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Abstract

We consider a study-level meta-analysis with a normally distributed outcome variable and possibly 

unequal study-level variances, where the object of inference is the difference in means between a 

treatment and control group. A common complication in such an analysis is missing sample 

variances for some studies. A frequently-used approach is to impute the weighted (by sample size) 

mean of the observed variances (mean imputation). Another approach is to include only those 

studies with variances reported (complete case analysis). Both mean imputation and complete case 

analysis are only valid under the missing-completely-at-random assumption (MCAR), and even 

then the inverse variance weights produced are not necessarily optimal. We propose a multiple 

imputation method employing gamma meta-regression to impute the missing sample variances. 

Our method takes advantage of study-level covariates that may be used to provide information 

about the missing data. Through simulation studies, we show that multiple imputation, when the 

imputation model is correctly specified, is superior to competing methods in terms of confidence 

interval coverage probability and type I error probability when testing a specified group difference. 

Finally, we describe a similar approach to handling missing variances in cross-over studies.
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 1. Introduction

 1.1. Background

In evidence-based medicine, the highest level of evidence is considered to be a systematic 

review of well-conducted clinical trials [1]. Meta-analysis is often an essential part of 

systematic review. Comprehensive discussion of statistical methods for classical meta-

analysis can be found in Whitehead [2], Hedges and Olkin [3], and Borenstein et al. [4]. For 

meta-analysis of a continuous variable, methods based on the asymptotic normality of the 
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estimator of the parameter of interest are commonly performed. This paper focuses on the 

case where one is interested in the difference in mean response (θ) between the independent 

treatment and control groups of a collection of clinical trials. The standard meta-analytic 

estimate is the weighted average of the study-level sample mean differences, where the 

weights are the inverses of the variances of the study-level estimators [5]. For a study-level 

meta-analysis, the sample variance information is collected for the outcome variables of 

interest and used to compute the variance of the estimated treatment effect for each study.

A common situation that arises in this context is that study-level sample variances are 

missing and cannot be calculated given the data reported in the original papers. One should 

obtain the missing data from the original authors, but it is not always possible. An approach 

to dealing with this issue is to impute the missing data using a weighted or unweighted 

average of the observed sample variances. However, this approach, like any single 

imputation method, does not take into account the variability due to estimating the missing 

sample variances.

 1.2. Motivating Example

The data for our application come from a meta-analysis performed using a large database of 

neuropathic pain clinical trials (n=200), which was originally analyzed using meta-

regression in Dworkin et al. [6]. The primary goal of that research was to identify patient, 

study, and site factors associated with the magnitude of the treatment effect among 

randomized, double-blind, placebo-controlled trials of pharmacologic treatments established 

to be effective in treating various neuropathic pain conditions. In this and similar data sets 

[7], a sizable portion of the sample variance data were missing. Therefore, a method that 

handles the missing sample variance data efficiently is of interest.

To illustrate our methods, we focus on the estimation of the average treatment effect in the 

84 parallel group trials that used either the visual analog scale (VAS) or the numerical rating 

scale (NRS) as the outcome variable. The VAS is a pain measure where subjects rate their 

pain by indicating a spot on a 100 mm line with the ends labeled ‘no pain’ and ‘worst 

possible pain’ or similar wording. The NRS is a pain measure where subjects rate their pain 

by selecting a number, most often 0 to 10 in increments of 1, with 0 labeled ‘no pain’ and 10 

labeled ‘worst possible pain’ or similar wording. The VAS was transformed to the same 

scale as the NRS by dividing the means and standard deviations by 10. We treat the two 

measures equivalently, since they are highly correlated and there is no evidence to suggest 

that they measure treatment effect differently [6]. For trials involving multiple active dosages 

of a treatment in a study, we chose the largest dosage. Sample variance data could not be 

extracted from 16 (19%) of the studies.

 1.3. Missingness Assumptions

There are three different possible assumptions that can be made about missing data [8]. 

Under the missing completely at random (MCAR) assumption, there is no dependence of the 

missingness on any of the data (observed or unobserved). A less restrictive assumption is the 

missing-at-random (MAR) assumption, under which the missingness, conditional on the 

observed data, is independent of the data that would have been observed had they not been 
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missing. Finally, the least restrictive assumption is the missing-not-at-random (MNAR) 

assumption, under which the missingness may be dependent on the value that would have 

been observed, even conditional on the observed data. In practice, analyses under the MNAR 

assumption are typically reserved for sensitivity analyses, as they rely on untestable 

assumptions about the dependence of the missingness on the unobserved values. In this 

paper, we focus on analyses that are valid under the MAR assumption.

 1.4. Prior Work on Missing Variances

Wiebe et al. surveyed the meta-analysis literature for approaches to handling missing sample 

variances and other quantities and identified 153 studies that addressed the issue of missing 

variances, including 112 systematic reviews/meta-analyses and 41 methods papers [9]. The 

most common method used (aside from algebraic recalculation based on other information 

presented) was “direct substitution with a baseline or other treatment SD, another included 

study’s SD, or the maximum thereof, or an SD from another literature source.” This method 

was found in 13% of the studies in their sample. The simplest method for handling missing 

sample variance data is to exclude studies with missing data from the analysis, known as 

complete case analysis (done by 9% of studies in Wiebe et al. [9]). Another approach 

involves taking an average of the sample variances observed (either weighted or 

unweighted), and imputing the value obtained [10]; Wiebe et al. found that 10% of studies in 

their survey used this approach [9]. They concluded that there is no standardized 

methodology for handling missing variance data. Marinho [11] proposed using simple linear 

regression of the log-transformed standard deviation on study-level covariates, such as the 

sample mean, and imputing the exponentiated predicted values for the missing standard 

deviations. Robertson, Idris, and Boyle [12] proposed multiply imputing missing sample 

variances using a gamma distribution with parameters for this distribution estimated using 

the method of moments (the first and second moments of the sample variance), under the 

equal variance and MCAR assumption.

Idris and Robertson [13] proposed a multiple imputation model that assumes equal variances 

across studies, using a hot-deck approach to imputation. Stevens [14] proposed a fully-

Bayesian multiple imputation model for missing standard errors in meta-analysis that is 

valid under the equal variance and MCAR assumptions.

The above previously proposed methodology has assumed a common sample variance 

across studies, or has not properly accounted for the uncertainty associated with the 

impuation model. In this paper, we propose using a meta-regression-based imputation model 

that includes study-level covariates to impute the missing data. This approach incorporates 

the uncertainty associated with the imputation model. Linear fixed effects meta-regression 

was first described by Greenland [15] and linear mixed effects meta-regression was 

introduced by Berkey et al. [16]. We extend these methods for the gamma distribution, using 

a generalized linear mixed model, to multiply impute missing gamma-distributed sample 

variances. We also consider the problem of missing sample variances in cross-over trials, 

which may require a different type of imputation model depending on the available 

information. For a comprehensive overview of multiple imputation, see Rubin [17], Schafer 

[18], and Carpenter and Kenward [19].
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 2. Methods

 2.1. Meta-Analysis Statistical Methodology for Parallel Group Trials

We focus on the situation where we have summary data from the treatment and control 

groups from a number of clinical trials. The study-level observations are 

, and 

, where Nj = 

nj,treat + nj,control and j denotes study (j = 1, …, J). The expected value of the treatment effect 

for each study is θj (j = 1, …, J). In a meta-analysis with a fixed-effects model, θj may be 

assumed to be constant (equal to θ); alternatively, it may be assumed to follow a particular 

distribution, such as the normal distribution, under a random effects model (θj ~ N(θ, τ2)). 

We consider both cases. It’s also important to note that while we assume a common variance 

for the treatment and control groups for the purposes of this manuscript, this assumption is 

not required. This is discussed further in Section 6.

We are interested in estimating θ = E[Ȳj,treat] − E[Ȳj,control] (fixed effects model) or θ = 

Eθj[EȲj,treat|θj[Ȳj,treat] − EȲj,control|θj[Ȳj,control]] (random effects model), the expected 

difference in mean response between the treatment and control groups. As described in 

Whitehead [2], the inverse variance estimator in meta-analysis is as follows:

(1)

For the fixed effects meta-analysis model,  and for the random effects 

model, wj = (v̂j + τ̂2)−1, j = 1, …, J. The quantity v̂j is an estimator for the variance of the 

estimator θ̂j for each study (within-study variance), and τ2 is the between-study variance. In 

this paper, τ2 is estimated using the DerSimonian-Laird estimator [5], as there can be 

convergence issues with other methods such as restricted maximum likelihood estimation 

[20].

 2.2. Meta-Analysis Statistical Methodology for Cross-Over Trials

We now consider the meta-analysis of a collection of two-treatment, two-period cross-over 

trials comparing a treatment (A) and a control (B), with nABj subjects randomly assigned to 

sequence AB and nBAj subjects assigned to sequence BA in the jth study, j = 1, …, J. The 

study-level observations are , and 

, where ȲABj (ȲBAj) is the mean within-

subject difference in response (A – B) in sequence AB (BA), and Nj = nABj + nBAj, j = 1, …, 

J. It is of interest to estimate θ = E[Ȳj,A] − E[Ȳj,B] (fixed effects model) or θ = 

Eθj[EȲj,A|θj[Ȳj,A] − EȲj,B|θj[Ȳj,B]] (random effects model), the expected difference in mean 

response between treatments A and B. It is assumed here that there is no treatment-by-period 

interaction present.
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An estimate of the treatment effect in study j that adjusts for period effects is given by 

, j = 1, …, J. The variance of θ̂j is given by . Sometimes, the 

treatment effect is estimated by the mean of all Nj within-subject A – B differences with 

corresponding variance , j = 1, …, J. In the absence of prominent period effects, 

and  are very similar. The inverse variance estimator for θ given in (1) above can be 

applied to the study-level data on estimated treatment effects and their corresponding 

variances. Curtin et al. [21] and Elbourne et al. [22] describe a simple method for combining 

the results of parallel group trials and cross-over trials in a meta-analysis.

 2.3. Proposed Methodology

For parallel group trials, we propose to use a gamma meta-regression model to impute the 

missing sample variances, and then use multiple imputation to perform inference about the 

overall treatment effect (θ) across studies. We fit the meta-regression model based on the 

observed data in the meta-analysis. Our approach uses the fact that when the outcome 

variable is normally distributed, the sample variance follows a gamma distribution. 

Furthermore, we assume for this paper that the study-level covariates have linear 

relationships with the log of the study-level variance, but this assumption can be modified to 

fit the application. Considerations for missing variances in cross-over trials are addressed in 

Section 5.

 2.4. Imputation Model for Parallel Group Trials

When the outcome variable of interest is normally distributed, the distribution of the sample 

variance for each study is

(2)

where  is the population variance. We initially propose the following gamma meta-

regression model for the sample variance, in conjunction with Equation 2 above:

(3)

where xj represents the vector of study-level covariates (j = 1, …, J) and g(·) is a link 

function, for example the log(·) function. This is a gamma generalized linear model [23], and 

it can be fit using PROC NLMIXED in SAS. This fixed effects meta-regression model 

assumes that all of the variation in the sample variances is due to sampling error and the 

covariates.

Thompson and Higgins [24] argue that for conventional meta-regression analyses of studies, 

one should use a mixed effects meta-regression model, for it would be impossible to 

measure all possible sources of variation in a meta-regression. In order to address the 
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heterogeneity among the studies not explained by the covariates, it is necessary to include a 

random effect. We therefore propose the following mixed effects meta-regression model for 

the sample variance, in conjunction with Equation 2 above:

(4)

where  is the random effect for the variance for the jth study, j = 1, …, J, with 

being a measure of the between-study variation in the sample variance not explained by 

covariates. This is a generalized linear mixed effects model, as described in McCulloch and 

Searle [25]. The parameters and their respective standard errors can be estimated by the 

method of maximum likelihood, for example using PROC NLMIXED in SAS.

This method is valid under the MAR assumption, takes into account covariate information, 

and properly accounts for the uncertainty associated with the imputation model. Current 

methods such as mean imputation and complete case analysis are only valid under more 

restrictive assumptions. Complete case analysis is only valid under MCAR, while mean 

imputation assumes equal variances, implying MCAR. Moreover, mean imputation and 

regression-based single imputation methods do not take into account the uncertainty of 

imputation of the sample variance. Finally, aside from regression-based single imputation 

methods, no other methods account for unequal variances. Therefore, these methods, and 

similar competing methods, do not satisfactorily address the problem of missing sample 

variances.

 2.5. Imputation Procedure

We propose the following procedure for imputing the missing sample variance data.

1. Estimate parameters for a either a fixed effects or mixed effects gamma meta-

regression model, using the study sample variance as the outcome, with known 

dispersion parameter (Nj − 2)/2.

2. For the mixed effects model case, impute  using a random draw  from the 

inverse gamma distribution. The parameters λ and κ of the inverse gamma 

distribution are estimated using  and its estimated variance, V, so that 

 and , where .

3. Obtain a random draw β* from a N(β̂, var(β̂)) distribution; for the mixed effects 

model case, also obtain a random draw  from a  distribution, j = 1, 

…, J.

4. For each study j = 1, …, J, use the sampled values of the parameters to 

compute the variance parameters  using equation  or 

 depending on whether one is using a fixed or mixed effects 

model for the variance, respectively.
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5.
Sample  from the  distribution to impute the missing sample 

variances.

6. Compute a meta-analytic estimate of the mean treatment difference using 

standard meta-analysis methodology (either a fixed effects or random effects 

method).

7. Repeat steps 2–6 100 times, each time storing the estimated mean treatment 

difference and its variance from the analysis.

8. Combine estimates and draw inferences concerning the mean treatment 

difference using Rubin’s rules for multiple imputation [17].

 3. Simulation Studies

 3.1. Data Generation

We performed simulation studies to evaluate the proposed approach in terms of power, type I 

error probability, confidence interval width, confidence interval coverage probability, bias, 

estimated standard error, and empirical standard error under a variety of scenarios. The 

object of interest is the difference in the mean of the outcome variable between the treatment 

and control groups. We consider both a fixed effects model and a mixed effects model for 

the treatment effects and variances.

We simulated the number of subjects per treatment group once using nj/5 ~ Poisson(20) to 

achieve a mean sample size of 100 per treatment group, and kept study sizes constant across 

all simulations. We included an intercept in the simulation and imputation model, thus 

making xj = (xj,0, xj,1)T and β = (β0, β1)T two dimensional vectors, with xj,0 = 1, j = 1, …, 50. 

We randomly generated one set of covariates, xj,1 ~ N(2, 0.81), held constant for all 

simulations. For the fixed effects model, θj = θ = 0.1, and , with β0 = 0.5 and 

β1 being either 0, 0.75, or 1.5, depending on the simulation. For each subject i and study j, 

we generated  and , with i = 1, … nj, nj = nj,treat = 

nj,control, and j = 1, …, 50.

For the mixed effects model, we independently generated θj ~ N(θ, τ2) and , 

with θ = 0.4, , and β as above, j = 1, …, 50. The variance components τ2 

and  were each examined for values of 1 and 2.

Power was estimated as the proportion of times that the null hypothesis, H0 : θ = 0, was 

rejected under the alternatives θ = 0.1 (fixed effects model) and θ = 0.4 (mixed effects 

model). To estimate the type I error probability, the simulation studies were repeated with θ 

= 0. The empirical standard error was computed as the standard deviation of the estimates of 

θ among the 10,000 simulations, and the estimated standard error was calculated based on 

the formula for the estimated standard error of θ̂ for each missing data method, averaged 

across simulations. The missingness model was as follows: πj, the probability of a study 

having a missing sample variance, was used to randomly generate missingness (rj) for each 
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study from a Bernoulli(πj) distribution, with , j = 1, …, 50. The parameter 

vector γ = (γ0, γ1)T, with γ0 = 3 for all simulations and γ1 being either 0.3584, 0.83475, or 

1.1811, to generate 10%, 25%, and 40% missingness, respectively. The number of 

replications of each simulation was 10,000. The upper bound of the Monte Carlo simulation 

standard error for probabilities (assuming a true probability of 0.50) for all simulations is 

0.005. For Type I error probabilities, a more appropriate estimate of the Monte Carlo 

simulation standard error (assuming a true Type I error probability of 0.05) is 0.002.

The data were analyzed with the following competing methods for handling missing data: 

the proposed multiple imputation method, mean imputation (using a sample-size weighted 

average of the sample variances), single imputation using fixed-effects gamma meta-

regression with log-link (using equations 2 and 3 above), single imputation using simple 

linear regression of the log of the sample variance, and complete case analysis. The data 

were also analyzed without any missingness (i.e., they were analyzed before any 

observations were deleted), as a gold standard comparison.

 3.2. Simulation Results for Fixed Effects Model

As seen in Figure 1 and Web Appendix A, Tables 1–4, under the MCAR assumption and 

equal variance assumption (β1 = 0), all methods except complete case analysis perform 

comparably. As is well established in other settings, complete case analysis suffers from 

lower power, wider confidence intervals, and larger estimated standard errors than other 

methods. It is important to note that if one has prior information that β1 = 0, it is better not to 

include the covariate in the imputation model.

Under the MAR assumption (β1 ≠ 0), both complete case analysis and mean imputation 

perform poorly. Complete case analysis suffers from lower power than other methods, and 

mean imputation suffers from higher type I error and poorer coverage probabilities (Figure 

1). As the amount of missingness increases, the performance of mean imputation and 

complete case analysis declines. No major differences are seen between single and multiple 

imputation regression methods. The reason for this will be addressed in the next subsection.

In general, mean imputation results in a larger power than the other methods examined. 

When the dependence between the sample variance and the predictor is strong (β1 = 1.5), 

however, the type I error probability for mean imputation is greater than those for all other 

methods. Specifically, there is a 0.10 type I error probability for mean imputation, compared 

with a type I error probability of 0.05–0.06 for all other methods. Similarly as seen in Table 

1, the standard error for mean imputation, for 40% missingness and β1 = 1.5, is substantially 

underestimated, as compared with the empirical standard error.

Bias is close to 0 for all simulations, as seen in Web Appendix A, Tables 2–4.

 3.3. Simulation Results for Mixed Effects Model

Generally, when β1 ≠ 0, mean imputation results in a greater inflation of type I error 

probability than when no data are missing, particularly as β1 increases. As seen in Figure 2 

and Web Appendix A, Tables 5–7, these differences, though found at all amounts of 
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missingness examined, are larger when the degree of missingness is greater. The power and 

type I error probability from the simulations with 40% missing data when τ2 = 1,  and 

τ2 = 2,  are shown in Figure 2. The mixed effects multiple imputation model provides 

stronger control of the type I error probability than the other methods examined. However, 

the power for multiple imputation is less than or equal to the power for other imputation 

methods. This is expected, as the estimated standard error is increased to account for the 

uncertainty involved in imputing  based on the meta-regression model, rather than treating 

the imputed value as observed data. Though the power may appear to be higher with single 

imputation methods, this is misleading since the type I error probability is also significantly 

inflated with those methods.

When β1 = 1.5, τ2 = 1, and , the confidence interval width and coverage probability 

combination is better with the mixed effects multiple imputation model than with mean 

imputation and complete case analysis (Table 2). This pattern is seen in most other cases 

examined (see Web Appendix A, Tables 8–16). The advantage of using multiple imputation 

rather than regression-based single imputation is most apparent when β1 = 1.5, τ2 = 2, and 

. This is a case where there is a large amount of both explained and unexplained 

heterogeneity in the sample variances, as well as unexplained heterogeneity in the mean. As 

can be seen in Figure 2, multiple imputation provides good control of the type I error 

probability, while regression-based single imputation methods provide poor control.

Unlike in the simulations for the fixed effects model, differences are seen between 

regression-based single imputation and multiple imputation methods in the simulations for 

the mixed effects model, particularly for larger levels of missingness. The likely reason for 

no difference being observed in the fixed effects model is that the total number of patients is 

large relative to the number of studies, so the missing variances are imputed with a high 

degree of precision, and thus there is little between-imputation variability. In the mixed 

effects model, when the unexplained between-study heterogeneity in the variances ( ) 

increases, the ability of the regression model to precisely predict the sample variance 

declines, and single regression imputation performs poorly relative to multiple imputation in 

terms of confidence interval coverage probability and control of Type I error probability due 

to the fact that it does not properly account for the larger between-imputation variability.

The reason why the Type I error probability is above 0.05 in the case of no missing data is 

that the standard meta-analysis methodology is based on asymptotic results and does not 

take into account the uncertainty due to the estimation of the sample variance. Our 

imputation model, on the other hand, takes into account the uncertainty due to the estimation 

of the variance. A feature of our simulation study is that larger variances are more likely to 

be missing (through dependence on a known predictor). Also, the standard error of the 

sample variance is larger when the variance is larger (since the standard error of the sample 

variance depends on the value of the population variance). We conjecture that the type I 

error probability is smaller for MI than when there are no missing data because MI takes 

into account the uncertainty due to estimation of the sample variances. This effect may be 
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more striking in our case in which larger variances have a higher probability of being 

missing.

As with the fixed effects simulations, bias is close to 0 for all simulations, as reported in 

Web Appendix A, Tables 8–16.

 4. Application

We used the study-level data described in Section 1.2 to estimate the average treatment 

effect of the interventions established as being effective for neuropathic pain. To perform 

multiple imputation for the missing sample variances, we selected an imputation model from 

among 16 variables included in the meta-regression analyses in Dworkin et al. [6]. Two 

variables, minimum baseline pain required for entry and titration period (days), were 

included in the model because they were associated with pain score (p<0.20) in univariate 

meta-regression analyses. Minimum baseline pain represents the smallest level of pain such 

that a patient can be included in a given study. Titration period (days) represents the total 

number of days of titration included in the trial; if different treatment groups had different 

titration period lengths, the largest number of days was used. Minimum baseline pain was 

trichotomized (30,40,50–60), so it was coded as two binary variables (with parameters β1 for 

minimum baseline pain of 40 and β2 for minimum baseline pain of 50–60, with 30 being the 

referent group). Therefore, the parameter vector for the imputation model is β = (β0, β1, β2, 

β3)T, with β0 being the intercept and β3 being the slope for titration period (days).

The parameter estimates for the imputation model were , β̂
0 = 

1.05 (95% CI [0.48, 1.62]), β̂
1 = 0.44 (95% CI [−0.19, 1.07)]), β̂

2 = 0.71 (95% CI [−0.08, 

1.51)]), and β̂
3 = −0.00021 (95% CI [−0.00894, 0.00852)]). The results of the meta-analyses 

using the different ways to handle the missing sample variance data are presented in Table 3. 

As with most of our simulations, complete case analysis yielded a wider confidence interval 

and a larger estimated standard error than other methods. Furthermore, we observed slightly 

shorter confidence interval width with multiple imputation than with mean imputation and 

complete case analysis. That there are not large differences between the methods is not 

surprising, since only 19% of the studies had missing sample variances. As seen in our 

simulations, larger differences between methods are apparent at higher levels of missing data 

(≥ 25%). Moreover, we might have seen a greater difference between methods if the 

estimated elements of β were larger, or if their standard errors were smaller.

 5. Imputation Model for Cross-Over Trials

The meta-analysis of cross-over trials requires an estimate of the variance of the estimated 

treatment effect, . It is sometimes the case that neither v̂j nor  is 

reported and this information cannot be recovered through other means (e.g., reported p-

values or confidence intervals for treatment effects). If information on variance is available 

for each treatment condition separately, i.e.,  and , then one can use the formula 

 so that imputation of the required variance only involves 
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imputation of the correlation ρj between the within-subject measurements. Of course, this 

correlation can be estimated from studies that report , and .

One solution is to singly impute arbitrary values of the correlation for studies that do not 

report , such as 0.5 or 0 [9]. Imputing a value of 0 is conservative in the sense that it over-

estimates the variance of the treatment difference, so it reduces power. Other approaches 

include imputing the minimum correlation from the studies, using correlations from external 

data sources, or performing a sensitivity analysis using various plausible values for the 

missing correlations [9]. We propose a meta-regression-based multiple imputation method 

employing known covariates to impute the missing correlations. The method is as follows:

1. Apply the Fisher transformation to all sample correlations, 

, in trials in which these can be estimated.

2. Estimate parameters for a either a fixed effects or mixed effects linear meta-

regression, using the transformed correlation, ẑj, as the outcome, with known 

variance 1/(Nj − 3).

3. For the mixed effects model case, impute  using a random draw  from the 

inverse gamma distribution. The parameters of the inverse gamma distribution 

are estimated using  and its estimated variance, V, so that  and 

, where .

4. Obtain a random draw β* from a N(β̂, var(β̂)) distribution; for the mixed effects 

model case, also obtain a random draw  from a  distribution, j = 1, 

…, J.

5. For each study j = 1, …, J, use the sampled values of the parameters to 

compute the correlations, , using the equation  or 

depending on whether one is using a fixed or mixed effects model for the 

transformed correlation, respectively.

6.
Sample  from the  distribution to impute the missing 

sample correlations as .

7. Compute a meta-analytic estimate of mean treatment difference using standard 

meta-analysis methodology (either a fixed effects or random effects method).

8. Repeat steps 2–6 100 times, each time storing the estimated mean treatment 

difference and its variance from the analysis.

9. Combine estimates and draw inferences concerning the mean treatment 

difference using Rubin’s rules for multiple imputation [17].

In cases where  and  are missing as well, one can impute  by adapting the algorithm 

presented in Section 2.5.
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 6. Conclusion

Under the MAR assumption and the unequal variance assumption implied by MAR, mean 

imputation can yield poor control of the type I error probability, poor coverage probability, 

and in some instances wider intervals than can be achieved with other methods. Regression-

based single imputation methods perform well in fixed effects meta-analysis, where most of 

the heterogeneity in the variance can be explained by known predictors, but do not perform 

as well when there is heterogeneity in the variance unexplained by known predictors, 

particularly when this heterogeneity is large. One may have expected larger improvements 

with MI relative to competing methods. The likely reason for the relatively modest 

improvements seen with MI is that the missing data contribute to the estimator only through 

the weights wj, j = 1, …, J.

Studies within a meta-analysis may vary in several respects, including patient populations, 

eligibility criteria, and study design. These differences may lead to heterogeneity of 

variances between studies. Much as a random effects meta-analysis is performed to allow for 

heterogeneity in the mean between studies, our method allows for heterogeneity in the 

variance between studies.

While we assumed a common variance between the treatment and control groups in parallel 

group trials for the purposes of this manuscript, this assumption is not necessary to apply 

this general approach. To allow for unequal group variances, one needs to fit separate 

imputation models for the treatment and control group variances. Furthermore, the 

distribution of  is ; an analogous result holds for the control 

group.

We considered the situation where the sample variances are MCAR or MAR. It is also 

possible that the missingness depends on the true value of the missing variance, that is, the 

data are missing-not-at-random (MNAR). Our model can be adapted using a pattern mixture 

model to perform a sensitivity analysis. For example, one can modify the imputation model 

to be , where δ is a vector that is varied. While this model is 

conceptually simple, it may not be clear how to choose a range of plausible values of δ to 

explore, particularly when the dimension of β is large. Therefore, more work is needed in 

this area.

We note that the multiple imputation procedure for missing correlations in cross-over studies 

can also be applied to the commonly-encountered situation in parallel group studies where a 

change from baseline is the outcome variable of interest, and some studies only report the 

sample variance at baseline and at the time point of interest, but not the sample variance of 

the difference.

Our results also emphasize that even when the missing quantity is itself not of primary 

interest (e.g., when the missing quantity estimates a nuisance parameter), principled methods 

such as multiple imputation can provide a benefit over naive methods. The proposed 

multiple imputation methods yield type I error and coverage probabilities as good as an 
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analysis of the full data with no missingness. Complete case analysis has poor properties 

and, although often used, is generally not recommended.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power and type I error probability (α) for fixed effects analysis, with 10%, 25%, and 40% 

missingness. The target significance level is 0.05. NM is no missingness, MI is multiple 

imputation using gamma meta-regression, ME is mean imputation, SGR is single imputation 

using gamma meta-regression, SLM is single imputation using linear regression based on 

the log-variance, and CC is complete case analysis.
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Figure 2. 
Power and type I error probability (α) for mixed effects analysis, and 40% missingness in 

sample variances when τ2 = 1,  and τ2 = 2, . The target significance level is 0.05. 

NM is no missingness, MI is multiple imputation using gamma meta-regression, ME is 

mean imputation, SGR is single imputation using gamma meta-regression, SLM is single 

imputation using linear regression based on the log-variance, and CC is complete case 

analysis.
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Table 1

Confidence interval width, coverage probability, estimated standard error (SE), and empirical SE for fixed 

effects analysis, with 40% missingness in sample variances and β1 = 1.5. NM is no missingness, MI is multiple 

imputation using gamma meta-regression, ME is mean imputation, SGR is single imputation using gamma 

meta-regression, SLM is single imputation using linear regression based on the log-variance, and CC is 

complete case analysis.

β1 = 1.5 Width Coverage Estimated SE Empirical SE

NM 0.303 0.944 0.077 0.079

MI 0.304 0.947 0.078 0.079

ME 0.309 0.899 0.079 0.094

SGR 0.304 0.946 0.078 0.079

SLM 0.304 0.947 0.078 0.079

CC 0.335 0.946 0.086 0.087
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Table 2

Confidence interval width, coverage probability, estimated standard error (SE), and empirical SE for mixed 

effects analysis, with 40% missingness in sample variances, β1 = 1.5, τ2 = 2, and . NM is no missingness, 

MI is multiple imputation using gamma meta-regression, ME is mean imputation, SGR is single imputation 

using gamma meta-regression, SLM is single imputation using linear regression based on the log-variance, and 

CC is complete case analysis.

β1 = 1.5 Width Coverage Estimated SE Empirical SE

NM 0.952 0.928 0.243 0.250

MI 1.104 0.946 0.282 0.279

ME 1.024 0.887 0.261 0.320

SGR 1.002 0.921 0.256 0.269

SLM 0.978 0.909 0.250 0.277

CC 1.165 0.920 0.297 0.307
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Table 3

Analysis of neuropathic pain data using a mixed effects model, with 19% missingness in sample variances. TE 

denotes treatment effect and SE denotes standard error. NM is no missingness, MI is multiple imputation using 

gamma meta-regression, ME is mean imputation, SGR is single imputation using gamma meta-regression, 

SLM is single imputation using linear regression based on the log-variance, and CC is complete case analysis.

Estimated TE Estimated SE 95% CI CI Width

MI −0.7512 0.07342 (−0.8951, −0.6073) 0.2878

ME −0.7521 0.07366 (−0.8965, −0.6078) 0.2888

SGR −0.7525 0.07335 (−0.8963, −0.6088) 0.2875

SLM −0.7541 0.07296 (−0.8971, −0.6111) 0.2860

CC −0.7521 0.08150 (−0.9118, −0.5923) 0.3195

Stat Med. Author manuscript; available in PMC 2017 July 30.


	Abstract
	1. Introduction
	1.1. Background
	1.2. Motivating Example
	1.3. Missingness Assumptions
	1.4. Prior Work on Missing Variances

	2. Methods
	2.1. Meta-Analysis Statistical Methodology for Parallel Group Trials
	2.2. Meta-Analysis Statistical Methodology for Cross-Over Trials
	2.3. Proposed Methodology
	2.4. Imputation Model for Parallel Group Trials
	2.5. Imputation Procedure

	3. Simulation Studies
	3.1. Data Generation
	3.2. Simulation Results for Fixed Effects Model
	3.3. Simulation Results for Mixed Effects Model

	4. Application
	5. Imputation Model for Cross-Over Trials
	6. Conclusion
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3

