Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1992 Jun 15;89(12):5502–5506. doi: 10.1073/pnas.89.12.5502

The mutant axolotl Short toes exhibits impaired limb regeneration and abnormal basement membrane formation.

K Del Rio-Tsonis 1, C H Washabaugh 1, P A Tsonis 1
PMCID: PMC49320  PMID: 1608961

Abstract

The mutant axolotl Short toes develops with abnormal kidneys, Mullerian ducts, and limbs and provides one of the few experimental systems for developmental studies in amphibia. The present paper describes another deviation from this animal's normal physiology, which is very characteristic of the wild type: amputated limbs of Short toes fail to regenerate. A blastema is formed but differentiation does not occur. Detailed histological analysis provides evidence of abnormal formation of the basement membrane and accumulation of extracellular matrix within the blastema, which could be attributed to an imbalance of extracellular matrix and basement membrane proteins. The basement membrane develops much thicker and is convoluted in the arrested blastema of mutant animals. In contrast to the limbs, the tails of Short toes regenerated normally with no apparent abnormalities. No gross genomic aberrations have been detected between normal and mutant DNA, indicating that a large deletion or insertion is not likely to be the cause of this mutation.

Full text

PDF
5502

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akam M. The molecular basis for metameric pattern in the Drosophila embryo. Development. 1987 Sep;101(1):1–22. [PubMed] [Google Scholar]
  2. Cohen S. M., Brönner G., Küttner F., Jürgens G., Jäckle H. Distal-less encodes a homoeodomain protein required for limb development in Drosophila. Nature. 1989 Mar 30;338(6214):432–434. doi: 10.1038/338432a0. [DOI] [PubMed] [Google Scholar]
  3. Engvall E., Krusius T., Wewer U., Ruoslahti E. Laminin from rat yolk sac tumor: isolation, partial characterization, and comparison with mouse laminin. Arch Biochem Biophys. 1983 Apr 15;222(2):649–656. doi: 10.1016/0003-9861(83)90562-3. [DOI] [PubMed] [Google Scholar]
  4. Epstein L. M., Gall J. G. Self-cleaving transcripts of satellite DNA from the newt. Cell. 1987 Feb 13;48(3):535–543. doi: 10.1016/0092-8674(87)90204-2. [DOI] [PubMed] [Google Scholar]
  5. Goulding M. D., Gruss P. The homeobox in vertebrate development. Curr Opin Cell Biol. 1989 Dec;1(6):1088–1093. doi: 10.1016/s0955-0674(89)80055-9. [DOI] [PubMed] [Google Scholar]
  6. Gulati A. K., Zalewski A. A., Reddi A. H. An immunofluorescent study of the distribution of fibronectin and laminin during limb regeneration in the adult newt. Dev Biol. 1983 Apr;96(2):355–365. doi: 10.1016/0012-1606(83)90173-2. [DOI] [PubMed] [Google Scholar]
  7. HAY E. D., FISCHMAN D. A. Origin of the blastema in regenerating limbs of the newt Triturus viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and migration. Dev Biol. 1961 Feb;3:26–59. doi: 10.1016/0012-1606(61)90009-4. [DOI] [PubMed] [Google Scholar]
  8. McGarvey M. L., Baron-Van Evercooren A., Kleinman H. K., Dubois-Dalcq M. Synthesis and effects of basement membrane components in cultured rat Schwann cells. Dev Biol. 1984 Sep;105(1):18–28. doi: 10.1016/0012-1606(84)90257-4. [DOI] [PubMed] [Google Scholar]
  9. Mescher A. L. Effects on adult newt limb regeneration of partial and complete skin flaps over the amputation surface. J Exp Zool. 1976 Jan;195(1):117–128. doi: 10.1002/jez.1401950111. [DOI] [PubMed] [Google Scholar]
  10. Sanders E. J. Recent progress towards understanding the roles of the basement membrane in development. Can J Biochem Cell Biol. 1983 Aug;61(8):949–956. doi: 10.1139/o83-121. [DOI] [PubMed] [Google Scholar]
  11. Stocum D. L., Crawford K. Use of retinoids to analyze the cellular basis of positional memory in regenerating amphibian limbs. Biochem Cell Biol. 1987 Aug;65(8):750–761. doi: 10.1139/o87-098. [DOI] [PubMed] [Google Scholar]
  12. Tassava R. A., Garling D. J. Regenerative responses in larval axolotl limbs with skin grafts over the amputation surface. J Exp Zool. 1979 Apr;208(1):97–110. doi: 10.1002/jez.1402080111. [DOI] [PubMed] [Google Scholar]
  13. Tassava R. A., Mescher A. L. The roles of injury, nerves, and the wound epidermis during the initiation of amphibian limb regeneration. Differentiation. 1975 Sep 2;4(1):23–24. doi: 10.1111/j.1432-0436.1975.tb01439.x. [DOI] [PubMed] [Google Scholar]
  14. Thornton C. S. Amphibian limb regeneration. Adv Morphog. 1968;7:205–249. doi: 10.1016/b978-1-4831-9954-2.50010-0. [DOI] [PubMed] [Google Scholar]
  15. Toole B. P., Gross J. The extracellular matrix of the regenerating newt limb: synthesis and removal of hyaluronate prior to differentiation. Dev Biol. 1971 May;25(1):57–77. doi: 10.1016/0012-1606(71)90019-4. [DOI] [PubMed] [Google Scholar]
  16. Tsonis P. A. Amphibian limb regeneration. In Vivo. 1991 Sep-Oct;5(5):541–550. [PubMed] [Google Scholar]
  17. Woychik R. P., Stewart T. A., Davis L. G., D'Eustachio P., Leder P. An inherited limb deformity created by insertional mutagenesis in a transgenic mouse. Nature. 1985 Nov 7;318(6041):36–40. doi: 10.1038/318036a0. [DOI] [PubMed] [Google Scholar]
  18. Zeller R., Jackson-Grusby L., Leder P. The limb deformity gene is required for apical ectodermal ridge differentiation and anteroposterior limb pattern formation. Genes Dev. 1989 Oct;3(10):1481–1492. doi: 10.1101/gad.3.10.1481. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES