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The neuritic plaque facilitates pathological
conversion of tau in an Alzheimer’s disease
mouse model
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A central question in Alzheimer’s Disease (AD) is whether the neuritic plaque is necessary

and sufficient for the development of tau pathology. Hyperphosphorylation of tau is found

within dystrophic neurites surrounding b-amyloid deposits in AD mouse models but the

pathological conversion of tau is absent. Likewise, expression of a human tau repeat domain

in mice is insufficient to drive the pathological conversion of tau. Here we developed an

Ab-amyloidosis mouse model that expresses the human tau repeat domain and show that in

these mice, the neuritic plaque facilitates the pathological conversion of wild-type tau. We

show that this tau fragment seeds the neuritic plaque-dependent pathological conversion of

wild-type tau that spreads from the cortex and hippocampus to the brain stem.

These results establish that in addition to the neuritic plaque, a second determinant is

required to drive the conversion of wild-type tau.
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A
lzheimer’s disease (AD), the most common cause of
dementia, is pathologically characterized by the
accumulation of neuritic plaques and neurofibrillary

tangles (NFT), with widespread gliosis, loss of synapses and
degeneration of neurons1,2. The core of neuritic plaques consists
of extracellular deposits of Ab3 surrounded by astrocytes and
microglia. The NFT is comprised of intracellular paired helical
filaments derived from hyperphosphorylated microtubule binding
protein, tau4,5. Genetic studies of early-onset familial AD (fAD),
which accounts for 5–10% of cases of AD6,7, have fuelled the
notion that abnormal accumulation of Ab in the brain would
trigger the aggregation of tau leading to neurodegeneration and
dementia2,8. While previous studies showed that accumulation of
Ab could facilitate tau aggregation in FTDP-17 linked mutant
Tau mice9–13, no such evidence have been demonstrated using a
non-mutant tau model. Furthermore, it is not known whether the
neuritic plaque is necessary and sufficient to drive the conversion
of wild-type tau. In contrast to mutations in APP and Presenilins
linked to fAD14,15, genetic risk alleles, including ApoE16–19

and Trem2 (refs 20,21), are associated with late-onset AD
(LOAD), which constitutes B90% of AD cases. The notion that
accumulation of Ab is not sufficient to drive cognitive decline in
LOAD is strongly supported by the following: a high Ab burden
is found in brains of some elderly in their eighties or nineties
who remain cognitively normal22–24; and there is no correlation
of Ab plaques with cognition in LOAD25. In contrast, the
aggregation of tau correlates with cognitive decline and is thought
to drive neurodegeneration in AD26,27. This raises the intriguing
notion that in addition to the Ab burden, other risk factors
help provoke the pathological conversion of tau to drive neuron
loss and cognitive decline in LOAD. Resolution of this question
will impact our view regarding disease mechanisms and
identification of targets, and validate and test novel therapeutic
strategies for LOAD.

Animal model systems have been instrumental in clarifying the
molecular mechanisms and testing therapeutic strategies for
AD28–33. Notwithstanding advances made using current
rodent models10,34–40, a major limitation in the field is the lack
of a rodent model that faithfully reproduce the tau pathology seen
in humans with AD. Because no mutation in the tau gene has
been identified in fAD or LOAD patients and expression of
human wild-type tau failed to elicit tau pathology41, current
mouse models of tau pathology are primarily based on transgenes
expressing tau mutants linked to FTDP-17 (refs 9–11,35–37,42).
However, this raises major concerns regarding their relevance
to the disease context. It is well recognized that the tau
pathology occurring in AD invariably depends on the
conversion of the wild-type tau, a prion strain that is distinct
from other human tauopathies such as that associated with
FTDP-17 (ref. 43). Moreover, the tau pathology occurring in
these FTDP-17-linked tau models is sufficient to drive cell death
independent of Ab plaques44, supporting the view that these mice
may be good models of FTDP-17, but not of AD. To address this
critical unmet need, we developed a mouse model in which
wild-type tau is converted into pathological tau aggregates and
NFT that are propagated through neuronal circuits to drive
neuron loss in a neuritic plaque-dependent manner. Our results
offer novel mechanistic insight for the pathogenesis of AD.

Results
Neuritic plaque is not sufficient for the conversion of tau.
Although it is well recognized that endogenous tau can be hyper-
phosphorylated in mouse models of b-amyloidosis40, whether
the neuritic plaque is necessary and sufficient to facilitate the
pathological conversion of wild-type tau is not known. To

address this issue, we examined first the biochemical alterations
of endogenous tau occurring in APPswe;PS1DE9 mice
(a well-established mouse model of b-amyloidosis) during aging.
Correlated with the presence of neuritic plaques was
hyperphosphorylation of tau occurring within dystrophic neurites
(Fig. 1a). The hyperphosphorylated tau was seen surrounding the
central Ab core but never co-localized with it (Fig. 1b);
while closely associated, there is no direct physical interaction
between the central Ab core and the hyperphosphorylated tau.
Moreover, the hyperphosphorylated tau was localized adjacent to
ubiquitinated proteins within dystrophic neurites (Fig. 1c).
Because tau was not hyperphosphorylated before the formation
of neuritic plaques and its biochemical alteration persisted
during aging (Fig. 1d,e), we infer that the neuritic plaque serves
as the crucible that facilitates the hyperphosphorylation of tau.
However, this persistent neuritic plaque-dependent biochemical
alteration of tau failed to convert to tangle-like aggregates even in
aged APPswe;PS1DE9 mice that were beyond 24 months as
judged by Gallyas preparation (Fig. 1f), a silver stain method for
detecting conformational changes in tau. While the neuritic plaque
is capable of stimulating the phosphorylation of tau, it is not
sufficient to alter the conformation of tau to form tangles and drive
the loss of neurons.

Tau repeat domain is insufficient for the conversion of tau. The
insufficiency of the neuritic plaque to drive the pathological
conversion of tau suggested that a second-risk determinant may be
required. That accumulating evidence indicated that other types of
tau modification, such as fragmentation45 or acetylation46,47,
facilitate its aggregation encouraged us to determine whether a tau
repeat domain could facilitate the pathological conversion of
wild-type tau. We used the moPrP-tet vector48 to express a human
four-repeat domain of tau (Q244-E372, TauRD) in the nervous
system of mice under the control of the tetracycline transactivator
(tTA) (Fig. 2a). From multiple lines, we selected for subsequent
studies one Tau4R line, which accumulated the human tau
fragment to B1.1-fold of endogenous tau (Fig. 2b, Supplementary
Fig. 1). No difference can be detected in the overall structure
and weight of brains of Tau4R mice even at 25 months of age
(Fig. 2c, third column). Histological analysis confirmed no
evidence of activation of astrocytes/microglia or neuronal loss in
Tau4R mice (Fig. 2d, third column). We also failed to observe
hyperphosphorylation of tau or formation of tau tangle (Fig. 3a,b,
forth column), indicating that the tau repeat domain alone is
insufficient to drive the pathological conversion of wild-type tau.

Tau fragment seeds neuritic plaque-dependent tau conversion.
Although the human tau repeat domain was not sufficient to alter
the conformation of endogenous tau, we asked whether such
fragmentation of tau could serve as the second-risk determinant
in the presence of neuritic plaques to drive tau pathology. To
address this question, we crossbred Tau4R mice with APPswe;
PS1DE9 mice49 to generate compound Tau4R;APPswe;PS1DE9
(Tau4R-AP) mice. Tau4R-AP mice exhibited marked forebrain
atrophy (Fig. 2c) with significant neuronal loss in dentate gyrus
or CA1 region of the hippocampus, respectively, at 18 (Fig. 2e)
or 20 (Fig. 2f) month of age; the loss of neurons in the cortex
and hippocampus is associated with the accumulation of
phosphorylated tau and NFT (Fig. 3a,b). Taken together
with our finding that the neuritic plaque is required for
the phosphorylation of tau, these results indicate that the
fragmentation of tau could seed the neuritic plaque-dependent
pathological conversion of wild-type tau.

To access the evolution of tau tangles in Tau4R-AP mice, we
performed a time series focusing on the pattern of distribution of
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mouse tau aggregates. Whereas tau aggregates were undetectable
before 1 year of age, they were first detected in hippocampus and
cortical regions by 15 months of age and significantly increased

by 18 months of age (Fig. 3a). By 2 years, tau tangles were readily
observed throughout the whole brain except the cerebellum
(Fig. 3a), suggesting that the tau tangle initiated from the frontal
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Figure 1 | Neuritic plaques stimulate the phosphorylation of tau. (a) Brain sections of APPswe;PS1DE9 mice (n¼ 7) were detected by antibodies specific to

Ab (6E10), ubiquitin, Microtubule-associated protein 2 (Map2), neurofilament (Smi31, Smi312, and NF-H), and antibodies specific to phosphorylated tau:

CP13 and PHF-1, Tau pT231, Tau pS262, Tau pS396, and Tau-pS422. Note the accumulation of phosphorylated tau surrounding the neuritic plaques. Scale

bar, 50mm. (b) Confocal microscopic analysis of Ab and tau in cortex of APPswe;PS1DE9 mice (n¼ 6). Brain sections co-stained with antiserums specific to:

Ab (6E10) and tau (pS262) (upper panel); or Ab (6E10) and tau (pS422) (lower panel). Scale bar, 50mm. (c) Confocal microscopic analysis of Ubiquitin

and tau in cortex of APP;PS1DE9 mice (n¼6). Brain sections co-stained with antiserums specific to: Ubiquitin and tau (CP13) (upper panel); or Ubiquitin

and PHF-1 (lower panel). Scale bar, 50mm. (d) Accumulation of phosphorylated tau in dystrophic neurites surrounding the central Ab core in 6-month-old

APPswe;PS1DE9 mice (n¼ 9) as detected by antibodies specific to Ab (6E10) and phosphorylated tau (pS422). Scale bar, 100mm. (e) Accumulation of

phosphorylated tau in dystrophic neurites surrounding the central Ab core in 12-month-old APPswe;PS1DE9 mice (n¼ 11) as detected by antibodies specific

to Ab (6E10) and phosphorylated tau (pS422). Scale bar, 100mm. (f) No Gallyas positive tau tangle was detected around the Ab core of neuritic plaques

(Congo red, arrows) in APPswe;PS1DE9 mice (n¼9), even up to 24 months. Scale bar, 25 mm.
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area is able to spread to the rest of the brain through neuronal
circuits. Because the pattern and intensity of Gallyas stain
paralleled (Fig. 3a) those of the immunocytochemical staining of
misfolded mouse tau (Fig. 3b), these tau tangles would be
principally derived from the endogenous tau, especially in the
brain stem and midbrain where the human tau fragment was not
expressed. These findings indicate that while neither the neuritic
plaque nor the human tau repeat domain is sufficient to drive the
pathological conversion of wild-type tau, they both are required
for the seeding and aggregation of the tau repeat domain, which
facilitate the pathological conversion of mouse wild-type tau that
spread from the cortex and hippocampus to the brain stem.

Neuritic plaque is necessary for the conversion of tau. To test
directly whether the neuritic plaque is required for the patholo-
gical conversion of wild-type tau, we took advantage of the gender
difference in onset of neuritic plaques occurring in APPswe;
PS1DE9 mice; onset for females or males was, respectively, at 4 or
6 months of age (Fig. 4). We would anticipate that if formation of
the neuritic plaque precedes tau pathology, the pathological
conversion of wild-type tau should be accelerated; otherwise, no
such effect would be expected. For such a test, a mouse model in
which the onset of tau pathology occurred after the onset of
neuritic plaque in female APPswe;PS1DE9 mice, but similar to that
of males, would be necessary. We therefore generated mice
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Figure 2 | Neuritic plaque is required for the pathological conversion of tau. (a) Diagram depicting the expression construct of four-repeat domain of tau

(TauRD). The top diagram represents the longest isoform of the human tau40 (441 residues). The bottom diagram shows the construct containing four-repeat

domain of tau with (TauRD). (b) Protein blot using 77G7 antibody that recognized the repeat domain of tau showed the presence of exogenous (B16 kDa)

TauRD and endogenous tau protein from brain lysates of tau transgenic (Tau4R) mice (n¼ 5). The expression level of tau in Tau4R mice is similar to that of

non-transgenic mice. (c) Immunohistochemical analysis of brains of 20-month-old nTG (n¼ 5), TTA (n¼4), Tau4R (n¼ 6) and Tau4R-AP mice (n¼ 5) using

antiserum specific to NeuN to detect neurons; sagittal sections of brains (upper panels; scale bar, 1,000mm) and hippocampi (lower panels; scale bar,

200mm). Note forebrain atrophy and reduction of neurons in the cortical and hippocampal area of Tau4R-AP mice. (d) Immunohistochemical analysis using

antiserum specific to Ab (6E10), microglia (IBA1) and reactive astrocytes (GFAP). Scale bar, 50mm. Immunohistochemial analysis of brains of nTG (n¼ 5),

TTA (n¼4), Tau4R (n¼6) and Tau4R-AP mice (n¼ 5) using antiserum specific to Ab (6E10), microglial (IBA1) and reactive astrocytes (GFAP). Note increase

of microglial and hypertrophic GFAP positive astrocytes in cortex of 20-month-old Tau4R-AP mice. Scale bar, 50mm. (e) Neuronal cell count of dentate gyrus

region from 18 months old TTA (n¼ 5), AP (n¼ 5), Tau4R (n¼ 5), Tau4R-AP (n¼ 5) mice using ImageJ analysis. (one-way analysis of variance (ANOVA),

**P¼0.0002) (f) Neuronal cell count of CA1 regions from 20 months old TTA (n¼4), AP (n¼ 6), Tau4R (n¼ 6), Tau4R-AP (n¼ 5) mice using ImageJ

analysis. (one-way ANOVA, *P¼0.0134).
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expressing the four-repeat domain of tau (Q244-E372) harbour-
ing a pro-aggregation DK280 mutation (Tau4RDK), previously
shown to induce tau pathology in mice50. From multiple lines, we
selected one line of Tau4RDK, in which the exogenous tau
fragments accumulated to 0.7-fold of endogenous tau (Fig. 5a,
Supplementary Fig. 1). Brains of Tau4RDK mice showed a
progressive and marked atrophy of their forebrains (Fig. 5b)
accompanied over time by a decline in the weight of brains
(Fig. 5c). Histopathological analysis confirmed a marked decrease
in size of the hippocampus (Fig. 5d,e) and cortex (Fig. 5e) and a
marked reduction in the number of neurons by 12 months of age

(Fig. 5f). Tau tangles first appeared at 6 months of age (Fig. 5g,
upper panel), which were dramatically increased by 12 months
(Fig. 5g) and except for the cerebellum, spread throughout the
brain (Fig. 5g, lower panel) by 18 months. Moreover, aggregations
derived from the endogenous wild-type tau exhibited a similar
pattern (Fig. 5i), including the midbrain and brain stem.
However, the presence of the human tau fragment was
restricted to frontal area of the brain (Fig. 5h, Supplementary
Fig. 2), suggesting that the exogenous tau fragment serves as a
seed to convert the wild-type tau to tangles, which spread in a
prion mechanism to other regions of the brain.
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Figure 3 | Age-dependent spreading of endogenous tau aggregates in brain regions of Tau4R-AP mice. (a) Gallyas-Braak silver staining of tau tangles in

brain sections of Tau4R-AP mice at 12 (n¼ 3), 18 (n¼4), and 25 months of age (n¼6). The sections were counterstained with fast red. The right panels are

Tau4R mice at 25 months of age (n¼6). The brain regions are cerebral cortex (CT); hippocampus (HP); olfactory bulb (OB); striatum (STR); thalamus

(TH); hypothalamus (HY); midbrain (MB); Pons; Medulla (MY), and cerebellum (CB). Tau tangles could be detected in Tau4R-AP, but not Tau4R, mice at 18

months of ages, and the accumulation of tangles were dramatically increased with aging and spread to other brain regions (25 months of age, third

column), except in cerebellum (bottom panel). Scale bar, 50mm. (b) Immunohistochemical analysis showed age-dependent spreading of endogenous tau

tangle in Tau4R-AP mice (n¼ 13) using antibodies specific to endogenous phosphorylated S422 of tau (pS422). The brain regions are cerebral cortex

(CT); hippocampus (HP); olfactory bulb (OB); striatum (STR); thalamus (TH); hypothalamus (HY); midbrain (MB); Pons; Medulla (MY), and cerebellum

(CB). While no signal was detected in Tau4R mice (n¼ 6) even at 25 months of age, tau tangles first appeared in cortical and hippocampal region (18

months of age, second column) of Tau4R-AP mice and spread to other brain region with aging (25 months of age, third column), except in cerebellum

(bottom panel). Scale bar, 50mm.
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Because the onset of tau pathology in Tau4RDK mice occurs
after the onset of neuritic plaque formation in the female
APPswe;PS1DE9 mice (B4 months of age, Fig. 4a), but earlier or
at the same time as that of males (B6 months of age, Fig. 4b), we
took advantage of this sex difference to determine whether
neuritic plaques could accelerate the conversion of wild-type tau
to tangles. We crossbred Tau4RDK mice with APPswe;PS1DE9
mice49 to generate compound Tau4RDK;APPswe;PS1DE9
(Tau4RDK-AP) mice. The expression level of exogenous tau in
Tau4RDK-AP mice was comparable to that of the Tau4RDK mice
(Fig. 6a, Supplementary Fig. 3), indicating that the Ab burden did
not influence the expression of tau. Compared with female
APPswe;PS1DE9 mice, the amount of Ab deposit in 6-month-old
female Tau4RDK-AP mice remained unchanged (Fig. 6c).
As expected, we observed marked increase in accumulation of
phosphorylated tau in female Tau4RDK-AP mice by 6 months of
age (Fig. 6d). By 9 months of age, female Tau4RDK-AP mice
exhibited marked reduction in brain size (Fig. 6b) accompanied
by widespread Ab and tau pathologies (Fig. 6e,f). Histological
analysis confirmed accelerated atrophy of forebrains in 9-month-
old female Tau4RDK-AP mice(Fig. 7a,b); specifically, sizes of
hippocampus and cortex were significantly reduced (Fig. 7c,d).
As expected, the cerebellum (Fig. 7e) of these Tau4RDK-AP mice
remained normal as tau pathology was absent in this region.
To determine the impact of neuritic plaques, we examined
neuron loss in brains of 9 month-old female Tau4RDK-AP
mice (Fig. 7f). As expected, marked reduction in number of
neurons was observed in the cortical and hippocampal area of
9-month-old female Tau4RDK-AP, but not female Tau4RDK
mice (Fig. 7g,h). An 80% and 25% reduction, respectively, in
number of neurons were observed in CA1 (Fig. 7g) as well as CA2
and CA3 regions (Fig. 7h). Moreover, the development of
phosphorylated tau aggregates (Fig. 6g) and tau tangles (Fig. 6h)
was greatly accelerated in female Tau4RDK-AP mice. Using
Gallyas silver staining, we observed as early as 9 months of age
tau tangles that already spread to the brain stem of Tau4RDK-AP,
but not Tau4RDK, mice (Fig. 8a,c,d); tau tangles in Tau4RDK
mice were seen only at a later time point and by 12 months of age,
a greater tau burden was found throughout the brain of
Tau4RDK-AP mice (Fig. 8b,c,e). Hypertrophic GFAP positive
astrocytes were observed in cortical regions of Tau4RDK-AP, but
not Tau4RDK, mice (Fig. 7i), indicating that reactive astrogliosis
is correlated with the loss of neurons. These results indicate that
neuritic plaques accelerate the onset of tau aggregation.

However, tau pathology was not accelerated in male
Tau4RDK-AP mice as compared with that of Tau4RDK mice.

At 12 months of age, while marked acceleration of brain atrophy
was observed in female Tau4RDK-AP mice (Fig. 9a), no such
accelerated atrophy of forebrains occurred in male Tau4RDK-AP
mice (Fig. 9b). Histological analysis showed similar level of brain
atrophy (Fig. 9c) and neuronal loss in male Tau4RDK-AP as
compared with that of male Tau4RDK mice (Fig. 9d). No
significant changes in accumulation of Ab plaques (Fig. 9e) or
activated astrocytes (Fig. 9g) were observed in male Tau4RDK-AP
mice. The accumulation of tau aggregates was not significantly
altered in male Tau4RDK-AP mice as compared with that of male
Tau4RDK mice (Fig. 9f), indicating that neuritic plaques have
little effect on the rate of tau aggregation after its onset. Taken
together, these results establish that the neuritic plaque is required
for the pathological conversion of wild-type tau.

Discussion
Clarification of the key factors contributing to the pathological
conversion of wild-type tau, a prion strain or conformation that is
perhaps unique to AD43, could be instrumental for developing
effective therapy for this devastating disease of the elderly.
Our findings here establish that the neuritic plaque is required but
not sufficient to drive the pathological conversion of wild-type
tau. While previous effort primarily employed transgenes
expressing tau mutants linked to FTDP-17 (refs 9–11,35–37,42)
that are sufficient to aggregate independent of the neuritic plaque,
we developed a mouse model expressing human tau repeat
domain that is capable of inducing the pathological conversion of
mouse wild-type tau only in the presence of the neuritic plaque.
Our discovery provides a fundamental paradigm shift and a
framework towards identification of risk alleles/factors that play
essential roles in the pathological conversion of tau in AD.

On the basis of our discovery, we propose here a model
(Fig. 10) whereby the b-amyloid dependent formation of neuritic
plaque during aging provides the molecular environment to
facilitate the biochemical modification of tau within dystrophic
neurites. While the neuritic plaque is necessary, it is not sufficient
to convert the wild-type tau to a pathological conformation that
drives neurodegeneration with ensuing cognitive decline and
atrophy of the brain. In addition to the neuritic plaque, we
envision a second-risk determinant (here we illustrate with the
fragmentation of tau) would be required to drive the pathological
conversion of wild-type tau. Thus, we propose that a combination
of risk alleles/factors may facilitate the neuritic plaque-dependent
pathological conversion of the wild-type tau in LOAD.
Genetic studies has identified a series of risk alleles, in addition
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Figure 4 | Gender difference in onset of neuritic plaques in APPswe;PS1DE9 mice. (a) Brain sections of 4-month-old female (n¼ 5) APPswe;PS1DE9 mice

were detected by antibodies specific to Ab (6E10). Only a few can be detected in the female APPswe;PS1DE9 mice at 4 months of age. (b) Brain sections

of 6-month-old female (n¼6) and male (n¼4) APPswe;PS1DE9 mice were detected by antibodies specific to Ab (6E10). Wide spread neuritic plaques are

observed in female APPswe;PS1DE9 mice, while only a few can be detected in the male APPswe;PS1DE9 mice at 6 months of age. (c) Brain sections of

12-month-old female (n¼9) and male (n¼ 7) APPswe;PS1DE9 mice were detected by antibodies specific to Ab (6E10). Wide spread neuritic plaques are

observed in both male and female APPswe;PS1DE9 mice at this age.
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to ApoE4 allele, that are associated with LOAD51–54. That subsets
of individuals whose brains are littered with neuritic plaques
remain cognitive normal22–24 can be explained by our ‘two-hit’
hypothesis because they fail to harbour another risk allele that
is required to drive the conversion of tau. Moreover, our model
is also consistent with the long pre-symptomatic phase

seen in LOAD55,56 during which time neuritic plaques
accumulate because until the second-risk determinant is
activated, tau remains unconverted. Likewise, our model
predicts that cognitive decline in LOAD would be correlated
with tau pathology rather than with neuritic plaques because once
initiated, the tau aggregates are sufficient to propagate and spread
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Figure 5 | Pathological conversion of tau induced by a mutant tau repeat domain. (a) Protein blot using 77G7 antibody to detect exogenous (B16 kDa)

TauRDDK and endogenous tau protein from brain lysates of mutant tau transgenic (Tau4RDK) mice (n¼9). (b) Representative brains of nTG, TTA and
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Tau4RDK (n¼ 24) mice at different of ages. The brain weight of Tau4RDK mice is progressively reduced with aging. (one-way analysis of variance

(ANOVA), 9 M **P¼0.02; 12 M ***P¼0.0001; 15 M ***P¼0.0003; 20 M ***P¼0.0006). (d) Immunohistochemical analysis using antiserum specific to

NeuN: sagittal sections (upper panels; scale bar, 1,000mm) and hippocampi (lower panels; scale bar, 200mm) of 18-month-old Tau4RDK (n¼ 8) and

control mice (n¼ 15). (e) Sizes of cortical (CT), hippocampal (HP) and cerebellum (CB) regions in brains of Tau4RDK (n¼ 24) at various ages. Note

reduction of hippocampus and cortical region, but not cerebellum in Tau4RDK mice. (f) Neuronal cell count of CA1 (T-Test, ***P¼4.45E�09) and CA2&3

(T-Test, ***P¼0.00033) region from 12 months old TTA (n¼ 7), Tau4RDK (n¼ 7) mice using ImageJ analysis. (g) Gallyas-Braak silver staining of brain

sections of Tau4RDK mice at various ages. The sections were counterstained with fast red. The left panel is overview image of the sagittal section of brains

(Scale bar, 1,000mm). The middle and right panels are hippocampal (HP) and cortical regions (CT). (Scale bar, 25mm). Tau tangle could first be detected at

6 months of age, and the accumulation of tangles were dramatically increased while aging. (h) Total protein was extracted from different brain regions:

olfactory bulb (OB), cortex (CT), hippocampus (HP), striatum (STR), midbrain (MB), brain stem (BS), cerebellum (CE) of 9 months old TTA (n¼ 3) and

Tau4RDK (n¼ 3) mice. Human tau fragment (B16 kDa) detected using anti-human tau polyclonal antiserum KJ9A was only seen in frontal region, but not

in MB, BS or CE. (i) Immunohistochemial analysis of brains of 20 months old Tau4RDK mice (n¼ 5) by antibodies specific to phosphorylated endogenous

tau: PHF-1 (left panel), CP13 (middle panel), and tau-pS422 (right panel), respectively. Scale bar, 50 mm.
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throughout the brain via neuronal circuits and drive neuronal loss
with ensuing cognitive decline. Thus, we believe that the
pathogenesis of LOAD is a multifactorial problem initiated by
the age-dependent formation of the neuritic plaque and activation
of a variety of potential risk determinants to drive the
pathological conversion of tau (Fig. 10).

From a therapeutic perspective, our model first predicts that
therapies designed to prevent the conversion of tau would be
most beneficial because the presence of neuritic plaques, in the
absence of tau aggregates will not be sufficient to drive neuron

loss. Our novel mouse model exhibiting age- and neuritic
plaque-dependent tau pathology will now provide an invaluable
platform for testing a variety of risk alleles/factors that may be
relevant for the pathological conversion of tau. While a three-
dimensional human neural cell culture system displaying Ab and
tau pathologies57 is a very useful tool for in vitro drug screening,
our model exhibiting age-dependent development of neuritic
plaques and tau pathologies that drives the progressive loss of
neuron will be an essential in vivo tool for drug discovery
programs designed to attenuate neurodegeneration for LOAD.
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Figure 6 | Neuritic plaque-dependent acceleration of pathological conversion of tau induced by a mutant tau repeat domain. (a) Protein blot analysis of

tau and APP in brain lysates of 3 month-old female TTA (n¼ 6), tetO-tauRDDK (n¼6), AP (n¼ 3), TTA-AP (n¼ 7), Tau4RDK (n¼ 5), Tau4RDK-AP (n¼4)

and nTG (n¼ 7) mice using antisera K9JA and CT15. (b) Representative brains of 9 month-old female TTA, AP, TTA-AP, Tau4RDK, Tau4RDK-AP and nTG

mice. Note marked forebrain atrophy in Tau4RDK mice. (c) Immunostaining of brain sections of 6-month-old female TTA-AP (n¼ 7) and Tau4RDK-AP mice

(n¼ 5) with antibodies 6E10 specific to human Ab. Scale bars, 200 mm. (d) Immunostaining of 6 month-old female brain sections of Tau4RDK (n¼4), and

Tau4RDK-AP mice (n¼4) using antiserum tau-pS422. Scale bar, 50mm. (e) Ab plaques (arrows) and abundance of tau aggregates (arrowheads) were

observed in Tau4RDK-AP mice (n¼ 5) at 9 months of age by Thioflavin-T staining. Scale bar, 50mm. (f) Silver staining to detect Ab plaques (arrows) and

tau tangles (arrowheads) in brain of Tau4RDK-AP mice (n¼ 5). Scale bar, 50mm. (g) Immunostaining of brain sections of 9 month-old female Tau4RDK

(n¼ 5), and Tau4RDK-AP mice (n¼4) using tau-pS422. Scale bar, 100mm. (h) Gallyas-Braak silver staining of brain sections of female Tau4RDK-AP mice at

6 (top panel, n¼4), 9 (middle panel, n¼ 6) and 12 (bottom panel, n¼ 3) months of age (counterstained with fast red). The left panel: sagittal section

(Scale bar, 1,000mm); middle and right panel are hippocampal (HP) and cortical regions (CT), respectively (Scale bar, 25 mm).
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Second, our model predicts that anti-amyloid therapies directed
at early pre-symptomatic AD long before the pathological
conversion of tau would slow disease by delaying the onset of
tau pathology. In retrospect, perhaps it was not too surprising
that outcomes of clinical trials with anti-amyloid agents in
humans have been disappointing58–61 when delivered during a
time when the conversion of tau has already initiated. Finally, our
model predicts that a combinatorial therapy designed to prevent
both neuritic plaque formation as well as pathological conversion
of tau may provide optimal benefit for LOAD.

Methods
Generation of transgenic mice. To generate tau transgenic mice, DNA fragments
encoding wild-type and DK280 mutant four-repeat domains of tau (TauRD, that
is,Q244-E372) were subcloned into a previously characterized moPrP-tetP vector48,
which expresses the gene consistently in neurons under the control of tTA proteins.
The DNA was microinjected into C57BL/6 X SJL F2 mouse embryos (University of
Michigan transgenic facility) to produce transgenic mice carrying wild-type
(TetO-TauRD) or mutant (TetO-TauRDDK) Tau fragment with regulatory

element, moPrP-tetP promoter. Subsequently, these mice were crossbred with
CamKII-tTA mice to bring the Tau transgene under the control of tet-off CamKII
promoter62 (Tau4R and Tau4RDK mice).

Doxycycline hydrochloride, dissolved in water to final concentration of
20 mg ml� 1 and sterilized by filtration with 0.22 mm filter, was supplied in the
drinking water to suppress the exogenous Tau expression during early
development. During gestation and before weaning, the mice were raised in the
presence of 50mg ml� 1 doxycycline hydrochloride.

We crossbred CamKII-tTA;TetO-TauRD or CamKII-tTA;TetO-TauRDDK
mice with APPswe;PS1DE9 mice49 to generate APPswe;PS1DE9;CamKII-tTA;
TetO-TauRD (Tau4R-AP ) and APPswe;PS1DE9;CamKII-tTA;TetO-TauRDDK
(Tau4RDK-AP) mice that develop both Tau pathology and Ab amyloidosis; Tau4R
or Tau4RDK, CamKII-tTA (TTA), APPswe;PS1DE9;CamKII-tTA (TTA-AP),
APPswe;PS1DE9 (AP) and non-transgenic littermates were used as controls.
The brains of mice at various ages were collected, weighed and processed for
biochemical, histological and immunohistochemical analysis.

All mice were maintained under 12L:12D cycle in centralized animal housing
facility programme managed by Research Animal Resources (RAR) at the
Johns Hopkins University. All animal procedures were in strict accordance with the
National Institutes of Health Guide for the Care and Use of Laboratory
Animals and were approved by the Johns Hopkins University Animal Care and
Use Committee.
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Figure 7 | Acceleration of neuronal loss, astrocytosis and forebrain atrophy in Tau4RDK-AP mice. (a) Hematoxylin and eosin (H&E) staining of sagittal

sections of brains (upper panels; scale bar, 1,000mm) and hippocampi (lower panels; scale bar, 200 mm) of 9-month-old female TTA, APPswe;PS1DE9(AP),

TTA;APPswe;PS1DE9 (TTA-AP), Tau4RDK, Tau4RDK;APPswe;PS1DE9 (Tau4RDK-AP) and non-transgenic (nTG) mice. Note forebrain atrophy and reduction of

neurons in the cortical and hippocampal area of Tau4RDK-AP mice. (b) Cresyl violet (CV) staining of sagittal sections of brains (upper panels; scale bar,

1,000mm) and hippocampi (lower panels; scale bar, 200mm) of 9-month-old female TTA, APPswe;PS1DE9(AP), TTA;APPswe;PS1DE9 (TTA-AP), Tau4RDK,

Tau4RDK;APPswe;PS1DE9 (Tau4RDK-AP) and non-transgenic (nTG) mice. Note reduction of neurons in Tau4RDK-AP mice. (c–e) Sizes of hippocampal

(c), cortical (d) and cerebellum (e) regions in brains of 9 months old TTA (n¼ 6), AP (n¼ 7), TTA-AP (n¼ 6), Tau4RDK (n¼ 5), Tau4RDK-AP (n¼4) and

nTG (n¼ 15). Note reduction of hippocampus (one-way analysis of variance (ANOVA), **P¼0.00052) and cortical region (one-way ANOVA, *P¼0.014),

but not cerebellum in Tau4RDK-AP mice (f) Immunohistochemical analysis of brains of 9 months old APPswe;PS1DE9, TTA-AP, Tau4RDK and Tau4RDK-AP

mice using antiserum specific to NeuN to detect neurons; sagittal sections of brains (upper panels; scale bar, 1,000mm) and hippocampi (lower panels;

scale bar, 200mm). Note forebrain atrophy and reduction of neurons in the cortical and hippocampal area of Tau4RDK-AP mice. (g) Neuronal cell count of

CA1 region from 9 months old TTA (n¼ 5), TTA-AP (n¼6), Tau4RDK (n¼ 5), Tau4RDK-AP (n¼ 5) mice using ImageJ analysis. Note B80% reduction of

neurons in Tau4RDK-AP mice. (***, One-way ANOVA, P¼ 2.04E-06) (h) Neuronal cell count of CA2 and CA3 regions from 9 months old mice using

ImageJ analysis. Significant reduction (B20%) of neurons are observed of Tau4RDK-AP mice as compared with those of control mice. (one-way ANOVA,

*P¼0.0133) (i) Immunohistochemial analysis of brains of APPswe;PS1DE99, TTA-AP, Tau4RDK and Tau4RDK-AP mice at 9 months of age using antiserum

against GFAP: sagittal section (top panel, scale bar, 1,000mm); hippocampi (second panel, scale bar, 200 mm); cortex (third panel, scale bar, 200mm);

higher power views of cortex (fourth panel, scale bar, 50mm). Note hypertrophic GFAP positive astrocytes in cortex of Tau4RDK-AP mice.
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Immunoblots and antibodies. Immediately after killing, mouse brains were
dissected63 in the specific brain regions olfactory bulb, hippocampus, striatum,
cortex, midbrain, brain stem, cerebellum and the rest. Proteins of each region were
extracted with RIPA buffer (10 mM Tris-Cl (pH 8.0), 1 mM EDTA, 0.5 mM EGTA,
1% Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS and 140 mM NaCl)
containing 1� complete protease inhibitor cocktail (Roche, Indianapolis, IN).
The protein concentrations in the supernatants were determined by the BCA

method (Pierce Chemical Co., Rockford, IL) and equal amounts of protein lysates
(B20mg per lane) resolved on 4–12% Bis-Tris SDS–PAGE gels with MES running
buffer, then transferred to polyvinylidene difluoride (Invitrogen, Carlsbad, CA)
membranes, and probed with following antibodies: anti-human tau polyclonal
antiserum KJ9A (1:5,000; A0024, Dako Cooperation, Carpinteria, CA); Purified
anti-Tau 316–355 monoclonal antibody 77G7 (1:1,000; BioLegend, San Diego, CA);
rabbit anti-APP C-terminal (1:2,000; AB5352, Chemicon); monoclonal antibody
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Figure 8 | Acceleration of tau pathology in female Tau4RDK-AP mice. (a) Gallyas-Braak silver staining of brain sections of female Tau4RDK (n¼ 5) and

Tau4RDK-AP mice (n¼4) at 9 months of age (counterstained with fast red). Cerebral cortex (CT); hippocampus (HP); olfactory bulb (OB); striatum (STR);

thalamus (TH); hypothalamus (HY); midbrain (MB); Pons; Medulla (MY), and cerebellum (CB) were shown, respectively. While only sparse tau tangle was

detected in frontal area of the Tau4RDK mice, wide spread tau tangle and thread were observed in Tau4RDK-AP mice, including brain stem. (Scale bar,

25mm). (b) Gallyas-Braak silver staining of brain sections of female Tau4RDK (n¼4) and Tau4RDK-AP mice (n¼ 3) at 12 months of age (counterstained

with fast red). Cerebral cortex (CT); hippocampus (HP); olfactory bulb (OB); striatum (STR); thalamus (TH); hypothalamus (HY); midbrain (MB); Pons;

Medulla (MY), and cerebellum (CB) were shown, respectively. Note more tau tangles were detected in different brain regions of Tau4RDK-AP mice as

compare with that of Tau4RDK mice. (Scale bar, 25mm). (c) Semiquantificative score of tau tangle frequency in low power (200X) microscope field. Score

was indicated as: 0, no tangle; 1, 1–5 tangles per field; 2, 6–15 tangles per field; and 3, 415 tangles per field. (Scale bar, 100mm) (d) Score of tau tangle

frequency in different brain regions of 9 months old female Tau4RDK (n¼ 5) and Tau4RDK-AP (n¼4) mice. Cerebral cortex (CT; T-Test, ***P¼0.0006);

hippocampus (HP; T-Test, ***P¼0.0007); olfactory bulb (OB); striatum (STR; T-Test, ***P¼0.0003); thalamus (TH; T-Test, ***P¼0.0007); hypothalamus

(HY; T-Test, ***P¼0.0001); midbrain (MB; T-Test, ***P¼0.0001); Pons(T-Test, *P¼0.01); Medulla (MY; T-Test, ***P¼0.0007), and cerebellum (CB)

were shown. While tau tangles were only detected in frontal region in Tau4RDK mice, widespread tau tangles were observed in whole brain of Tau4RDK-AP

mice, including brain stem. (e) Score of tau tangle frequency in different brain regions of 12 months old female Tau4RDK (n¼4) and Tau4RDK-AP (n¼ 3)

mice. CT; HP; OB (T-Test, **P¼0.002); STR; TH; HY; MB, (T-Test, *P¼0.045); Pons; MY, and CB region were shown. Note more frequent tau tangles

detected in different regions of Tau4RDK-AP mice compared with that of Tau4RDK mice, especially in olfactory bulb and brain stem.
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against synaptophysin (1:1,000; AB8049, Abcam, Cambridge, MA); rabbit
anti-GAPDH antiserum (1:5,000; G9545, Sigma); and monoclonal anti-b-tubulin
III antiserum (1:10,000; T2200, Sigma). Immunoblots were developed using
enhanced chemiluminescence method (Millipore Corp., MA).

Histology and immunohistochemical analysis. For the histological and
immunohistochemical analysis mice were anaesthetised and killed by decapitation
at different ages64; brains were removed and weighed. Hemibrains were fixed by
submerging into 4% paraformaldehyde (PFA) in PBS, embedded into the paraffin,

sectioned in sagittal plane and processed. For histological analyses, 10 mm brain
sections were stained with hematoxylin and eosin or Cresyl violet. Hirano silver
stain utilized Hirano’s modification of the Bielschowsky method65,66. Briefly,
200 ml of ammonium hydroxide were evaporated under vacuum for 30 min.
Sections were deparaffinized for 10 min and placed in 20% sliver solution for
30 min. After a rinse in dH2O, slides were transferred to ammoniacal solution
(200 ml 20% silver nitrate solution with drops of evaporated ammonium
hydroxide) for 15 min. Slides were washed in dH2O with four drops of ammonium
hydroxide, transferred to ammoniacal solutions with three drops of developer,
rinsed in dH2O and fixed in 1% sodium thiosulfate for 1 min. Finally the slides
were washed with dH2O, dehydrated, cleared and mounted.

Gallyas silver staining was modified from Braak67 and performed as follows.
Slides were deparaffinized and dipped in 5% periodic acid. After a brief wash with
water, the slides were incubated for 1 min in silver iodide solution (290 ml dH2O,
12 g sodium hydroxide, 30 g potassium iodide, 10 ml 1%silver nitrate). After a wash
in 0.5% acetic acid (2� 5 min), slides were rinsed with dH2O and developed for
10–20 min in physical developer solution. After a 5 min wash in 0.5% acetic acid
and dH2O, slides were incubated in 0.1% gold chloride for 5 min. Next, the slides
were rinsed in dH2O and fixed in 1% sodium thiosulfate for 5 min. For
counterstaining, the slides were dipped in 0.1% nuclear fast red for 2 min before
getting washed in tap water, dehydrated and mounted.

The Congo Red stain was performed as followed. Slides were deparaffinized,
stained in congo red solution (50 ml 80% alcohol, 0.15 g Congo red, 0.15 g sodium
chloride, 0.5 ml 1% sodium hydroxide) for 10 min and rinsed in dH2O. The stain
was differentiated by dipping the slides 5–10 times in alkaline alcohol solution
(100 ml 50% alcohol, 1 ml 1% sodium hydroxide), rinsed in water, dehydrated and
mounted.

For the Thioflavin-T staining slides were deparaffinized and hydrated. Slides
were incubated in 0.25% potassium permanganate solution for 5 min, transferred to
1% potassium-diulfate and oxcalic acid for 5 min and incubated in 0.02%
Thioflavin-T for 8 min. Slides were dehydrated and mounted with aqueous
mounting medium for fluorescence.

The area size of hippocampus, cortex and cerebellum in sagittal sections at
2 mm from the midline of the brains were measured by the ImageJ program.
Semiquntitative score of Tau tangles was evaluated in low power (� 200)
microscope field as described previously68. Score was indicated as: 0, no tangle; 1,
1–5 tangles per field; 2, 6–15 tangles per field; and 3, 415 tangles per field.

For immunohistochemical analysis, antigen retrieval was performed with
10 mM citrate buffer (pH 6.0) for an efficient epitope exposure to the antibodies;
endogenous peroxidase was quenched by treating the paraffin sections with 0.3%
H2O2; and nonspecific binding of antibodies was eliminated using blocking buffer
(10% normal goat serum in PBS with 0.3% Triton-X) for 1 h at room temperature.
The primary antibody prepared in blocking buffer was applied for overnight at
4 oC, followed by a secondary antibody for 30 min incubation at room temperature.
For the secondary antibody and avidin-biotinylated peroxidase system, we used the
Vectastain Universal Elite ABC kit (Vector Laboratories). Brain sections were
stained with: antiserum against Ab peptides 6E10 (1:1,000; SIG-39300, Covance);
antiserum against pan-tau antibody K9JA (1:1,000; A0024, Dako Cooperation,
Carpinteria, CA); mouse monoclonal antiserum against phosphorylated tau CP13
(1:1,000; Tau pS202) and PHF-1 (1:1,000, Tau pS396/S404) (gifts of P. Davis,
Albert Einstein College of Medicine); rabbit antiserum against phosphorylated
T231(1:1,000; 44746G, Invitrogen, Carlsbad, CA), phosphorylated S262
(1:1,000; 44705G, Invitrogen, Carlsbad, CA) phosphorylated S396 (1:1,000; 44752,
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Figure 9 | Acceleration of onset of tau pathology is dependent on the

Neuritic plaque. (a) Brain weight of 12-month-old female nTG (n¼ 11), AP

(n¼ 9), TTA (n¼ 7), TTA-AP (n¼ 7), Tau4RDK (n¼ 5) and Tau4RDK-AP

(n¼4) mice. The brain weight of Tau4RDK-AP mice is 25% smaller than

that of the Tau4RDK mice at 12 month of age. (one-way analysis of variance,

**P¼0.002). (b) Brain weight of 12 month-old male nTG (n¼ 11), AP

(n¼ 6), TTA (n¼6), TTA-AP (n¼ 7), Tau4RDK (n¼ 5) and Tau4RDK-AP

(n¼ 5) mice. No significant difference in brain weight is detected between

the male Tau4RDK-AP and Tau4RDK mice at 12 month of age. (c) CV

staining of brain sections of 11-month-old male TTA-AP, Tau4RDK and

Tau4RDK-AP mice brains (upper panels; scale bar, 1,000mm; and

hippocampi, lower panels; scale bar, 200mm). (d) Neuronal cell count of

CA1, and CA2&3 region from 11 months old male Tau4RDK (n¼ 6) and

Tau4RDK-AP (n¼4) mice. No significant difference was observed between

the two mouse lines. (e) Immunostaining of brain sections of 11-month-old

male TTA-AP (n¼ 5), Tau4RDK (n¼ 5) and Tau4RDK-AP mice (n¼4)

with antibodies (6E10) specific to human Ab. Scale bars, 200mm. (f)

Immunostaining of brain sections of 11 month-old male TTA-AP (n¼ 5),

Tau4RDK (n¼ 5), and Tau4RDK-AP (n¼4) mice using tau-pS422. Scale bar,

100 mm. (g) Immunostaining of brain sections of 11-month-old TTA-AP

(n¼ 5), Tau4RDK (n¼ 5) and Tau4RDK-AP (n¼4) mice with antibodies

specific to GFAP. Scale bars, 200mm.
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Invitrogen, Carlsbad, CA) and S422 of tau (1:2,000; 44764G, Invitrogen, Carlsbad,
CA); ubiquitin, Microtubule-associated protein 2 (Map2, 1:1,000; AB5622,
Millipore), phosphorylated neurofilament (Smi31, 1:1,000; BioLegend, San Diego,
CA), neurofilaments in axons (Smi312, 1:1,000; BioLegend, San Diego, CA),
Neurofilament triplet H protein (NF-H; 1:1,000, Sigma, Saint Louis, MO, USA),
polyclonal antiserum against GFAP (Z0334, Dako Cooperation, Carpinteria, CA);
polyclonal antiserum against microglial (IBA1, CP290, Biocare Medical, CA),
and monoclonal antibody against NeuN (MAB377, Millipore). Sections for
immunofluorescence were examined under a Zeiss LSM 510 laser scanning
fluorescence confocal microscope. Z-stack projections were made from serial
scanning every 1 mm to reconstruct the Ab plaques.

Data analysis. All data were analysed statistically by unpaired Student’s two-tailed
t-test or one-way analysis of variance with Tukey’s correction for multiple
comparisons using GraphPad Prism version 6.0 f for Mac, GraphPad Software,
La Jolla, CA, USA. In all tests, values of Po0.05 were considered to indicate
significance.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or
from the authors on request.
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