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Abstract

 Objective—The goal of this study is to devise a machine learning framework to assist care 

coordination programs in prognostic stratification to design and deliver personalized care plans 

and to allocate financial and medical resources effectively.

 Materials and Methods—This study is based on a de-identified cohort of 2,521 hypertension 

patients from a chronic care coordination program at the Vanderbilt University Medical Center. 

Patients were modeled as vectors of features derived from electronic health records (EHRs) over a 

six-year period. We applied a stepwise regression to identify risk factors associated with a 

decrease in mean arterial pressure of at least 2 mmHg after program enrollment. The resulting 
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features were subsequently validated via a logistic regression classifier. Finally, risk factors were 

applied to group the patients through model-based clustering.

 Results—We identified a set of predictive features that consisted of a mix of demographic, 

medication, and diagnostic concepts. Logistic regression over these features yielded an area under 

the ROC curve (AUC) of 0.71 (95% CI: [0.67, 0.76]). Based on these features, four clinically 

meaningful groups are identified through clustering - two of which represented patients with more 

severe disease profiles, while the remaining represented patients with mild disease profiles.

 Discussion—Patients with hypertension can exhibit significant variation in their blood 

pressure control status and responsiveness to therapy. Yet this work shows that a clustering 

analysis can generate more homogeneous patient groups, which may aid clinicians in designing 

and implementing customized care programs.

 Conclusion—The study shows that predictive modeling and clustering using EHR data can be 

beneficial for providing a systematic, generalized approach for care providers to tailor their 

management approach based upon patient-level factors.

Index Terms

Electronic health records; secondary use; predictive modeling; patient stratification; chronic 
disease management

 I. Introduction

Current models of ambulatory care are generally neither cost-effective nor adequately 

patient-centric. Chronic diseases are expensive and require careful management in the 

ambulatory care setting to achieve the best possible patient outcomes [1], [2]. Presently, the 

management of chronic diseases consumes over 90% of Medicare expenditure [3] and 

amounts to over $1.5 trillion per year [4]. The most prevalent chronic disease is 

hypertension, which affects over 30% of American adults and accounts for almost $70 

billion in direct costs annually [5], [6].

Hypertension is the primary risk factor for stroke and a major risk factor for other 

debilitating diseases including coronary heart disease, renal failure, and heart failure [6]–

[10]. Relatively short durations of uncontrolled hypertension, as brief as several months, 

have been associated with adverse clinical outcomes [11]. A reduction in systolic blood 

pressure (SBP) as small as 2 mmHg has been shown to reduce the risk of adverse clinical 

outcomes at a population-based level [11]–[13]. In addition, demographic factors such as 

race, gender, and age are important factors in the development and progression of 

hypertension [14].

Due to the complex interplay of multiple disease and patient-level factors, successful 

management of hypertension is rarely a “one size fits all” situation and is often more 

effective when tailored to individual patient needs, local culture, and available resources 

[15]. Chronic care management plans are more likely to succeed when they incorporate 

personalized care coordination [16], [17]. Yet, to ensure that coordination is personalized, 

patient information must be collected, shared, analyzed and leveraged to inform actions 
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within and among a well-organized care team (which can include providers and staff from 

primary care and specialty medicine, nursing, pharmacy, social work, administration, family 

and the patient) [18], [19].

Identification of patient-level factors that enable the tailoring of hypertension management 

plans has proven difficult. We believe, however, that such factors may be uncovered through 

the analysis of existing data in electronic health records (EHRs). As such, the primary goal 

of our investigation is to devise a generalizable machine learning approach for EHR data to 

accomplish this task. To do so, we worked with data from a pilot care coordination program 

instituted at the Vanderbilt University Medical Center (VUMC). This program was 

specifically designed to improve the care of patients with chronic disease. It focuses on the 

management of patients with hypertension and various comorbidities. Since the pilot 

program places an emphasis on comprehensive data collection, the solicited data carries 

great potential for informing personalized, targeted therapy. Although prior work has shown 

that EHR data can be leveraged for the predictive modeling of diseases [20], to the best of 

our knowledge there are currently no standardized methods for automated stratification of 

patients with minimal human supervision.

We propose and implement a machine learning framework for identifying risk factors for 

targeted outcomes and for stratifying patients based upon those risk factors. We apply this 

framework on a cohort of 2,521 patients enrolled in the pilot program. Our approach consists 

of two main components:

1. Risk factor identification: We identify risk factors in the patient cohort that 

are associated with lowering the patients’ median blood pressure (BP) by at 

least 2 mmHg (a change shown to be associated with reduction of mortality in 

large populations) [11]–[13]. Based on these risk factors, we develop a logistic 

regression classifier for predicting changes in BP.

2. Patient stratification: We illustrate that clustering the patients can segment 

the cohort into four distinct groups, each of which exhibits a different disease 

subtype. We anticipate that the definition of such groups may lead to the design 

of more specific treatments and care management plans.

 II. Background and Significance

Hypertension is a chronic disease whose management is influenced by a variety of factors 

including age, diet, exercise, drug use, body habitus, genetic factors, and the presence of 

comorbidities. Current approaches to hypertension management commonly treat all patients 

using similar management plans based upon standard treatment guidelines [11]. However, to 

achieve best possible patient outcomes, it is important to develop approaches to care that 

address unique aspects of specific patient subgroups, or clusters. Recent initiatives such as 

the Strategic Health IT Advanced Research Projects (SHARP) Area 4 Consortium [21], [22] 

have helped to facilitate this process by establishing standardized data formats for secondary 

uses. Our study aims to leverage EHR data specifically to identify and analyze subgroups of 

hypertension patients with distinct individual characteristics.
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 A. EHR-driven phenotyping for hypertension control and outcome prediction

Machine learning-based predictive models using data from medical records and clinical 

databases have been achieved for various chronic diseases, including type 2 diabetes [23], 

asthma [24], chronic kidney disease [25], and rheumatoid arthritis [26]. However, the 

prediction of hypertension control patterns has not been studied widely. The present study 

builds on prior work, which introduced a predictive model for detecting changes in 

hypertension control status using an earlier version of the same pilot dataset [20]. In that 

study, EHR records for medications, labs and ICD-9 codes were used as features to predict 

whether or not patients’ blood pressures will change (between the status of “in control” or 

“out of control”, or vice versa, as determined by a clinician). One element of the present 

study employs a similar method, but is aimed to predict specific magnitudes of BP changes. 

Furthermore, our current study goes one step further by applying clustering to automatically 

segment the patients into subgroups with distinct characteristics that reflect disease 

subtypes.

One challenging aspect in characterizing and managing hypertension is the fact that patients 

with similar clinical presentations may demonstrate significant variation in BP changes 

among each other. Gaining insight about which subgroups of these patients might benefit 

from more frequent monitoring and intervention would be helpful to clinicians as they 

participate in and allocate care coordination resources. Furthermore, clinicians could benefit 

from a more accurate predictive model for individual patients when designing treatment 

plans.

 B. EHR-driven phenotyping for detection of disease subtypes

Current research on clinical phenotyping aims to develop methods for segmenting cohorts of 

patients into subgroups with distinct characteristics using EHR data. However, many of 

these approaches often involve expert specification and are not fully automated [27]–[30]. 

Other methods take a feedback-based approach with active learning [31]. Furthermore, some 

studies have applied machine learning for feature selection [32], [33].

Regardless of the method, most implementations of phenotyping are leveraged to detect 

patients with certain diseases rather than subgroups of patients within a disease (e.g., finding 

patients in a cohort who have hypertension, rather than finding patients in a hypertension 

cohort with different characteristics) [34], [35]. For example, the NIH-sponsored Electronic 

Medical Records and Genomics (eMERGE) network devised a phenotyping algorithm for 

resistant hypertension based upon EHR data from patients at the Marshfield Clinic [35]. Ho 

and colleagues [36] showed that phenotyping for disease subtypes can be accomplished with 

higher order tensor factorization. However, this approach may be limited in its scalability 

because it is exponential in complexity with respect to the dimensionality of the feature 

space, thus leading to challenges in analyzing a large number of features per patient. 

Furthermore, Ho et al. utilized only medications and diagnosis codes as features. In this 

work we extend the feature set to include vital signs and demographic information, with 

which we aim to enhance the stratification of patients into subgroups. We believe that 

identifying refined subgroups can be informative for important tasks in patient management, 

such as the identification of patients who are more costly to manage, or who may be more 
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responsive to certain treatment protocols. Thus, while the use of phenotyping for identifying 

disease subtypes remains largely an unsolved problem, phenotyping could provide a 

valuable contribution towards hypertension management. Our current study provides a first 

step towards this goal.

 III. Materials and Methods

This section describes the data used, as well as details regarding the analytic pipeline, for the 

study. As shown in Figure 1, de-identified data from the VUMC EHR system are processed 

in cohort construction (where the study cohort is identified) and feature construction (where 

the feature variables are computed for all patients in the study cohort). The resulting data are 

fed into an analytics module for analysis comprised of risk factor identification and patient 

clustering. Next we describe the details in the analytic pipeline.

 A. Data description

All data was collected from the de-identified copy of the VUMC EHR [37], in which all date 

information is randomly shifted between −1 and −356 days on a per patient basis to preserve 

the relative time between events. Data were collected from a group of 6,700 primary care 

patients with hypertension enrolled in the pilot program, which was filtered down to 2,521 

patients (see Data Processing subsection). All enrolled patients were diagnosed with 

hypertension, as determined by an initial screening by ICD-9 codes and confirmed with 

manual chart review. Patients were followed for a median of 5.9 years before and 0.9 years 

after joining the program.

Table 1 summarizes the characteristics of the pilot program cohort. For each patient, the 

following data were collected longitudinally: demographics, BP, body mass index (BMI), 

clinic and hospital medications orders, medications extracted from clinical documents [38], 

and ICD-9 codes. We analyzed the patients according to several groupings: 1) all patients, 2) 

patients with a positive change in mean arterial pressure (MAP), indicated by reduction of 

median MAP by at least 2 mmHg after enrollment in the pilot program, and 3) patients 

without such a reduction in MAP (i.e., either no change in MAP or an increase in MAP). 

Our rationale for 2 mmHg reduction as a filtering criteria is based on various 

epidemiological studies that show such a decrease is associated with reduced rates of stroke 

and coronary heart disease, two conditions which lead to increased mortality [11]–[13]. 

Specifically, a 2 mmHg decrease in systolic blood pressure can result in approximately 10% 

reduction in mortality from stroke and 7% reduction in mortality from ischemic heart 

disease [39].

 B. Data processing

 1) Cohort Construction—Figure 2 describes the criteria for filtering patients to 

construct the study cohort. The observation period is the period of two years before the pilot 

program engagement date; engagement period is the time after the pilot program 

engagement date. We use patient data in observation periods to construct feature vectors and 

use the BP change between the observation and engagement periods to define the outcome 

variable.
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Figure 3 illustrates the inclusion criteria for patients based upon the observation and 

engagement periods. Patients were included in the analysis if BP recordings were available 

on at least 10 distinct days over a window of at least 6 months during the observation period. 

This step aims to filter out patients with sparse data whose samples may skew the results. 

Patients were filtered from further consideration if demographic information was missing 

and vital signs other than blood pressure (i.e., BMI) were not available during either period. 

We selected these filters to enhance the effectiveness of the predictive models. The filters 

were based on phenotype validation techniques from the eMERGE network, which illustrate 

that the confirmation of patients with certain a phenotype is enhanced when their inpatient 

visits span a specified period of time and their status is confirmed over multiple clinic visits 

[35], [40].

 2) Feature Construction—Features used were drawn from several different categories: 

i) demographics, ii) comorbid disease conditions, iii) vital signs, iv) medication status, and 

v) phenome-wide association study (PheWAS) phenotype code status [41].

Features in the demographics category include: a) age in years, b) gender, and c) self-

reported race. Features in the vital signs category include systolic BP (SBP), diastolic BP 

(DBP), MAP, and BMI. Features in the medication category include any recordings for 

medications belonging to one of 13 classes of hypertension medications (see table 2 for 

details). We note that several of the medication classes correspond to combinations of 

medications (e.g., thiazide and beta blocker). These combinations are specified in classes 

distinct from the individual medications because they work synergistically and have been 

clinically shown to reduce blood pressure more than the separate medications [11]. Features 

in the PheWAS code status category correspond to PheWAS codes in the encoding described 

by Denny et al. [41], [42] PheWAS codes represent groupings of ICD-9 codes that are 

collectively indicative of similar medical conditions.

Features used in the analysis were generated by aggregating across all data points recorded 

during the observation period. Table 3 provides a summary of the aggregation methods used 

for each feature. The following features were generated by calculating the median values: i) 

SBP, DBP, MAP before initial engagement with the care program; ii) SBP, DBP, MAP after 

initial engagement with the program; and iii) BMI. Change in BMI was calculated by 

comparing mean values from the observation period before program initiation, with mean 

values from the observation after program initiation. For all of the above numerical features, 

we scaled the data by substituting the z-score for each observation.

Demographic features pertaining to self-reported race and ethnicity were treated as binary 

variables: i) White, ii) Black, iii) Asian, and iv) Hispanic. Features pertaining to 

comorbidities, in the form of diabetes and heart failure (HF), were treated as binary variables 

indicating whether or not the patient was currently being treated for the disease in the pilot 

program.

The features pertaining to medication status were also denoted by binary variables. Each of 

the hypertension medication classes was treated as a separate feature. The appearance of at 
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least one recording for a medication class in the observation period denoted a positive value 

for that feature.

The features pertaining to PheWAS phenotype status were obtained by counting occurrences 

of ICD-9 codes related to each PheWAS code. Features were generated from PheWAS codes 

at the disease category level (188 distinct categories). The presence of at least one recording 

for a PheWAS disease category during the observation period denotes a value of 1, otherwise 

a value of 0. In total, we constructed 213 features for each patient.

 C. Analytics

The analytics module consists of two components: 1) Risk Factor Identification and 2) 

Patient Clustering. We define the target outcome as a binary indicator representing whether 

patients exhibit a decrease in MAP by at least 2 mmHg. A reduction of at least 2 mmHg was 

defined as the target outcome because such a decrease on the population level has been 

shown in epidemiological studies to be associated with major comorbidities (6% decrease in 

mortality due to stroke, 4% decrease in mortality due to coronary heart disease, and 3% 

decrease in all-cause mortality) [11]. Thus, such a reduction was considered a favorable 

outcome.

In Risk Factor Identification, we perform feature selection to identify the features deemed to 

be most predictive of the outcome, and classification to determine the accuracy of the 

predictions for the resulting model. In Patient Clustering, we use the most predictive features 

to cluster patients into coherent groups.

 1) Risk Factor Identification—We investigated features that predicted subjects would 

achieve a minimum reduction in BP of 2 mmHg. We performed a forward stepwise logistic 

regression with all of the features. We performed 10-fold cross-validation to predict a 

binomial target using a logistic regression classifier. The targets for the classification model 

were denoted as follows:

1: decrease in MAP by at least 2 mmHg and

0: otherwise.

We use the Bayesian Information Criteria (BIC) statistic as the metric for measuring the 

goodness of the current model [43]. The BIC is formulated as the following:

where
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refers to the value of the log likelihood loss function across all patients, such that β is a 

vector consisting of the parameters for the likelihood function,

yi is the target of patient i in the dataset, xi is a vector consisting of the values of the features 

for patient i, and β is the set of feature weights to be optimized. N refers to the number of 

patients used in a training set, and d refers to the number of features used in the model.

During each stage of the classification, the feature that minimizes BIC was added to the 

model until no additional feature reduced the BIC. Note that since the 10 experiment runs 

were conducted through 10-fold cross-validation, the selected features from fold to fold can 

vary. For the subsequent clustering task, we chose features that were consistently selected at 

least 8 times out of 10 runs as the predictive features.

To compare the performance of the stepwise logistic regression against other standard 

classification models, we also performed 10-fold cross-validation using decision tree, 

random forest, support vector machine (SVM) and artificial neural network classifiers. We 

used a J48 tree for decision tree and an RBF kernel with c = 1 for SVM.

 2) Patient Clustering—Although risk factor identification can identify factors leading 

to disease, one would still need to manually stratify the patients into groups based upon the 

risk factors, a task that is cumbersome with a large number of features. Such a process 

would require one to differentiate groups in order to tailor treatment and to decide how to 

effectively allocate resources. Additionally, to aid in reducing waste and maximizing 

efficient usage of limited resources (e.g., time, labs and clinical specialists), there should be 

relative similarity among each group. To automate the process, we applied a clustering 

algorithm to stratify the cohort based on the features deemed to be predictive according to 

the stepwise regression. Specifically, we used the predictive features selected in the risk 

factor identification step as input to the clustering algorithm.

To cluster the patients, we applied a hybrid method that combined hierarchical and model-

based clustering with expectation maximization (EM). We applied the clustering 

implementation from the Mclust package in R [44], [45].

We initialized clusters for patients using hierarchical clustering. Afterwards, to assign 

patients x1, …, xn into clusters, we maximized the mixture likelihood:

where xi is the feature vector for patient i, fk (xi|θk) is the density function representing the 

probability that a patient i belongs to cluster k, θk represents the corresponding parameters 

of cluster k, G represents the number of clusters in the mixture, and τk is the probability that 
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a patient belongs to cluster . We assume that fk (xi|θk) is a 

multivariate Gaussian, where the parameters θk correspond to a mean vector μk and 

covariance matrix Σk, so that

where p is the number of features used in the model.

We fit the data to several Gaussian-mixture models with a different number of clusters and 

distribution shapes (e.g., spherical, diagonal, and ellipsoidal) as determined by the 

covariance matrix. To compare the models and associated number of clusters, the BIC was 

approximated for each model M as follows:

where ℓM(x, θ̂) is the maximized mixture likelihood for the model, and mM is the number of 

features in the model. We selected the combination of model shape and number of clusters 

that yielded the minimum BIC value.

 IV. Results

In this section, we review the results for both parts of the analytics module, which includes 

risk factor identification and patient clustering.

 A. Risk Factor Identification

All experiments were run on a MacBook Pro with a 2.4 GHz processor with 4 cores and 16 

GB RAM. We identified all features that were added to the forward stepwise logistic 

regression model during each fold in cross validation. On average, the learning of a model 

required approximately 3 minutes. There were 9 features out of 213 total that were selected 

in the training models for at least 8 of 10 experiment runs. These were comprised of a mix of 

demographic features: i) age and ii) MAP before program engagement; medications: iii) 

aldosterone antagonists, iv) beta blockers, and v) central alpha agonists; and PheWAS codes: 

vi) non-ischemic and non-pulmonary heart disease, vii) disorders of female genital tract 

(other than inflammatory diseases of the pelvis), viii) symptoms involving the head and 

neck, and ix) disorders of pancreatic internal secretion (other than diabetes). The cross-

validation for the feature selection step yielded an AUC (area under the receiver operating 

characteristic curve) of 0.71 (95% CI: [0.67,0.76]). The regression coefficients calculated in 

each fold of cross validation are reported in table A.1.

Additionally, we applied the standard classification methods (decision tree, random forest, 

support vector machine, artificial neural network) using the nine features identified with the 

stepwise logistic regression. The mean AUC values (across all folds in 10-folds) for these 

models were 0.67, 0.67, 0.51, and 0.70, respectively.
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The demographic and vital signs features were both consistent with common knowledge 

regarding hypertension – older patients usually require more extensive efforts in controlling 

hypertension due to an increase in SBP with age and comorbid conditions; and improvement 

in BP may vary with a dependency on the initial severity of hypertension [46]–[49].

The medication status features are also meaningful from a clinical perspective. Beta blockers 

are used in both mild and severe forms of hypertension. On the other hand, aldosterone 

antagonists and central alpha agonists are usually given in later stages of hypertension 

treatment after other medications have been used in the regimen. Aldosterone antagonists 

such as spironolactone and eplenerone are commonly given in the setting of heart failure. 

Central alpha agonists such as clonidine may be prescribed after other antihypertensive 

drugs have failed [11]. Therefore, it is possible that these medications can be invoked as 

features to predict whether or not patients will exhibit a decrease in MAP by at least 2 

mmHg.

Regarding the PheWAS codes, the feature “non-ischemic, non-pulmonary heart disease” has 

an association with hypertension status. Examples of such diseases include pericarditis, 

aortic stenosis, and aortic regurgitation. The other PheWAS codes do not necessarily indicate 

any obvious associations with hypertension. However, the feature “other disorders of female 

genital tract” could be a proxy for the feature of female gender (and associated conditions), 

which may play a factor in hypertension status. In addition, this feature may reflect 

differences in medication regimens between male and female patients [50]–[52].

 B. Patient Clustering

We added the 9 features identified in the feature selection step as features in the clustering 

algorithm. The patients were subsequently grouped into four distinct clusters (C1, C2, C3, 
C4) based on the BIC criterion. For each cluster, we report BP statistics in Table 4 and 

summary statistics in Table 5.

With respect to demographics, comorbid disease conditions and vital signs, C3 and C4 

appear to correspond to patients with more severe clinical makeups. Higher percentages of 

these clusters contain patients who also have diabetes (42.2% and 48.8%, respectively, 

compared to 33.5% and 32.1% for C1 and C2, respectively) and heart failure (27.0% and 

24.1% for C3 and C4 respectively, compared to 5.8% and 1.3% for C1 and C2, respectively), 

compared to the other clusters. Furthermore, C3 contained the highest average SBP, which 

was 135.5 mmHg (25–75th percentile: 128–143) before and 134.4 mmHg (25–75th 

percentile: 126–144) after pilot program engagement, compared with 131.6 mmHg before 

and 130.6 mmHg after for the entire patient cohort.

With respect to features used specifically in the clustering, the patients in C3 and C4 were 

older (average age of 71.9 and 69.9 years, respectively) compared to C1 and C2 (average age 

of 67.8 and 63.2, respectively). Furthermore, a large proportion of the patients in C3 and C4 

were treated with beta blockers, aldosterone antagonists, and central alpha agonists. In C3, 

90.2% of the patients were treated with central alpha agonists, while 75.4% of patients in C4 

were treated with aldosterone antagonists. These observations further support the notion that 
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C3 and C4 consist of patients with more severe disease profiles that may benefit from a 

tailored care coordination strategy.

With respect to PheWAS codes, a much higher percentage of patients in C3 and C4 (83.8% 

and 72.4%, respectively) were diagnosed with non-ischemic, non-pulmonary heart disease, 

compared to C1 and C2 (39.4% and 0%, respectively). When comparing C1 and C2, which 

exhibit medication status characteristics that suggest lower disease severity, it should be 

noted that 39.4% of patients in C1 have non-ischemic, non-pulmonary heart disease 

compared to 0% for C2. Furthermore, 69.9% of patients in C2 were positive for other 

disorders of the female genital tract (other than inflammatory diseases of the pelvis). Since 

there is not an obvious biological explanation for female patients with genital tract disorders 

to cluster together, this result may simply reflect the 86% female gender in this cluster. 

Taken together, these results show that while C1 and C2 represent patients with less severe 

disease conditions, they can still be differentiated.

 V. Discussion

 A. Challenges in Distinguishing Disease Subtypes

There are several notable challenges regarding disease subtyping which apply to our study. 

Our study included patients with controlled and uncontrolled hypertension. However, it may 

be insightful to stratify patients for analysis based upon control status. Clinically, it is 

difficult to predict a patient’s future hypertension control status due to the complex nature of 

blood pressure, which has significant inherent variability. In the pilot, clinicians determined 

patient control based upon a combination of BP recordings taken at home and in the clinic. 

Hypertension is defined as clinic BP of 140/90 mmHg or higher (SBP/DBP, either value 

greater than or equal to the cutoff), or a home average over 135/85 mmHg [11]. However, 

the actual target blood pressure and control rates can be impacted by the patient’s age and 

comorbidities such as diabetes, kidney disease, and overall health.

Furthermore, our study measured the differences in aggregated BP values during the time 

periods before program engagement and during the program engagement. There may be 

changes due to trends over these periods which were not captured by our study.

Another limitation lies in the fact that patients were drawn from a specific, small group of 

patients and primary care providers, so the results may not reflect the population at large. 

Finally, our method aims to stratify patients based upon population-based target outcomes in 

an automated fashion. Our method does not provide specific decision support for 

individuals, although it should motivate future work in that direction. Nonetheless, our 

method was able to identify relevant risk factors and segment patients into clinically 

meaningful clusters. The clustering algorithm yielded realistic patient subgroups that can be 

adequately explained by differences in disease severity.

The challenge of distinguishing disease subtypes is rooted in the complex nature of 

hypertension, which may be primary (found in isolation) or secondary (caused by other 

complex conditions including endocrine diseases (e.g., diabetes, Cushing’s syndrome, 

congenital adrenal hyperplasia), renal disease (e.g., renal tubular defects, polycystic kidney 
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disease), or tumors (e.g., multiple endocrine neoplasia). Table 1 shows that one may not be 

able to segregate patients effectively by using obvious risk factors for hypertension such as 

demographic features (sex, age, race), or the presence of common comorbidities, further 

supporting the fact that an automated method for identifying risk factors is needed in order 

to more effectively predict differences in patient outcomes. The nature of the disease may 

explain why the AUC of 0.71 found in the risk factor identification analysis is lower than in 

the application of logistic regression and feature selection towards more straightforward use 

cases such as the identification of rheumatoid arthritis or peripheral artery disease [32], [33], 

[53]. More importantly, this finding underscores the importance of identifying disease 

subtypes, each of which may exhibit hypertension with varying degrees of severity. Future 

research in predictive modeling and phenotyping of disease subtypes should address the 

aforementioned challenges.

 B. Challenges Regarding the Use of EHR data

Although there is an opportunity to leverage existing data in EHRs to compose improved 

predictive models for patients in care coordination programs, this approach faces several 

notable challenges. First, EHR data is often limited to events observed upon a patient visit to 

a clinic or specific events (e.g., BP) which transpire outside of the clinic and which patients 

are instructed to record. Second, EHR data is often limited to the diagnoses, labs, and 

treatments prescribed to patients. While additional information may be documented in the 

history, physical exam, or the progress notes within an EHR, chronic diseases such as 

hypertension are influenced by patient behaviors outside of the clinic (e.g., diet and exercise) 

[11] which are not captured consistently in EHRs [54], [55]. Third, EHR data by its nature is 

often leveraged in a secondary fashion, which raises concerns about the reliability of the data 

[55]. In particular, BP measurements contain high variability depending on a variety of 

factors. BP measurements may vary with quality of the measurement techniques, for 

example patient positioning, cuff size, and an appropriate rest period. In addition, variation 

in BP occurs due to diurnal variation as well as medications, body habitus, smoking, 

exercise, and salt intake.

It should also be recognized that the size of the study carries certain limitations as well. Our 

patient clustering methods yielded groups of varying sizes – the largest cluster contained 

1697 patients, while the smallest cluster contained 204 patients. While the clusters exhibited 

differences in BP change in response to the pilot program, it is difficult to compare 

outcomes in separate groups with vast differences in sample sizes because different 

magnitudes of change are required in order to meet significance thresholds. Furthermore, 

there may be other, less common subclasses of patients with hypertension that were not 

detected in our clustering analysis due to the small sample size. This issue may be 

ameliorated when clustering is performed on a larger scale. In addition, it is possible that the 

sample size may have prevented the set of features identified in the risk factor identification 

step from including less commonly seen risk factors. However, it is unclear that adding more 

features in the stepwise logistic regression model would improve the performance 

significantly. Finally, there may be a selection bias in the study as a result of the data 

filtering process, which decreased the size of the original cohort of 6700 patients down to 

2521. It is possible that the patients with complete records may not be representative of the 
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true underlying population because they may, for instance, be more compliant with follow-

up clinic visits and blood pressure readings.

 C. Towards an Improved Model for Care Coordination

Care coordination programs have evolved over time to follow changes in standards of care 

and incorporate larger populations of patients. However, the evidence suggests that chronic 

disease management programs may have different outcomes for specific subgroups of 

patients, as illustrated by the differences in BP changes across the patient subgroups 

identified through clustering. The results of the clustering analysis show that clustering of 

patients in a care program can stratify patients by profile using a collection of several 

features identified via stepwise regression for feature selection. This suggests that it is 

worthwhile to conduct more detailed investigations regarding clustering of patients for 

purposes such as assignment to different treatment regimens and triaging of patients based 

upon risk assessment. In addition, our results suggest that the EHR may be a valuable 

resource in the future to identify patients with similar risk for poor clinical outcomes and 

determine when and how to spend limited healthcare resources. Results from studies such as 

ours could be used to explore differences in responsiveness of patients to care coordination 

programs. Such insights could be leveraged for making iterative improvements to care 

management programs and personalized treatment plans.

The improvement of care coordination programs could be accelerated by adoption of 

analytics methods for medical decision making. Although our results could have been 

obtained without analyzing EHR data, the fact that we have successfully obtained such 

results using machine learning approaches shows that secondary use of EHR data can be 

beneficial for the purposes of care coordination. Also, it is important to note that our unique 

combination of stepwise logistic regression and clustering showcases a framework for 

automated patient stratification requiring minimal human supervision, which may be helpful 

for organizations managing large care coordination programs. Future studies should further 

refine specific subareas of this framework.

 VI. Conclusion

This study identified relevant features for predicting a patient’s BP response to a chronic 

care management program via stepwise regression and clustered the patients using these 

features. Our clustering algorithm stratified the patients based upon differences in 

characteristics relevant to treatment outcomes, illustrating the potential of using EHR data to 

inform the personalization of treatment plans for care coordination. This study underscores 

the potential usefulness of EHR data in performing automated risk factor identification and 

patient stratification. It provides a first step in the development of personalized hypertension 

treatment programs via a data-driven approach.
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 Appendix

In the appendix, we show the detailed results for the risk factor identification step.

Table A.1

Coefficients for forward stepwise logistic regression obtained in each fold of cross validation 

during the risk factor identification step. A value of “N/A” indicates that the feature was not 

selected during that particular fold.

Fold of Cross 
Validation

Features Identified 1 2 3 4 5 6 7 8 9 10 Mean

Demographics Age 0.26 0.23 0.23 0.28 0.27 0.24 0.24 0.28 0.27 0.24 0.25

Vital Signs MAP before pilot 
enrollment (mmHg)

1.10 1.14 1.11 1.07 1.10 1.11 1.06 1.06 1.10 1.08 1.09

Aldosterone antagonists 0.38 0.36 0.49 0.38 0.36 0.47 0.43 0.48 0.45 0.40 0.42

Medications Beta Blockers −0.19 −0.32 −0.22 −0.22 −0.28 −0.19 N/A −0.25 −0.27 −0.22 −0.24

Central alpha agonists −0.28 −0.39 −0.39 −0.27 −0.33 −0.34 −0.30 −0.36 −0.39 −0.31 −0.34

PheWAS Codes

Other disorders of 
pancreatic internal 
secretion (other than 
diabetes)

N/A 0.96 0.80 0.78 0.68 0.93 N/A 0.71 0.89 0.76 0.81

Other forms of heart 
disease (non-ischemic, 
non-pulmonary heart 
disease)

0.27 0.29 0.31 0.26 0.25 0.26 0.27 0.31 0.29 0.25 0.28

Other disorders of 
female genital tract 
(other than 

0.30 0.34 0.48 0.40 0.37 0.35 0.30 0.32 0.34 0.41 0.36
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Fold of Cross 
Validation

Features Identified 1 2 3 4 5 6 7 8 9 10 Mean

inflammatory diseases 
of pelvis)

Symptoms involving 
head and neck

−0.37 −0.38 −0.45 −0.45 −0.36 −0.39 −0.40 −0.42 −0.40 −0.36 −0.40
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Fig. 1. 
An illustration of the data processing and analytic pipeline utilized in this study.
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Fig. 2. 
The data filtering process with inclusion criteria for generating cohorts for analysis.
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Fig. 3. 
An illustration of the inclusion criteria for patients in the analysis. Patients were included if 

there were at least 10 blood pressure recordings made on at least 10 distinct dates spanning a 

period of at least 6 months during the observation period.
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Table 1

A summary of the characteristics of patient records used in this study. Features are reported for all patients, as 

well as subsets of patients whose mean arterial pressure decreased by 2mmHg after pilot program enrollment, 

and patients whose mean arterial pressure did not decrease by at least 2mmHg.

n =

All Patients MAP decreased by at least 2mmHg No decrease in MAP of least 2mmHg

2521 1198 (47.5%) 1323 (52.5%)

Demographics

Age, years (mean) 67.6 67.3 67.9

Gender (% male) 45.00% 44.90% 45.10%

Race (% white) 82.80% 81.50% 84.00%

Race (% black) 15.90% 17.20% 14.80%

Disease Conditions
Diabetes 35.40% 36.00% 34.80%

Heart Failure 8.40% 8.30% 8.50%

Vital Signs BMI (median) 30.5 30.9 30.2

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2017 July 04.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 23

Table 2

Example medications corresponding to each of the 13 classes of hypertension medications used in the study 

are listed.

Medication Class Example

ACE inhibitor or angiotensin receptor blocker Lisinopril, losartan

Aldosterone antagonists Spironolactone

Alpha antagonists Prazosin

Beta blockers Atenolol

Central alpha agonists Clonidine

Dihydropyridine calcium channel blockers Amlodipine

Diuretic combination Aldactazide

Diuretics Hydrochlorothiazide

Hydralazine Hydralazine

Minoxidil Minoxidil

Non-dihydropyridine calcium channel blockers Diltiazem

Thiazide and ACE inhibitor or angiotensin receptor blocker Hydrochlorothiazide and lisinopril or losartan

Thiazide and beta blocker Hydrochlorothiazide and metropolol tartrate
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Table 3

A summary of the aggregation functions applied to the features in patient event sequences over their time 

windows. (BMI: body mass index; BP: blood pressure; PheWAS: phenome-wide association study).

Category Feature Aggregation

Demographics Age Binary

Sex Binary

White White

Black White

BP Systolic Median per patient, mean across patients

Diastolic Median per patient, mean across patients

MAP Median per patient, mean across patients

Disease Conditions Diabetes Binary

Heart Failure Binary

Vital Signs BMI Median

Medications Each of 13 classes of hypertension medications Binary

PheWAS PheWAS (phenotype) codes Binary
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