated individuals who took part in a population-based

study of children visiting the Ontario Science Centre,32 fre-

quency matched by sex, and self-reported to be unaffected

with epilepsy. Genotypes of 646 RE probands and their

family members, and the 4491 unrelated population con-

trols ascertained at the Ontario Science Centre were

obtained from the Illumina HumanCoreExome-12 v1.0

BeadChip (538,448 SNPs), and five additional cases with

CTS on the HumanOmniExpress-12 v1.1 BeadChip

(730,525 SNPs) (four from Argentina, one from USA).

Genotypes for 50 of these RE cases were previously

obtained at 44 SNPs at the 11p13 locus and included in our

previously published CTS case–control association study.24

Quality control of genotype data

PLINK v1.0733 and R statistical software34 were used for

quality control of genotype data. Individuals with a geno-

type missing rate of 10% or greater and SNPs with a call

rate <90% were removed. Duplicated SNPs for each plat-

form were also identified and the SNP with the highest

call rate was kept. Sex was assessed against reported gen-

der using heterozygosity from the X chromosome. In

addition, samples that were outliers for heterozygosity on

autosomal chromosomes were removed. Heterozygous

haploid SNPs on the sex chromosomes were removed.

Pairwise relatedness was assessed using PLINK’s calcu-

lation of the kinship coefficient (–genome option). The

individual with the lowest missing genotype rate was kept

from identified monozygotic twins and duplicated sam-

ples. Family relationships were recorded, and information

from PLINK’s kinship coefficient calculations were used

in conjunction to build the pedigrees de novo using in-

house scripts. The pedigrees were then checked for errors

using the kinship2 package in R.35

KING31 was used in cases and controls for principal

component analysis with subjects from the International

Hapmap Project (Phase 3)36 from various ethnic back-

grounds, while correcting for family relationships. Sub-

jects who clustered close to Hapmap-defined populations

other than CEPH (Utah residents with ancestry from

northern and western Europe) (CEU) or Toscani in Italy

(TSI) were excluded from the analysis. Principal compo-

nent analysis was then re-run with the remaining sample

individuals and Hapmap CEU and TSI subjects; sample

individuals who were more than six standard deviations

from the mean for any of the first three principal compo-

nents were also excluded from the analysis. Furthermore,
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cases and controls were compared in a principal compo-

nent analysis against a broader European reference popu-

lation from the 1000 Genomes Project37 and Human

Genome Diversity Project38 to ensure homogeneity

between cases and controls. The Tracy–Widom test was

used to determine the number of principal components

needed to correct for population stratification in the asso-

ciation model.

Statistical analysis and bioinformatics

We restricted statistical analysis to the genotyped markers

at the chromosome 11p13 CTS locus (chr11:30,862,638–
31,815,896; hg19) defined by a 1-LOD score interval from

the previously reported linkage study.24 We estimated the

number of independent tests, and calculated a Bonferroni-

corrected critical value for declaring regional statistical sig-

nificance using the Genetic Type I Error Calculator

(GEC).39 The P-value required for statistical significance

was 3.09 9 10�3 in the ELP4-PAX6 region. We used gen-

eralized estimating equations to account for the related-

ness with an independence correlation structure. All

association tests were conducted using the geeglm function

in the geepack package in R.40 In the primary analysis, we

coded SNPs as additive, and adjusted for sex and principal

components estimated using KING.31 The independent

association test per continental region for CTS was con-

ducted as follows: for the top SNP associated with CTS, 69

CTS cases from USA and 13 from Canada were pooled

into the “North American” group site and checked for

association with 539 independent population controls; and

59 CTS cases from UK and seven from France were pooled

into the “European” group site and checked for associa-

tion with 434 nonoverlapping population controls. Forest

plots were generated using the forestplot package in R.41

We visualized the association P-values using Locus-

Zoom’s web interface.42 For finer resolution in post hoc

analysis, BEAGLE 4.0 version r139943 was used to impute

the genotypes of all samples in the region of interest

(chr11:30,862,638–31,815,896; NCBI build 37). Whenever

available, parent-child relationships were used for imputa-

tion. All 2504 individuals in the 1000 Genomes Project

(phase 3 version 5) were used as the reference during the

phasing and imputation steps. For strand alignment of

genotyped SNPs, however, the conform-gt program (ver-

sion r1174) was used with only the European-identified

individuals in the 1000 Genomes Project37 as reference.

Only SNPs with an allelic r2 > 0.8 were retained for fur-

ther analysis.

We evaluated results in the context of annotations in

the Database of Genomic Variants (DGV),44 the NIH

Roadmap Epigenomics Mapping Consortium (REMC),45

the Encyclopedia of DNA Elements (ENCODE),46 and an

integrative analysis of public ChIP-seq experiments

(ReMap).47 Haploreg (v4)48 was queried for transcription

factor affinity binding predictions and the presence of

suggested transcription factor motifs were verified using

JASPAR.49 The Probability of Interaction by Target Acces-

sibility (PITA)50 tool was used to verify microRNA target

accessibility and recognition at the PAX6 30UTR region.

Results

Association of CTS in the ELP4-PAX6 region

In the regional analysis of 11p13, 152 individuals with

CTS from Canada, the United States, Argentina, and Eur-

ope (Tables 1 and 2) were compared to 1000 ethnically

matched controls of European origin. One genotyped

SNP, rs662702, in the 30-untranslated region (UTR) of

PAX6 reached regional significance (P = 1.53 9 10�3)

under an additive model with an estimated odds ratio

(OR) of 1.97 (95% CI: 1.29–2.99; Fig. 1A and Table S1).

The T allele was present in 14% of the individuals with

CTS and only 7.6% of controls. Follow-up fine mapping

with imputation, and conditional analysis on rs662702,

did not reveal other variants with greater evidence of

association (Fig. 1A and Table S1). The evidence at

rs662702 was consistent across continents, with ORs of

1.92 (95% CI: 1.08–3.43) for North America (69 cases

from the US and 13 from Canada), and 2.20 (95% CI:

1.17–4.13) for the independent sample from Europe (59

from the UK and 7 from France) (Fig. 1B). The rs662702

variant was not genotyped as part of the original linkage

and association study implicating the 11p13 locus,24 but

ELP4 associated variants from that study are in LD with

rs662702 (D0 = 0.65). Because the 11p13 locus is pleiotro-

pic for CTS and SSD,3 we tested the hypothesis that SNP

rs662702 also contributes to SSD. We reanalyzed using

the expanded sample of 186 individuals with CTS or SSD;

the results argued against a pleiotropic effect, with the

OR decreasing from 1.97 to 1.84 and the P-value increas-

ing (P = 4.17 9 10�3) despite the larger sample size. The

homozygosity frequency of the rs662702 T risk allele

among Ontario Science Centre population controls is

0.30% (3/1000). To confirm the population estimate of

this genotype frequency we consulted the 1000 Genomes

Project’s European sample37 and an unrelated European

subset of the Human Genome Diversity Project,38 which

report comparable frequencies of 0.60% (3/503) and

0.64% (1/157), respectively. Since the minor T allele fre-

quency differs across ethnic backgrounds, we further veri-

fied by principal component analysis considering up to 10

components, that T allele carriers in CTS cases overlap

with T allele carriers from OSC controls, and overlap with

a broader panel of European individuals from the 1000
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Genomes Project37 and from the Human Genome Diversity

Project38 (Fig. S1). Among those with CTS, the rs662702

homozygosity frequency is almost 4% (6/152,with all six

TT homozygotes unrelated to one another), resulting in a

12.29 (95% CI: 3.20–47.22) times greater odds of CTS

(after adjusting for sex and population structure) among

individuals homozygous for the rs662702 T allele

(P = 2.58 9 10�4). Five of the six TT homozygotes who

had CTS also had RE. Seven additional individuals from

RE families were homozygous for the rs662702 T allele, but

were removed from the study prior to association analysis

because they were either of non-European origin (N = 4)

or their CTS status was unknown (N = 3). Of the 13 indi-

viduals from RE families that were homozygous for the TT

allele, eight had RE (62%) and all either showed CTS on

EEG or did not undergo EEG because they were beyond the

age range for CTS detection.

Bioinformatic assessment

rs662702 resides in the 30UTR of PAX6. The C allele is con-

served in mammals and overlaps a region bound by several

transcription factors46,47 (Fig. 2), some of which play an

established role in brain gene expression (e.g., FOXP227

and TFAP2C51). DNase hypersensitivity, epigenetic modifi-

cations and chromatin state52 annotations strongly support

that rs662702 is an enhancer utilized in several brain tis-

sues and developmental stages. HaploReg48 predicts that

the rs662702 T allele slightly alters the transcription factor

binding sites of two TALE homeobox transcription factors,

MEIS2 and TGIF1 (Fig. 2C). MEIS2 and TGIF1 have been

shown to bind overlapping motifs and compete for the

same binding site leading to differential regulation of brain

genes with TGIF1 acting as a repressor.53

However, the strongest experimental evidence as to

how rs662702 impacts PAX6 expression comes from pub-

lished experiments showing that the T allele of rs662702T
a
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Table 2. Distribution of CTS cases and their family members used in

the analysis per geographic location.

USA UK Canada France Argentina

CTS cases

(European1)

76 (69) 66 (59) 15 (13) 8 (7) 4 (4)

Family members

without/

unknown CTS

285 188 0 9 0

Genotypes from the four individuals from Argentina and one from

USA were obtained from the HumanOmniExpress BeadChip. Geno-

types from the remaining 646 individuals were obtained from the

HumanExomeCore BeadChip. RE, Rolandic epilepsy; CTS, centrotem-

poral spikes.
1Only those RE cases with CTS of European origin were used in the

association analysis.
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disrupts the seed region of microRNA-328 (miR-328).50,54

Using reporter assays it has been shown that the T allele

prevents the downregulation of PAX6 by miR-328,54

which gives rise to higher PAX6 expression as shown in

retinal pigment epithelial cells.55

Discussion

The results of this association study suggest rs662702 in

the 30UTR of PAX6 may contribute to centrotemporal

spikes in rolandic epilepsy. Each T allele at rs662702 dou-

bles the odds of CTS, whereas T allele homozygosity dis-

plays a 12-fold increase in risk. One possible explanation

for this observation is that other undiscovered variants at

the ELP4-PAX6 locus contribute to CTS as compound

heterozygotes. This 30 UTR association with CTS invites

one to question the role of rs662702 variants in related

epilepsies and neurodevelopmental disorders that feature

CTS. Although the 11p13 locus is pleiotropic for speech

dyspraxia and CTS in RE, this study does not support the

hypothesis that pleiotropy is mediated through rs662702.

The functional effects of rs662702 variation have been

investigated in other studies54,55 and suggest increased

expression of PAX6 via disrupted binding of microRNA-

328, a novel mechanism for epilepsy susceptibility.

The association of rs662702 is consistent across North

American and European samples providing similar esti-

mates of effect size for CTS (OR 1.92 vs. 2.20). Although

homozygosity of the T allele at rs662702 is extremely rare

among the Ontario Science Centre controls (0.30%), 1000

Genomes Project Europeans (0.60%) and Human Gen-

ome Diversity Project Europeans (0.64%), ~4% of
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Figure 1. Association of centrotemporal spikes (CTS) in the 11p13 linkage locus. (A) LocusZoom42 plot for the association of 152 CTS cases with

1000 population controls using an additive model under the CTS 1-LOD linkage interval with rs662702 (purple diamond) and two imputed SNPs

annotated to ELP4 in linkage disequilibrium with rs662702, providing a region-wide significant association with CTS. (B) Association evidence for

rs662702 with 95% confidence intervals for independent North American and European samples. The summary row reflects the association

analysis at rs662702 presented in Figure 1A, which includes the North American CTS cases, the European CTS cases, four additional CTS cases

from Argentina who are not included in the North American-only or European-only analyses, and all 1000 population controls, with genotype

distribution of 6/31/115 and 3/145/852 (TT/TC/CC) for CTS cases and controls, respectively.

Figure 2. Overview of epigenetic interactions and evolutionary conservation at the rs662702 locus. (A) UCSC genome browser view of a curated

set of transcription factor binding sites47 obtained by chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) from both

ENCODE46 and public datasets47 shows that the region surrounding rs662702 (light blue shading) overlaps several transcription factor binding

sites. Most of the transcription factor binding sites within 250 bp of rs662702 come from breast cancer (13/21: NR3C3, FOXA1, and TFAP2C)

and leukemia (5/21: ERG, FLI1, RUNX1, TCF12, MAX) cell lines. The remainder of the binding events come from a neuroectodermal cell line

(FOXP2), differentiated keratinocytes (TP63), and an immortalized fibroblast (SNAPC1). When considering the summit of ChIP-seq signal (larger

box on colored line) of these bound transcription factors, TFAP2C summit is the closest to rs662702. This region is also annotated as an enhancer

chromatin state (orange bars) in several regions of the brain and is a DNase I hypersensitive site in fetal brain (data from REMC).45 (B) Zoomed in

view of rs662702 shows the close proximity of transcription factor binding summits for TFAP2C and FOXA1 as well as a strong conservation of

the major C allele in mammals (Multiz69 alignment shown). (C) Summary of HaploReg (v4)48 predictions of the transcription factor binding site

affinity changes due to rs662702. The reference and alternative allele and the affinity scores are shown. Both matches are to homeobox proteins

belonging to the TALE family of homeodomain-containing proteins. Mrg–1 motif is related to MEIS2 and Tgif–1 is related to TGIF1 (transforming

factor growth beta (TGFb)-induced factor 1). The TGIF1 motif logo shown was obtained from the JASPAR database, which showed a score

threshold >80% for the murine-derived motif for the 60 bp sequence surrounding the SNP; the scoring is made against 200 random matrix

models permuted for the motif sequence).49 According to Haploreg,48 the T allele increases the predicted binding affinity to TGIF1. NPC, neuronal

progenitor cell; REMC, Roadmap Epigenomics Mapping Consortium.
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individuals with CTS are homozygous for the T allele at

rs662702; a 12-fold increase in odds over controls after

correction for sex and population stratification. All indi-

viduals from the RE families that were homozygous for

the T allele and underwent EEG analysis during the criti-

cal age range during which CTS is detectable displayed

CTS, suggesting that TT homozygosity may be a highly

penetrant genotype. Five of the six rs662702 TT homozy-

gotes had RE, suggesting therefore that TT homozygosity

may also contribute to seizure susceptibility. However,

since CTS is necessary but not sufficient for RE, it is

likely that other interacting genetic and/or environmental

factors contribute to the seizure expression or modify the

neurodevelopmental phenotype in RE. Such factors may

include reported rare sequence variants in other genes

such as GRIN2A16–20,56,57 and other recurrent or private

structural variations, for example, 16p11.2, or other

undiscovered variants in cis-regulatory modules in the

ELP4-PAX6 locus. The investigation of such hypothetical

gene–gene interactions (statistical or physical) will require

larger scale studies.

The appearance of CTS in related epilepsies of the epi-

lepsy-aphasia spectrum as well as in autism and atten-

tion-deficit hyperactivity disorder8,9 raises the intriguing

hypothesis that rs662702 might also be a marker for a

broader range of neurodevelopmental disorders. This

hypothesis should be evaluated in disease-specific cohorts

to determine the neurodevelopmental phenotype associ-

ated with rs662702 T allele homozygosity.

Although we did not find evidence for a pleiotropic

effect of rs662702 on CTS and speech dyspraxia, this rela-

tionship may be indirect through regulatory effects on

FOXP2, disruption of which causes severe speech dysprax-

ia.58 pax6 has been reported as a major regulator of foxp2

expression in zebrafish through direct binding to a highly

conserved enhancer (ECR1).59 As such, increased PAX6

expression through miR-328 regulation could affect the

gene expression of FOXP2, and we speculate that alter-

ations in the functional interaction between PAX6 and

FOXP2 might contribute to the vocal tract symptoms in

the phenotype of RE.

The transcription factor PAX6 is a highly conserved

“master regulator” crucial for development of the eye,

brain, olfactory system and endocrine pancreas. It is a

major determinant of patterning and regionalization in

the developing nervous system, as well as regulating cell

fate and proliferation,60 and is expressed in the develop-

ing mouse telencephalon only dorsally. PAX6 displays

complex spatiotemporal and quantitative expression pat-

terns determined by a large array of posttranscriptional

and cis-regulatory control elements, some of which are

known to be located upstream, within introns, and some

of which are known to be sited in the highly conserved

downstream regulatory region residing within ELP4

introns.61 The functional effects of rs662702 TT in CTS

are more consistent with a relative spatio-temporal alter-

ation in gene function rather than the total loss of func-

tion usually associated with hemizygous mutations and

classic PAX6 ocular or brain malformations.62

The rs662702 T allele increases PAX6 expression

in vitro55 and the possible relevance of this for RE is sug-

gested by experimental overexpression in vivo. Manuel

and colleagues63 used a human multicopy transgene to

show that overexpression causes cell-autonomous defects

of late cortical progenitor proliferation in the fetal mouse

brain.63 Specifically, overexpression resulted in abnormali-

ties of cortical thickness and layering in rostral and cen-

tral regions,63 in striking similarity to recent findings

obtained through longitudinal magnetic resonance

imaging (MRI) structural studies in RE,64 where RE

patients show areas of reduced frontal, temporal, and

occipital cortical thickness. In silico analysis of gene ontol-

ogy and phenologs across human, mouse, chicken, zebra-

fish, worm, yeast, and plant ranks the probability that PAX6

is associated with epilepsy as one of its top predictions.65

We propose that the principal mechanism by which the

rs662702 T allele leads to pathogenicity is through

increased PAX6 expression by reduction in the binding

affinity of miR-328,54 disrupting PAX6 autoregulation.

MicroRNAs are noncoding single-stranded RNA mole-

cules that generally lead to mRNA degradation or reduce

translation by binding to complementary mRNA at the 30

UTR. The anatomical (vocal tract) and temporal (mid

childhood) specificity of the seizures in RE tantalisingly

supports an etiologic role for microRNAs, which are

known to be key influences in the timing and tissue

specificity of late developmental transitions.66 This does

not exclude a role for the transcription factors MEIS2

and TGIF1, which bind in the same region and may be

involved in the coregulation of PAX6 during brain devel-

opment.67 MicroRNA binding has not been reported as a

pathological mechanism in epilepsy previously, although

miR-134 was found to be upregulated in refractory tem-

poral lobe epilepsy tissue and in a mouse model.68 This

novel finding raises the possibilities: (1) that other regula-

tory mechanisms in noncoding regions of ELP4-PAX6

may explain remaining risk for CTS in individuals lacking

the TT genotype; that (2) miR-328 is implicated in

epilepsies and neurodevelopmental disorders related

through CTS; and (3) that microRNAs may play a role in

other common epilepsies of complex genetic inheritance.
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Supporting Information

Additional Supporting Information may be found online

in the supporting information tab for this article:

Figure S1. Principal component analysis (PCA) using

KING31 of the first 10 principal components. One hun-

dred and fifty-two individuals with CTS, 1000 OSC con-

trols and Europeans from the 1000 Genomes Project and

the Human Genome Diversity Project reference panels

were included in the PCA while adjusting for relatedness.

CTS and OSC individuals who are carriers of the T allele

for SNP rs662702 are marked with a blue triangle and

those who are homozygous are marked with a red cross.

Table S1. Genotyped SNPs in the ELP4 region (chr11:

30,862,638–31,815,896) tested for association in 152 CTS

cases and 1000 Ontario Science Centre population con-

trols. Only one genotyped SNP, rs662702, was regionally

significant (P < 3.06 9 10�3). This SNP falls in the 30-
UTR region of the PAX6 gene. CHR, chromosome; BP,

base-pair position; SNP, single-nucleotide polymorphism;

OR, odds ratio; LogP, �log10(P-value); MAF, minor allele

frequency; 1K, 1000 Genomes Project (phase 3 version 5);

MAF 1K EUR, MAF in Europeans of the 1K project.
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