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Blood-based biomarkers for Alzheimer’s disease would be very valuable because blood is a more accessible biofluid and is suitable
for repeated sampling. However, currently there are no robust and reliable blood-based biomarkers for practical diagnosis. In this
study we used a knowledge-based protein feature pool and two novel support vector machine embedded feature selection methods
to find panels consisting of two and three biomarkers. We validated these biomarker sets using another serum cohort and an
RNA profile cohort from the brain. Our panels included the proteins ECH1, NHLRC2, HOXB7, FNI1, ERBB2, and SLC6AI3 and
demonstrated promising sensitivity (>87%), specificity (>91%), and accuracy (>89%).

1. Introduction

There were an estimated 46.8 million Alzheimer’s disease
(AD) sufferers worldwide in 2015, and it is predicted that 1 in
85 people will be affected by 2050 [1]. Although a number of
genetic and cerebrospinal fluid (CSF) biomarkers have been
discovered in recent decades, few have been reported from
the blood that have relevance to the disease [2]. There is
thus a lack of robust and reliable blood-based biomarkers
for AD diagnosis [3, 4]. With the expanding capacity of pro-
tein arrays and mass spectrometry-based detections, recent
studies of blood profile biomarkers have attempted to address
this problem. Ray and colleagues [5] were the first to use a
profiling approach, and they identified an 18-plasma protein
profile that classified AD patients from healthy subjects with
high specificity. The same group later analyzed independent
samples with different bioinformatics approaches and discov-
ered that the majority of those 18 proteins were relevant to
the levels of Af3 or tau proteins in CSF [6]. Since these two
studies, many profiling approaches have proposed protein
panels with promising diagnostic ability, but the main issue
has been reproducibility [7]. The problem of reproducibility

has been addressed by Hu and colleagues [8] and Doecke
and colleagues [9] using two well-characterized and large
clinical cohorts to identify a series of inflammatory mediators
associated with the onset of AD. Doecke and colleagues [9]
and O’Bryant and colleagues [10] also reported high diag-
nostic accuracy across cohorts. In addition, researchers in
plasma proteomics have used cross-validation across vari-
ous cohorts to overcome the overfitting problem in high-
dimensional studies. Molecules that have raised great hopes
among these investigators include apolipoprotein E (APOE),
NT-proBNP (N-terminal prohormone of Brain Natriuretic
Peptide), and pancreatic polypeptide. It is been suggested
that, because AD is a mitochondrial dysfunction and immune
system relevant disease [11, 12], focusing on genes involved in
relevant pathways [13] may help in biomarker discovery [14].
However, few previous studies have used biological informa-
tion in their modeling. We therefore decided in this study to
take existing biological knowledge of potential AD biomark-
ers into consideration and construct a knowledge feature pool
for a series of feature selection methods. We first established
a feature pool comprising numerous AD-related biomarkers
and then designed two novel SVM-based feature selection
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methods, which we used to select several panels of biomark-
ers. Finally, we validated the classifying performance of these
panels with other serum and RNA expression cohorts. We
found that a panel of only two or three proteins gave us good
diagnostic ability.

2. Materials and Methods

2.1. Data Collection and Preprocessing. We downloaded
three AD relevant datasets from Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/): GSE29676, GSE39087,
and GSE5281. GSE29676 consists of serum samples from 50
AD cases, 40 healthy samples, 30 breast cancer (BC) cases,
and 29 Parkinson’s disease cases. The data were generated by
Invitrogen ProtoArray v5.0 protein platform including 9486
unique human protein antigens (dataset feature pool) [15], to
which specific proteins will bind when the sample solution is
loaded. GSE39087 is also a human serum protein microarray
dataset generated by the same platform as GSE29676 and
contains 36 AD cases, 57 healthy samples, 48 Parkinson
disease cases, 18 breast cancers, and 7 multiple scleroses [16].
GSE5281 is an RNA microarray dataset from brain tissues,
with 87 AD cases and 74 healthy samples. Each sample was
collected from different brain regions comprising entorhinal
cortex (EC), hippocampus (HIP), medial temporal gyrus
(MTGQ), posterior cingulate (PC), superior frontal gyrus
(SFG), and primary visual cortex (PVC) [17].

The normalized expression data of GSE29676 and
GSE39087 were downloaded directly, then expression values
smaller than one were set as one, and 2-based logarithm
transformation was conducted. To eliminate the potential
bias caused by age and gender, the expression value was
corrected using the following method. First, for each protein,
arobust linear regression (rlm function in MASS [18] R pack-
age) was applied with the logarithm transformed expression
value as the dependent variable and age and gender as the
explanatory variables. Second, the sum of the intercept and
residual was employed as the corrected expression value for
that protein in each sample and used in subsequent analyses.
For GSE5281, an age-gender-bias correction was also con-
ducted on the normalized data before matching the probes
with corresponding proteins. We used GSE29676 as the
discovery dataset for biomarker identification and GSE39087
and GSE5281 as the two validation datasets. Only AD and
Control subjects were included in any subsequent analysis.

2.2. Knowledge-Based Feature Pool. We comprehensively
searched the literature and online databases to construct a
knowledge feature pool for the AD-related biomarkers. The
text mining for AD biomarkers was conducted by searching
publications on PubMed in December 2014 (http://www.ncbi
.nlm.nih.gov/pubmed), producing a set of 611 genes. 172 genes
were discovered from (a) large genome wide association study
(GWAS) papers [19-21] and their first neighbors in a protein-
protein interaction (PPI) network [22] and (b) AD-related
genes and protein database in Alzforum (http://www.alzfo-
rum.org/). We collected 84 genes from a human AD real-
time PCR array functional gene grouping (http://www.sabio-
sciences.com/rt_pcr_product/HTML/PAHS-057Z.html) and
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876 genes in the Ingenuity Pathway Analysis (http://www
.ingenuity.com/) tool filtered by keyword “Alzheimer
biomarker.” From these searches a total of 1915 unique genes
were placed in our knowledge-based gene pool.

2.3. Feature Selection. We proposed a novel method, Support
Vector Machine Forward Selection (SVMES), for selecting
the best AD-related protein set for training our classification
model (Figure 1). The framework of our method is built
upon that of the Support Vector Machine (SVM) model.
Throughout the study, we adopted the default settings of the
SVM model in the el071 R package [23] (gamma = 1/feature
number, cost = 1, type = C-classification, and kernel = radial).
For a given protein set, an SVM model can be trained, whose
leave-one-out cross-validation (LOOCYV) accuracy was then
used as the evaluation score. The evaluation score improve-
ment was calculated by comparing the evaluation scores of
the previous protein set with the evaluation score of the
updated protein set containing a selected additional protein.
An alternative feature selection method was also used, SVM
Top Forward Selection (SVMTES). In this alternate method
a ranking list for all the proteins based on the LOOCV
accuracy of their respective single-protein SVM model was
made. The only difference between these two methods lies in
the selection of the protein to be included in the next round.
In SVMES, the optimal protein among the rest is selected; in
SVMTES, the next protein in the ranking list based on the
LOOCV is selected.

2.4. Classifier Training and Assessing. We conducted a cross-
validation using the GSE29676 dataset on the protein sets
discovered by our novel feature selection approach and the
10 biomarkers discovered by Nagele and colleagues (named
here as the Nagele model) [15]. We trained classifiers with
60 samples (randomly selected, 30 each in AD and healthy
samples) and then tested the classifiers with the remaining
samples (10 AD and 20 healthy samples). The cross-validation
was repeated 5000 times for the calculation of average sen-
sitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), false discovery rate (FDR), and false
omission rate (FOR) [24]. The ROC curve performance area
under the curve (AUC) was plotted using the pROC R
package [25].

2.5. Biomarker Validation. We conducted both biomarker
validation and classification model validation. Classifiers
trained in discovery in the GSE29676 dataset were then tested
for performance in the GSE39087 dataset. We also did cross-
validation using GSE39087 of the features identified by
GSE29676, that is, randomly selecting 20 AD and 20 healthy
in GSE39087 as training samples and the remainder as testing
samples, and repeating 5000 times.

For GSE5281, target proteins identified in discovery data-
set were matched with corresponding probes by their corre-
sponding genes. An SVM classification model was built in the
six different brain regions separately and LOOCV accuracy
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F1GURE 1: Workflow of Support Vector Machine Forward Selection (SVMES).

was used to assess the performance of the model in each
region.

3. Results

Employing SVMFS and SVMTES to select features in the
knowledge-based feature pool and full feature pool, respec-
tively, we discovered three different protein sets that showed
promising performance in discriminating AD patients from
healthy individual as measured by LOOCV accuracy. Table 1
shows the LOOCV accuracy for each of the top 20 features
(proteins) used in a single feature SVM model in discovery
dataset. We found the following models (protein sets).

(i) A two-feature model selected by SVMES had 98.8%
SVM-LOOCYV accuracy and consisted of ECHI +
NHLRC2 (enoyl-coenzyme A hydratase 1 peroxiso-
mal plus NHL repeat containing 2).

(ii) A three-feature model selected by SVMES had 96.5%
SVM-LOOCV accuracy and consisted of ERBB2 +
FN1 + SLC6A13 (v-erb-b2 erythroblastic leukemia
viral oncogene homolog 2, neuro/glioblastoma deri-
ved oncogene homolog (avian) transcript variant 2,
fibronectin 1, plus solute carrier family 6 (neurotrans-
mitter transporter, GABA), member 13).

(iii) A two-feature model selected by SVMTES had 97.7%
SVM-LOOCYV accuracy and consisted of ECHI +
HOXB7 (homeobox B7).

Evaluation by cross-validation in the same dataset showed
a good performance of these models (Table 2). The average
sensitivity and specificity of models ECH1 + NHLRC2,

TaBLE 1: Top 20 proteins with the largest LOOCV accuracy.

NCBI accession ID Protein name LOOCYV accuracy
BC011792.1 ECH1 96.5%
NM_004502.2 HOXB7 96.5%
NM_177924.1 ASAHI1 96.5%
BC030814.1 IGKV1-5 95.4%
BC034142.1 IGKV1-5 95.4%
BC034146.1 IGKVI1-5 95.4%
BC0349371 Cl0orf64 95.4%
NM_176884.1 TAS2R43 95.4%
PV3366 ERBB2 94.2%
NM_201278.1 MTMR2 94.2%
BC038406.1 C3orf20 94.2%
NM_152776.1 MGC40579 94.2%
NM_014110.3 PPPIR8 93.0%
XM_294794.1 LOC339065 93.0%
NM_019891.1 EROILB 93.0%
BC068078.1 NPM2 93.0%
NM_002613.3 PDPK1 93.0%
NM_031268.3 PDPK1 93.0%
BC032101.1 JAGN1 93.0%
NM_000963.1 PTGS2 93.0%

ECHI1 + HOXB7, and ERBB2 + EN1 + SLC6A13 all reached
at least 88%. Among the selected proteins, an interesting
statistical pattern for the expression level was discovered in
ECHI1, HOXBY7, and ERBB2 (Figures 3 and 4). In each of
these three proteins, the normal expression range has two
thresholds (one upper limit and one lower limit). To the best
of our knowledge, such biomarkers with banded distributions
between healthy and AD samples have not previously been
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TABLE 2: Performances of three proposed models in datasets GSE29676 and GSE39087.

Average LOOCV
accuracy

Validation

Sensitivity
accuracy

Specificity

NPV PPV FDR FOR

Cross-validation in GSE29676

ECH1 +
NHLRC2

ECHI1 +
HOXB7

ERBB2 + FN1
+ SLC6AI3

The Nagele
model

98.8% 95.4% 94.0%

97.7% 95.6% 95.0%

96.5% 89.6% 87.9%

64.0% 56.8% 58.9%

97.1% 93.0% 97.7% 2.3% 7.0%

96.3% 94.1% 971% 2.9% 5.9%

91.8% 86.4% 93.4% 6.6% 13.6%

54.3% 51.8% 62.2% 37.8% 48.2%

Cross-validation in GSE39087

ECHI +
NHLRC2

ECH1 +
HOXB7

ERBB2 + FN1
+ SLC6A13

The Nagele
model

88.9% 87.4% 79.7%

97.8% 96.9% 96.8%

74.4% 69.8% 80.9%

70.0% 69.4% 80.2%

90.8% 91.2% 80.7% 19.4% 8.8%

96.9% 98.6% 93.8% 6.2% 1.4%

65.0% 89.4% 51.4% 48.6% 10.6%

64.7% 89.0% 50.6% 49.4% 11.0%

reported. Typically there is a binary separation between AD
and healthy samples with only one threshold.

3.1. Cross-Cohort Validation. The cross-validation using coh-
ort GSE39087, which is also a serum protein microarray data,
showed that the three models still maintained good classifica-
tion ability, with SVM-LOOCYV accuracies of 88.9% (ECH1 +
NHLRC2), 97.8% (ECH1 + HOXB7), and 74.4% (ERBB2 +
FNI + SLC6A13). Model ECH1 + HOXB7 outperformed
the others in this process of validation, with over 95% in
sensitivity and specificity (Table 2). Model ECHI + NHLRC2
also exhibited good predictive performance except for a
decreased sensitivity, which could result from the relatively
small training sample size. Despite the seemingly good result
in cross-validation using GSE39087, the performances of
models deteriorated when they were trained and tested by
different cohorts (AUC: ECHI1 + NHLRC2: 89.5%, ECHI +
HOXB7: 66.1%, ERBB2 + FNI1 + SLC6A13: 75.1%; see Fig-
ure 2). This could be an indication of overtraining in those
models, especially for model ECHI + HOXBY. The reason for
this could be different experimental environments between
the two cohorts.

We also investigated the distribution pattern for all the
proteins using dataset GSE39087 and found that ECHI still
maintained its banded distribution, while in ERBB2 and
HOXB?7 the patterns are relatively less obvious (Figures 5 and
6). The disparity may be caused by the different data pro-
cessing methods employed by GSE29676 and GSE39087; the
former datasets were characterized into disease and control
groups and then linearly normalized while the latter datasets
were normalized via the compare-function embedded in
Invitrogen’s Prospector [26].

We conducted LOOCYV separately for our three proposed
protein sets in the six different brain regions of dataset
GSE5281 (thus, 18 models were evaluated in total). The result

Comparison between the three models
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—— The Nagele model, AUC = 89.5%

F1GURE 2: ROC curves of the three proposed models in the cross-
cohort validation using GSE39087.

shows that our three models maintain excellent classification
ability in EC and PC but are poorer in the others (Table 3).

4, Discussion

The original study of dataset GSE29676 reported 10 autoan-
tibodies as diagnostic AD biomarkers [15]. The authors
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TABLE 3: Accuracy performances of our three proposed models in dataset GSE5281 (see Section 2 for full name of brain regions).
EC HIP MTG PC SFG VCX
ECHI + NHLRC2 95.5% 78.3% 60.0% 571% 68.0% 50.0%
ECHI1 + HOXB7 86.4% 87.0% 80.0% 85.7% 68.0% 40.0%
ERBB2 + ENI + SLC6A13 90.9% 56.5% 88.0% 81.0% 60.0% 43.3%
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FIGURE 5: Expression level of six proteins in the three proposed models under different conditions (red for AD samples and blue for healthy

samples) in dataset GSE39087.

constructed a descending ranked list sorted by the differ-
ence in prevalence between AD and healthy groups using
Predictive Analysis for Microarrays (PAM), and then the top
10 features were selected. This method of feature selection
did not take the combinatory effect of feature sets into
consideration, as each autoantibody was selected exclusively
according to its own discriminant ability between groups. To
overcome the weaknesses in feature selection, we used a SVM
radial kernel embedded feature selection method, which not
only compensates for the ignorance of combinatory effect of
significant differentiator feature sets, but also adds the ability
to discover complex patterns in the data. More importantly,
in the original study the predictive models were trained and
validated in samples that were randomly selected, only once,
which may lead to uncertain results. In contrast, our study is
cross-validated by repeating the sampling for 5000 times to
compensate for any uncertainty in bootstrapping. Also, the
impacts of age and gender on the prediction models were
ignored in Nagele et als study. In a later reexamination by
the same researchers, those two factors (age and gender) were
identified to strongly influence the number of autoantibod-
ies detected using protein microarrays [16]. We eliminated
such effects by simulating a robust linear regression model

between age, gender, and the expression value. The expression
value was then corrected by summing the intercept and the
residue.

We also see a potentially novel pattern of expression in
AD and healthy samples with two boundaries. An assump-
tion can be made that there is a normal level of protein
expression in healthy individuals. The LOOCV accuracies
of those proteins with this particular pattern suggest that
any subject with an abnormal expression level, either being
up- or downregulated, can be diagnosed as having AD with
high confidence. The existence of upper and lower bound of
normal expression in these proteins also implies the potential
to subdivide AD into two or more categories.

Furthermore, we find a correlation between the expres-
sion levels of the proteins with two boundaries in our study.
For instance, in the dataset GSE29676, the AD sample group
with a downregulated expression level of protein ECHI com-
pared to normal also have downregulated HOXB7 and upreg-
ulated ERBB2 (Pearson correlation r = 0.99 for ECHI and
HOXB7; r = —0.95 for ECHI and ERBB2; and r = —0.94 for
ERBB2 and HOXB7). The same situation was observed in
the dataset GSE39087. These observations suggest that there
is an underlying linkage between the upstream activities of
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these proteins. We predict that further investigations will
reveal coexpression, regulation, or antagonistic relationship
between the precursor molecules of those proteins, at the level
of either transcription or translation.

Considering the proteins in our panels, ECHI is a gene
encoding a member of the hydratase/isomerase superfamily.
The gene product shows high sequence similarity with the
enoyl-coenzyme A (CoA) hydratases of several species, espe-
cially within a conserved domain that is characteristic of these
proteins. The encoded protein contains a C-terminal perox-
isomal targeting sequence that localizes to the peroxisome.
Its rat ortholog is a delta3,5-delta2,4-dienoyl-CoA isomerase
that functions in the auxiliary step of the fatty acid beta-
oxidation pathway. This transcript was reported to be signif-
icantly upregulated in response to neuronal silencing in the
rat [27] but no linkage to AD or dementia has been reported
previously. HOXB7 is a member of the Antp homeobox
family and encodes a protein with a homeobox DNA-binding
domain. It is included in a cluster of homeobox B genes
located on chromosome 17. The encoded nuclear protein
functions as a sequence-specific transcription factor that is
involved in cell proliferation and differentiation. HOXB7 is
age-repressed in mesenchymal stromal cells and conversely
age-induced in hematopoietic progenitor cells [28]. ERBB2
is a member of a family of single-transmembrane receptor
tyrosine kinases called ERBB and plays the main role in
mediating Neuregulin-1 (NRGI) function [29, 30]. NRGl par-
ticipates in numerous neurodevelopmental processes and is
implicated in nerve cell differentiation and synapse formation
[31, 32], radial glia formation and neuronal migration [33, 34],
oligodendrocyte development and axon myelination [35, 36],
axon navigation [37], and neurite outgrowth [38, 39].

Our findings suggest that the combined expression levels
of ECHI, HOXB7, and ERBB2 have good potential to be an
indicator of AD pathology. ECH1 and HOXB7 are expressed
in almost all tissues and are enriched in the central nervous
system, while ERBB2 is absent from many tissues and is not
detected in the central nervous system (http://www.protein-
atlas.org/). Whether these proteins can pass the blood brain
barrier is yet to be investigated.

We note that our approach is different from the recursive
feature elimination (RFE) method, which searches features
starting from the sorted full feature space and eliminates
features by a certain number or proportion in each iteration
[15]. In contrast, our approach searches features by including
important and informative features in each iteration. Such
methods are greedy and may achieve global solutions but are
computationally expensive. To overcome this, we restricted
our method to include just one feature in each iteration
and terminated the searching when the improvement of
prediction model caused by including a new feature was less
than a predefined threshold (zero in the study).

5. Conclusions

The inclusion of existing biological knowledge and use of a
novel feature selection method have allowed us to find three
protein models that have a promising ability to distinguish
AD patients from healthy individuals. We also find a new
statistical pattern involving both upper and lower bounds to
expression of proteins in our models. The reproducibility of
these findings needs now to be tested in larger cohorts.
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