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Abstract

Purpose: Campylobacter jejuni is the one of the leading causes of bacterial diarrheal illness worldwide. This study
aims to design specific epitopes for the utility of designing peptide vaccine(s) against C. jejuni by targeting invasive,
virulent and membrane associated proteins like FlaA, Cia, CadF, PEB1, PEB3 and MOMP.

Methods: In the present study, various immunoinformatics approaches have been applied to design a potential
epitope based vaccine against C. jejuni. The tools include Bepipred, ABCpred, Immune Epitope databse (IEDB)
resource portal, Autodock vina etc.

Results: Peptides “EINKN”, “TGSRLN”, “KSNPDI”, “LDENGCE” respectively from FlaA, MOMP, PEB3, CadF proteins were
found to be the most potential B cell epitopes while peptides “FRINTNVAA”, “NYFEGNLDM”, “YKYSPKLNF”, “YQDAIGLLV”,
“FRNNIVAFV” and “LIMPVFHEL” respectively from Fla, CadF, MOMP, PEB1A, PEB3 and Cia might elicit cell mediated
immunity and “IFYTTGSRL” from MOMP protein might elicit both humoral and cell-mediated immunity. All these potential
peptidic epitopes showed almost 80–100 % conservancy in different strains of C jejuni with varying proportions of
population coverage ranging from 22–60 %. Further authentication of these peptide epitopes as probable
vaccine candidate was mediated by their binding to specific HLA alleles using in silico docking technique.

Conclusion: Based on the present study, it could be concluded that these predicted epitopes might be used to design
a vaccine against C. jejuni bacteria and thus, could be validated in model hosts to verify their efficacy as vaccine.

Keywords: Epitopes, Campylobacter jejuni, Vaccine, MHC Class I, MHC Class II, T-cell epitopes, B-cell epitopes, Guillain
Barré syndrome

Background
Campylobacter jejuni, a gram-negative bacillus, is con-
sidered to be a commensal organism of chicken gut. It
causes gastroenteritis in humans (Nyati and Nyati, 2013)
that can ultimately lead to Guillain Barré syndrome
(GBS). GBS remains one of the most fascinating yet
challenging conditions despite considerable advances in
its understanding and treatment over the past 10 years
have been put together (Winer, 2001). It is likely that
immune responses directed against infecting organisms

are involved in the pathogenesis of GBS by cross-
reaction with neural tissues. The infecting organism in-
duces humoral and cellular immune responses that, be-
cause of the sharing of homologous epitopes (molecular
mimicry), cross-react with ganglioside surface compo-
nents of peripheral nerves (Hahn, 1998). It may happen
at any age and both sexes have equal possibilities to be
predisposed to this disease (NIH, 2015).
The reported incidence of the GBS in Western coun-

tries in 2011 ranges from 0.89 to 1.89 cases per 100,000
person/years although an increase of 20 % is seen with
every 10-year rise in age after the first decade of life
(Sejvar et al., 2011). In Bangladesh, non-polio acute
flaccid paralysis (AFP) cases are frequently diagnosed
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though poliomyelitis has been eradicated from the
country (Sejvar et al., 2011). In 2006 and 2007, a total
of 1619 and 1844 AFP cases, respectively, were reported
in children under 15 years of age, of which 37 % and 43 %
cases, respectively, were identified as GBS case. Overall,
the crude incidence rate of GBS in children <15 years of
age varied from 1.5 to 2.5 cases per 100,000 population
per year in the 6 divisions of Bangladesh.
Campylobacter jejuni has become the most frequent

antecedent pathogen for GBS (Hahn, 1998). The patho-
genic clinical strain NCTC11168 was the first C. jejuni
strain to be sequenced and has been a widely used
laboratory model for studying its pathogenesis (Parkhill
et al., 2000) and in this study this strain was taken into
consideration for designing epitopes. The mechanism of
C. jejuni-mediated enteritis is proposed to be multifac-
torial. Following ingestion, C. jejuni infect and invade
the epithelium of the small intestine and colon which
depends on motility mediated by polar flagella and outer
membrane adhesins, including PEB1a, PEB3, MOMP
and CadF. Thus, surface-exposed bacterial ligands play
major roles in mediating mucosal adhesion and invasion
(Mahdavi et al., 2014) and these host–pathogen inter-
faces during C. jejuni infection are complex, vibrant and
involved in the nicking of host cell environment, en-
zymes and pathways (Ingale and Goto, 2014).
These proteins are particularly important for vaccine de-

velopment as they mediate pathogen entry and colonization
and are also the primary target of adaptive immune
response. Well characterized protective epitopes designed
from these proteins can be a great help for offering consist-
ent, cost effective and quality therapeutics over the current
treatment. In the present study, in silico drug designing and
immunoinformatics strategies have been exploited using
bioinformatics software. Epitope-based immunoinformatics
study was carried out for these six proteins of C. jejuni in
order to predict informative epitopes which can be helpful
for future vaccine development.

Methods
To identify the best probable B- and T-cell peptides which
could be used to design an effective vaccine, different ap-
proaches were taken into consideration in this study and
an outline of the methodology has been depicted in Fig. 1.

Retrieval of protein sequences
Sequences of flaA, CadF, Cia, PEB1, PEB3 and MOMP
of strain 11168 of C. jejuni were retrieved from uniprot
(www.uniprot.org) in FASTA format.

Prediction of putative B cell epitopes, their antigenicity
and transmembrane properties
The whole protein sequences were analyzed for B cell
epitope prediction. In order to predict linear B-cell

epitopes, Bepipred tool (Larsen et al., 2006) with default
threshold value 0.35 was employed. For cross checking
the predicted epitope(s), the protein sequences were also
subjected to ABCpred server (www.imtech.res.in/
raghava/abcpred/) (Saha and Raghava, 2006) by setting
cut-off value at 0.51 and the length of the epitopes was
set to be 16 mer. ABCpred generates datasets of fixed
length patterns by eliminating or adding residues at the
terminal ends of the peptides.
Antigenicity and transmembrane topology of the

peptide sequences were also checked by VaxiJen V2.0
server (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/
VaxiJen.html) with 0.5 as threshold (Doytchinova and
Flower, 2007) and TMHMM v0.2 server (Krogh et al.,
2001), respectively.

Prediction of surface accessibility, hydrophilicity, flexibility
and beta-turn of the predicted epitopes
A Bcell epitope is characterized by its antigenicity, hydro-
philicity, accessibility and flexibility (Fieser et al., 1987).
Therefore, Emini surface accessibility prediction tool (Emini
et al., 1985), Parker hydrophilicity scale (Parker et al., 1986),
Karplus and Schulz flexibility scale (Karplus and Schulz,
1985) and Chou and Fashman beta-turn prediction tool
(Chou and Fasman, 1978) all with default parameters were
applied to predict the surface exposure probabilities, hydro-
philicity, flexibility and beta turn of the amino acids within
the predicted epitopes respectively. The results from these
analyses were cross-referenced and apparently common
findings were taken as the most probable B-cell epitopes.

T cell epitope prediction
T cell epitope was predicted by tools available in Immune
Epitope Database (IEDB) (tools.immuneepitope.org) which
provides a catalog of experimentally characterized B and T
cell epitopes, as well as data on Major Histocompatibility
Complex (MHC) binding and MHC ligand elution experi-
ments (Vita et al., 2010).

Proteasomal cleavage, TAP, MHC I binding prediction
A combined algorithm of MHC1 binding, transporter of
antigenic peptide (TAP) transport efficiency and pro-
teasomal cleavage efficiency was involved to predict
overall scores for each peptide's intrinsic potential of
being a T cell epitope. The Stabilized Matrix Base
Method (SMM) was used to calculate IC50 values of
peptide (obtained from whole protein) binding to
MHC1 molecules. For all the alleles, peptide length was
set to 9 amino acids prior to the prediction. The pa-
rameters for detection of immunogenicity (TAP score,
proteasomal score, and IC50 values) were normalized
on a scale of 0 to 1 and were given a weighted score to
prioritize the parameters (Sakib et al., 2014). The alleles
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having binding affinity IC50 less than 100 nm were
chosen for further consideration.

MHC class I and class II binding prediction
The nonamers were given as input in MHC class l binding
prediction tool available in the Immune Epitope Database
(IEDB) server (http://tools.immuneepitope.org/mhci/). The
peptides which interacted with highest number of alleles
were selected.
On the other hand, the whole protein sequences were

submitted in the IEDB MHC class II binding prediction
tool (http://tools.immuneepitope.org/mhcii/) since MHC
class II can accommodate much longer peptides – possibly
even whole proteins. The Stabilized Matrix Base Method
(SMM) was used to calculate IC50 values of peptide bind-
ing to MHCll molecules. The peptides (containing 15
amino acid residues) that interacted with highest number
of alleles were again selected.
In both cases, SMM-align method was employed to

find out good binders and the cut-off value of IC50 was
set 100 nM. The overlapping epitopes between MHC I
and MHC II binding predictions which interacted with
highest number of alleles (minimum 3 alleles) were finally
selected to predict epitope conservancy and population
coverage.

Analysis of population coverage by the predicted
epitopic peptides
To become a good vaccine candidate, prediction of T cell
epitope is not enough. The predicted peptide(s) should ef-
fectively cover human population. To find out the popula-
tion coverage of the individual epitopes, predicted epitopic
sequences with the corresponding Class l HLA alleles were
submitted to the population coverage analysis tool of IEDB
(http://tools.immuneepitope.org/tools/population/iedb_in-
put) by maintaining the default analysis parameters. This
server employs the most comprehensive database allelefre-
quencies.net for their coverage calculation.

Analysis of conservancy, variability and allergenicity of
the predicted epitopes
The epitopes were subjected to analyze for comparing
conservancy among different strains retrieved from
different countries of the world using IEDB analysis tool.
Besides, Allerdictor tool was employed to find out
whether these proposed epitopes showed any kind of
allergenicity (Dang and Lawrence, 2014). It is a fast and
accurate sequence-based allergen prediction tool that
models protein sequences as text documents and
employs support vector machine for allergen prediction.

Selection of best possible B 
cell epitope according to 

surface accessibility, 
hydrophilicity, flexibility 
and beta turn prediction 

score

Epitopes with IC50 value 
less than 100 for their 

binding to class II 
molecule from IEDB 
analysis along with 

binding to highest number 
of alleles in both analyses

were chosen

Epitopes with IC50 value less 
than 100 for their binding to 
MHC class I molecule from 
IEDB analysis along with 

binding to highest number of 
alleles in both analyses were 

chosen

T cell epitope prediction by 
proteasomal C terminal 
cleavage, TAP transport 

efficiency and MHC class I 
binding

MHCII binding 
prediction using 

IEDB server

Retrieving protein sequences of C. jejuni bacteria 

Analysis of population coverage 
and epitope conservancy

Docking and comparison
with control

Prediction of possible B cell 
epitopes according to 

Bepipred and ABCpred and 
their transmembrane 

topology and antigenicity
checked by TMHMM server 

and VaxiJen respectively

Fig. 1 Flowchart displaying the protocols employed to predict B cell and T cell epitopes
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Their variability was also determined using Protein
Variability server (Garcia-Boronat et al., 2008).

T cell epitope prediction from conserved region analysis
To find the conserved region, retrieved sequences of
each protein were aligned using ClustalW tool that uses
Gonnet matrix in MEGA software (v 5.2) along with
1000 bootstrap value and default parameters. The
aligned sequences from each protein that generated the
highest number of identical amino acid with no gap
were considered as the conserved regions for respective
proteins. In the present study, the minimum length of
the conserved regions was set at 15 as binding predic-
tions for MHC class II alleles use to create 15mers. The
identified largest conserved regions were further ana-
lyzed using similar steps as done in case of full protein
sequence analysis.

Docking of the best selected peptides in the binding
groove of HLA alleles
“PEPFOLD” server was used to predict the three dimen-
sional structure of selected peptide “FRLSDSLAL” and
“NYFEGNLDM” from CadF (Maupetit et al., 2009; The-
venet et al., 2012). The best models provided by the
server were selected for the docking study.
On the other hand, the three dimensional structure of

the HLA-B*27:05 allele, as it was found to interact with
“FRLSDSLAL” peptide, was retrieved from protein data
bank (PDBID: 1JGE) which was deposited as a complex
with nonamer peptide m9. M9 is a model synthetic pep-
tide that has the sequence of (GRFAAAIAK) (Hülsmeyer
et al., 2002). After visualizing the structures in PyMol
molecular graphics system, the peptide sequence was
removed from the binding groove of the MHC class I
allele. The AutoDOCK tool from the MGL software
package (version 1.5.6) was employed for the docking
purpose (Morris et al., 1998; Morris et al., 2009). The
predicted 3D structure of HLA-C*07:02 allele was
obtained from a previous study (Sakib et al., 2014).
These structures were then further prepared for run-

ning docking in AutoDock tool by adding polar hydro-
gens and water molecules. For the docking study both
the HLA allele and ligand files were converted into
PDBQT format. In case of HLA-B*27:05, the grid/space
box center was set at 22.241, 15.002 and 21.475 Å in the
x-, y-, and z-axes, respectively to allow the epitope
“FRLSDSLAL” to bind to the binding groove of the
allele. The size was set at 52, 34 and 30 Å in the x, y,
and z dimensions, respectively. All the analyses were
done at 1.00 Å spacing. The thoroughness of global
search algorithm i.e. the exhaustiveness parameter was
kept at 8.00, while the number of outputs was set at 10.
The docking was conducted using AutoDOCK Vina pro-
gram based on the set parameters. The PDBQT files

were converted in PDB format using OpenBabel (version
2.3.1) and visualized in PyMOL molecular Graphics
system. The same procedure was also followed for the
binding of “NYFEGNLDM” nonamer to HLA-C*07:02
allele. In that case, the grid/space box center was set at
-13.677, 2.561 and 30.904 Å in the x-, y- and z-axes re-
spectively to allow the epitope to bind to the groove of
the HLA-C*07:02. The size was set at 30, 46 and 50 Å in
the x, y, and z dimensions, respectively.
The best output was selected on the basis of the best

binding energy. To compare the binding of the predicted
folded structure of the nonamer (“FRLSDSLAL”) to the
binding groove of the class I MHC allele, the removed non-
amer m9 was also allowed to dock as control. The control
nonamer was docked by considering similar parameters.
The 3D structure of MHC class I H-2Kb molecule

complexed with octapeptide PKB1 (“KVITFIDL”) was
retrieved from Protein Data Bank Database (ID: IKJ3)
and visualized using PyMOL Graphics. The octapeptide
was excluded before applying the structure of H-2Kb for
comparing the validated data obtained for predicted
structure of HLA-C*07:02.
Also, to assess HLA-C*07:02-epitope docking results,

octapeptide PKB1 (“KVITFIDL”) was used as the con-
trol. This peptide was docked with HLAs, HLA-C*07:02,
and H-2Kb. The test epitope(s) and the control peptide
were docked by setting similar parameters for each trial
and successful binding of this peptide to these HLAs
was demonstrated. Finally, H-2Kb - KVITFIDL docking
result was used as control to compare with the test dock-
ing results of HLA-C*07:02 complexed with selected
epitopes.

Results
Identification of B cell epitopes
After retrieving the sequences of FlaA, PEB1a, PEB3,
MOMP, CadF and Cia proteins of Campylobacter jejuni
strain 11168 several epitopes were predicted. However, only
those peptides that were found fully overlapping between
Bepipred and ABCpred prediction tools (Larsen et al.,
2006; Saha and Raghava, 2006) were selected for further
analysis by VaxiJen and TMHMM server (Doytchinova and
Flower, 2007; Krogh et al., 2001). On the basis of VaxiJen
scores and transmembrane topology, epitopes “TGLGALA
DEINKNADK”, “DWSKSNPDIGTAVAIE”, “GEEIFYTTGS
RLNGDT” and “PREGALLDENGCEKTI” respectively from
FlaA, PEB3, MOMP and CadF proteins were found to be
antigenic (VaxiJen score ≥ 0.5) and they also fulfilled the cri-
teria of exomembrane characteristics (Table 1).
By using different tools in IEDB, it was found linear pep-

tides “EINKN”, “TGSRLN”, “KSNPDI”, “LDENGCE” re-
spectively from FlaA, MOMP, PEB3, CadF proteins
fulfilled the criteria of surface accessibility, hydrophilicity,
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flexibility and beta-turn for becoming the most probable B
cell epitope (Additional file 1: Table S1).

Prediction of T cell epitopes
MHC class I and class II epitope identification
Analysis using a combined algorithm integrating MHC
class I binding, TAP efficiency and proteosomal cleavage
prediction generated 562 processed T cell epitopes from
FlaA, 250 processed T cell epitopes from PEB1, 241 epi-
topes from PEB3 protein, 414 from MOMP, 691 from
CadF protein and 426 epitopes from Cia that interacted
with different possible MHC I alleles with the IC50
value <100 nM.
These processed peptides were then analyzed by SMM

based IEDB MHC I prediction tool and this method
retrieved 59 nonamers from flaA, 49 nonamers from
MOMP, 18 from PEB1 protein, 18 from PEB3, 32 from
CadF protein and 57 from Cia with the IC50 value <100
nM. A good epitope should also interact with as many
as MHC alleles. Thus, among the total peptides, only
those peptides which interacted with minimum four
MHC class I alleles as well as were found to be the core
sequences of 15mer MHC class II alleles, were selected
from each protein (Additional file 1: Table S2, Table S3,
Table S4, Table S5, Table S6 and Table S7).

Population coverage, epitope conservancy, variability and
allergenicity analysis
Over a thousand different human MHC (HLA) alleles
are known and different HLA types are expressed at dif-
ferent frequencies in different ethnicities. Population
coverage by the most probable epitopes varied between
20 % – 65 % when MHC class I alleles were considered
(Additional file 1: Table S2, Table S3, Table S4, Table S5,
Table S6 and Table S7).
The epitopes which were found to have large world

population coverage were selected as most probable
epitopes for vaccine design (Table 3). From FlaA
“FRINTNVAA” peptide, from PEB3 protein “FRNNIV
AFV” epitope, from MOMP protein “IFYTTGSRL” and
“YKYSPKLNF”, from CadF protein “NYFEGNLDM”,
from PEB1A “YQDAIGLLV” and from Cia protein
“LIMPVFHEL” epitope were selected as best potential
vaccine candidates. The regions where these epitopes

showed comparatively higher population coverage is
presented graphically (Additional file 1: Figure S1).
All of the epitopes were found to be non allergen

(Table 2). The protein variability index of these epitopes
was also calculated (Additional file 1: Figure S2).
The conservancy analyses revealed that nonamers

“NYFEGNLDM” from CadF, “LIMPVFHEL” from Cia
and “YKYSPKLNF” from MOMP protein were 100 % con-
served among all strains analyzed while the other candidate
peptides varied between 33.33 % to 100 % conservancy
(Table 2). In addition, “NYFEGNLDM” from CadF demon-
strated highest world population coverage which was
60.72 %.
It was also found out “YYQDAIGLL” and “MVFRKSLLK”

from PEB1A; “YRTFNVLAK” from PEB3 and “FALKG
SIEV” from MOMP proteins showed large population
coverage, interacted with 6-9 MHC class I alleles and also
were found overlapping with 15mer peptides of MHC class
II alleles. The nonamers “YYQDAIGLL”, “MVFRKSLLK”,
“YRTFNVLAK” and “FALKGSIEV” showed 55.69 %,
56.39 %, 54.57 % and 55.25 % world population coverage,
respectively.

Multiple sequence alignment and prediction of T cell
epitopes from conserved regions of each protein
In another approach, the sequences of the six proteins from
different isolates of Campylobacter jejuni were retrieved
from NCBI GenBank sequence database (www.ncbi.nlm.
nih.gov/genbank/) and UniProt (www.uniprot.org/). The
strains included 81-176; ATCC_700819/NCTC_11168;
ATCC_BAA-1458/RM4099/269.97; 260.94; jejuni_CG8421;
CF93-6; jejuni_IA3902; RM1221; CJM1cam; jejuni_M1;
NCTC_11168-BN148 and jejuni_81116. The retrieved
sequences were then aligned using ClustalW tool that uses
Gonnet matrix in MEGA software (v 5.2). The conserved
regions from each protein with the highest length were
then used for T cell epitope prediction. They were subjected
to IEDB and SYFPEITHI MHC class I and class II binding
prediction tool. It was found out “FRLSDSLAL” epitope
from CadF protein which stood out as the best potential
vaccine candidate from that protein (Additional file 1:
Figure S3) was also common among the most probable
epitopes from CadF during whole protein sequence ana-
lysis. The epitope showed 37.98 % population coverage and

Table 1 Predicted B cell epitopes of FlaA, PEB3, MOMP, CadF and Cia protein from Campylobacter jeuni and their VaxiJen score,
transmembrane topology and position

Protein Predicted B
cell epitope

VexiJen Score
(Threshold > 0.5)

Prediction of transmembrane
helix using TMHMM server

Position of the
selected sequences

FlaA TGLGALADEINKNADK 0.6933 Outside 212–227

PEB3 DWSKSNPDIGTAVAIE 0.6732 Outside 191–206

MOMP GEEIFYTTGSRLNGDT 0.7115 Outside 318–333

CadF PREGALLDENGCEKTI 0.8825 Outside 195–210
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Table 2 Most probable predicted epitopes interacting with different MHC class I and class II alleles from IEDB analysis tool

Proteins used Predicted peptides
using IEDB tool

Interacting
MHC-I alleles

Population
coverage

Interacting
MHC-II alleles

Conservancy Allergenicity

FlaA FRINTNVAA HLA-C*03:03
HLA-C*12:03
HLA-C*14:02
HLA-B*39:01
HLA-C*07:01
HLA-C*06:02

51.40 % HLA-DRB1*04:01
HLA-DRB1*13:02
HLA-DRB1*01:01

100 % conserved among
23 strains, 88.89 % conserved
in 4 strains

Non-allergen

CadF NYFEGNLDM HLA-C*14:02
HLA-C*07:01
HLA-C*06:02
HLA-C*12:03
HLA-C*07:02
HLA-B*15:02

60.72 % HLA-DRB1*04:05 100 % conserved among
13 strains

Non-allergen

MOMP IFYTTGSRL HLA-C*03:03
HLA-C*14:02
HLA-B*15:02
HLA-C*12:03

22.69 % HLA-DRB1*07:01
HLA-DRB1*01:01
HLA-DPA1*02:01
HLA-DPB1*01:01

100 % conserved among
18 strains, 77.78 % conserved
among 5 strains

Non-allergen

YKYSPKLNF HLA-C*03:03
HLA-B*15:02
HLA-C*14:02
HLA-C*12:03

22.69 % HLA-DRB1*11:01
HLA-DRB1*07:01

100 % conserved among
18 strains

Non-allergen

PEB1A YQDAIGLLV HLA-A*02:06
HLA-C*12:03
HLA-C*05:01
HLA-A*02:01
HLA-C*08:02

53.42 % HLA-DRB1*01:01
HLA- DRB1*07:01

100 % conserved among
8 strains, 33.33 % conserved
among 10 strains, 22.22 %
conserved in 1 strain

Non-allergen

PEB3 FRNNIVAFV HLA-C*06:02
HLA-C*12:03
HLA-C*07:01
HLA-C*05:01

47.63 % HLA- DRB1*13:02
HLA- DRB1*04:04
HLA- DRB1*01:01
HLA- DRB3*01:01

100 % conserved among
40 strains, 88.89 % conserved
in 1 strain

Non-allergen

Cia LIMPVFHEL HLA-A*02:06
HLA-A*02:01
HLA-C*15:02
HLA-C*12:03
HLA-A*68:02

50.86 % HLA-DPA1*02:01
HLA-DPB1*01:01
HLA-DPA1*01:03
HLA-DPB1*02:01

100 % conserved among
20 strains

Table 3 Predicted epitope from CadF protein found common in both whole protein analysis and conserved region analysis

Protein Peptide Interacting
MHC-I alleles

Population
Coverage

Overlapping
15 mer peptides

Interacting
MHC-II alleles

Conservancy Allergenicity

CadF FRLSDSLAL HLA-B*39:01
HLA-C*03:03
HLA-B*15:02
HLA-C*14:02
HLA-C*07:02
HLA-B*27:05
HLA-B*27:09

37.98 % GVKFRLSDSLALRLE HLA-DRB1*07:01
HLA-DRB1*01:01
HLA-DRB5*01:01
HLA-DRB1*09:01
HLA-DRB1*04:01
HLA-DRB1*0101
HLA-DRB1*0301
HLA-DRB1*1501

100 % Non-allergen

GAGVKFRLSDSLALR HLA-DRB1*07:01
HLA-DRB1*01:01
HLA-DRB5*01:01
HLA-DRB1*09:01
HLA-DRB1*04:01
HLA-DRB1*0301

Non-allergen

KFRLSDSLALRLETR HLA-DRB1*07:01
HLA-DRB1*01:01
HLA-DRB1*09:01
HLA-DRB5*01:01
HLA-DRB1*0301
HLA-DRB1*1501

Non-allergen
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as it came from a conserved region its conservancy among
the different isolates was 100 % (Table 3).

Docking
Binding models of the best probable epitopes (“FRLS
DSLAL” and “NYFEGNLDM” from CadF) to its specific
HLA molecules were observed using AutoDock Vina.
Epitope “FRLSDSLAL” bound to the binding groove of
HLA-B*27:05 with the binding energy -6.1 kcal/mol and
“NYFEGNLDM” bound with HLA-C*07:02 with the
binding energy -6.3 kcal/mol (Fig. 2a and c). On the
other hand after setting same parameters, the binding
energy of the control peptides “m9” to the binding
grooves of class I MHC allele- HLA-B*27:05 were esti-
mated to be -6.7 kcal/mol (Fig. 2b).

Discussion
Campylobacter jejuni is recognized as a major risk factor
for the onset of Guillain‐Barré syndrome, which is a serious
post‐infection complication characterized by acute and
progressive neuromuscular paralysis (Allos, 2001). Almost

25 %–40 % of GBS patients worldwide suffer from C. jejuni
infection 1–3 weeks prior to the illness (Mishu and Blaser,
1993). Up to 20 % of GBS patients remain severely disabled
and approximately 5 % die in the western countries (Yuki,
2012). C. jejuni is also responsible for gastroenteritis
(Gblossi Bernadette et al., 2012) and a diarrheal disease
called campylobacteriosis which is considered as a major
health issue attributable to unavailability of appropriate
vaccines and clinical treatment options. Existing therapies
are trusted only on a much smaller number of drugs, most
of them are insufficient because of their severe host toxicity
or drug-resistance phenomena (Ingale and Goto, 2014).
Particularly the increasing prevalence of drug‐resistant
Campylobacter has compromised the effectiveness of the
currently used antibiotics and poses a significant threat to
public health in many countries (Blaser and Engberg,
20082008). Moreover, treatment of GBS caused by this or-
ganism is highly expensive (Nagpal et al., 1999). Thus, an
effective cost effective prevention scheme would be most
desirable for the public health providers as well as the
scientific communities.

Fig. 2 Docking to predict the binding of predicted and control epitopic peptides to MHC class I molecule, HLA-B*27:05. The bindings of 3D structures of
a predicted peptide, “FRLSDSLAL”; b the control peptide, “m9” to the binding grooves of HLA-B*27:05 and binding energies were found to be almost
similar (-6.1 and -6.7 kcal/mol, respectively) and c Docking to predict the binding of predicted epitopic peptide “NYFEGNLDM” to MHC class I molecule,
HLA-C*07:02. Docking of control peptide to the HLA-C*07:02 groove was done in previous study (Sakib et al., 2014)
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To find out remedial alternatives, the identification of
new biotargets is therefore highly anticipated. Understan-
ding the molecules involved in pathogenesis has the poten-
tial to yield new and exciting strategies for therapeutic
intervention (Ingale and Goto, 2014). The flagellum (FlaA,
out of two flagellar proteins), outer membrane adhesions-
major outer membrane protein (MOMP), Campylobacter
adhesion to fibronectin (CadF), Campylobacter invasion
antigen (Cia), the major cell binding factor PEB1 and the
major antigenic peptide PEB3 of C. jejuni facilitate its
colonization into the intestinal tract of animals (Day et al.,
2009; Mahdavi et al., 2014). Therefore, in this study, we
made an attempt to design epitope based vaccines from
these proteins which could be tested for their efficacy in
eliciting immunity through humoral and cell mediated
immune responses. The ultimate goal of epitope prediction
is to aid the design of molecules that can mimic the struc-
ture and function of a genuine epitope and replace it in
vaccine design (Gomara and Haro, 2007; Peters et al.,
2005). However, the activation of cytotoxic T-cells requires
recognition of specific peptides bound to MHC class I
molecules (Sette et al., 2001). And while sequences from
pathogens provide a huge amount of potential vaccine can-
didates, it is estimated that only one in 100 to 200 peptides
actually binds to a particular MHC (Yewdell and Bennink,
1999). Therefore, a good computational prediction method
could significantly reduce the number of peptides that have
to be synthesized and tested. With the advent of computers
and informatics, new approaches have been devised that
facilitate immunoinformatics which targets the use of
mathematical and computational approaches to predict T-
cell and B-cell immune epitopes (De Groot et al., 2002).
The identification of B-cell epitopes is rather important

to immunodetection and immunotherapeutic applications
since an epitope as the minimal immune unit is strong
enough to elicit a potent humoral immune response with
no harmful side effects to human body (Sun et al., 2013).
In this study, linear B-cell epitopes were chosen with

two different algorithms- BepiPred and ABCpred. Only
overlapping peptides which were chosen by both algo-
rithms as well as satisfied the scores of VaxiJen and passed
transmembrane topology were selected as potential B-cell
epitopes and subjected to further analysis using the pa-
rameters of surface accessibility, hydrophilicity, flexibility,
and beta-turn. By cross-referencing all the data, we pre-
dicted that the peptide sequences “EINKN”, “TGSRLN”,
“KSNPDI”, “LDENGCE” respectively from FlaA, MOMP,
PEB3, CadF proteins were capable of inducing the desired
immune response as B cell epitope. Among them
“EINKN” and “LDENGCE” were also found non-allergen
as predicted by AllerTOP 1.0 tool.
For T cell epitope prediction, plenty of algorithms are

freely available and in this study we employed IEDB ana-
lysis tool which is possibly the most wide-ranging database

offering several B cell and T cell epitope-related analysis
and prediction tools as well as provides both intrinsic bio-
chemical and extrinsic context dependent information
about them (Zhang et al., 2008). Initial analysis of the data
showed that among all the predicted epitopes, “FRINTN
VAA” peptide from FlaA, “FRNNIVAFV” epitope from
PEB3, “IFYTTGSRL” and “YKYSPKLNF” of MOMP, from
CadF “NYFEGNLDM”, from PEB1A “YQDAIGLLV” and
from Cia protein “LIMPVFHEL” epitopes interacted with
the highest numbers of MHC class I alleles, were the core
peptides of a good number of MHC class II binding
predictions and also demonstrated large world popula-
tion coverage. They were also found to be non–allergen
from AllerTop 1.0 analysis. Further analysis found out
“YYQDAIGLL” and “MVFRKSLLK” from PEB1A pro-
tein; “YRTFNVLAK” from PEB3 and “FALKGSIEV”
from MOMP protein showed highest population coverage,
interacted with 6-9 MHC class I alleles and also were
found to be overlapping with a good number of 15mer
peptides of MHC class II alleles. All the epitopes showed
100 % conservancy among majority of the strains.
In another approach, all the available strains from each

protein were aligned and the largest conserved regions
found from each alignment were subjected to T cell epi-
tope prediction by both IEDB and SYFPEITHI analysis
tools with the aim to propose the most probable epi-
tope(s) that could be used to design a vaccine that would
be universally applicable. Interestingly, “FRLSDSLAL”
epitope was revealed as the best potential vaccine candi-
date from CadF protein which was also common among
the most probable epitopes from CadF during whole
protein sequence analysis. The epitope showed 37.98 %
population coverage. Another important finding was that
the most probable predicted B cell epitope from MOMP
protein “TGSRLN” peptide overlapped with the pre-
dicted T cell epitope “IFYTTGSRL” in this study. So this
epitope based vaccine would be able to elicit both
humoral and cell mediated immunity.

Conclusion
In this study, we made an attempt to design epitope based
vaccines against Campylobacter jejuni which could be
tested for their efficacy in eliciting immunity through
humoral and cell mediated immune responses. The results
of our study provide computational data for the identifica-
tion and screening of epitopes, and may be used for the
development of epitope vaccines that have an enhanced
safety and efficacy. This may result in the provision of im-
proved regimens for the prevention of GBS. Our findings
are based on sequence analysis and computational predic-
tions. However, to prove the effectiveness of mounting an
immune response, both in vitro and in vivo studies are re-
quired along with this in silico study.
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