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Abstract
Improvements in screening and preventive measures 
have led to an increased detection of early stage 
colorectal cancers (CRC) where patients undergo 
treatment with a curative intent. Despite these efforts, 
a high proportion of patients are diagnosed with 
advanced stage disease that is associated with poor 
outcomes, as CRC remains one of the leading causes of 
cancer-related deaths in the world. The development 
of next generation sequencing and collaborative multi-
institutional efforts to characterize the cancer genome 
has afforded us with a comprehensive assessment of 
the genomic makeup present in CRC. This knowledge 
has translated into understanding the prognostic role 
of various tumor somatic variants in this disease. 
Additionally, the awareness of the genomic alterations 
present in CRC has resulted in an improvement in 
patient outcomes, largely due to better selection of 
personalized therapies based on an individual’s tumor 
genomic makeup. The benefit of various treatments 
is often limited, where recent studies assessing 
the genomic diversity in CRC have identified the 
development of secondary tumor somatic variants that 
likely contribute to acquired treatment resistance. These 
studies have begun to alter the landscape of treatment 
for CRC that include investigating novel targeted 
therapies, assessing the role of immunotherapy and 
prospective, dynamic assessment of changes in tumor 
genomic alterations that occur during the treatment of 
CRC. 
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Core tip: Tumor somatic variants have a prognostic role, 
in addition to treatment selection in patients with solid 
tumor malignancies, including colorectal cancer (CRC). 
The application of this knowledge in the development 
of novel, targeted therapies has resulted in improved 
patient outcomes in this disease. Our objective is to 
provide an overview of the genomic alterations present 
in CRC and its role in treatment implications, in addition 
to providing an overview of ongoing and future clinical 
trials.
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INTRODUCTION
Colorectal cancer (CRC) is the fourth most common 
cancer in the world, leading to more than 500000 
deaths annually[1,2]. An increased awareness of the 
genomic makeup of CRC has allowed us to understand 
the prognostic role of certain tumor genomic al
terations. This knowledge and its incorporation into 
the treatment of metastatic CRC has translated to 
significant improvements in patient outcomes, where 
patients’ median overall survival has approached 
3 years[35]. The incorporation of our knowledge 
about the genomic landscape of CRC into treatment 
decisions with selected targeted agents has led to an 
improvement in patient outcomes. With this increased 
understanding, clinical trials are now being designed to 
assign treatment selection with novel therapies based 
upon identified specific tumor somatic variants in each 
individual. Herein we review the genomic landscape 
of CRC, its current role in treatment selection, and its 
integration in ongoing and future studies.

GENOMIC ALTERATIONS IN 
DOWNSTREAM SIGNALING PATHWAYS 
IN CRC
RAS Mutations in CRC
The Kirsten Ras (KRAS) oncogene encodes for a 
guanosine triphosphate (GTP)/guanosine diphosphate 
binding protein downstream of the extracellular 
epidermal growth factor receptor in the RAS/RAF/
MAPK signaling pathway. Activating KRAS exon 2 
mutations occur in up to 45% of all CRC, and are 
involved in initiation, proliferation and progression of 
CRC[610]. While initial studies suggested a possible 
clinical benefit from antiepidermal growth factor 
receptor (EGFR) therapy for patients whose tumors 

express KRAS codon 13 (G13D) mutations, a meta
analysis comprised of several large phase Ⅲ trials 
failed to demonstrate benefit from panitumumab, 
an antiEGFR monoclonal antibody, in CRC patients 
whose tumor harbored a KRAS codon 13 mutation[11]. 
In addition to KRAS exon 2, an approximate additional 
10% of patients with other RAS mutations have been 
identified in CRC, including NRAS or nonexon 2 KRAS 
mutations[6]. In patients who exhibited activating 
nonexon 2 KRAS and NRAS mutations, an absence 
of clinical benefit, and perhaps a negative effect, 
was seen from the addition of antiEGFR therapy in 
combination with several chemotherapy regimens in 
various treatment settings[6,12,13]. On this basis, anti
EGFR therapy should not be given to any patient with 
CRC exhibiting a RAS mutation.

While mutations in RAS as a predictive biomarker 
to antiEGFR therapy has been recognized, its 
relevance as a therapeutic target is unknown. Given 
the high incidence of RAS in CRC and its importance 
as an oncogene, targeting RAS represents an ideal 
and promising strategy. Developing strategies to 
directly block oncogenic RAS activity has remained 
a challenge due to several factors, including the 
high binding affinity of the oncoprotein to the GTP
bound “on” state, as well as the lack of accessibility 
to active sites within KRAS to bind[14]. One alternative 
approach includes targeting pathways and its effectors 
downstream of RAS. The clinical benefit from targeting 
single pathways is often limited due to mechanisms of 
resistance including communication between signaling 
pathways and its resulting downstream effector 
activation and inhibition through a feedback loop 
mechanism[15,16]. Alternatively, secondary treatment 
resistance to antiEGFR treatment may result from 
the development of RAS mutations during a course of 
anti-EGFR therapy. Several studies have demonstrated 
up to 96% of patients who initially had RAS and BRAF 
wild-type CRC were later identified to have acquired 
activating RAS (KRAS or NRAS) or BRAF mutations 
on repeat tumor genomic assessment at the time of 
disease progression on antiEGFR therapy[1719].

Alternative treatment strategies in RAS mutant CRC 
include the combination of various therapeutic agents 
targeting several genes involved in the MAPK pathway 
that would cause sufficient suppression of activated 
RAS activity. Combining small molecule inhibitors of 
MEK to anti-EGFR therapies have demonstrated the 
reversal of acquired anti-EGFR therapy resistance, 
prompting ongoing clinical trials investigating the 
clinical utility of the combination of multiple signaling 
pathway inhibitors in the firstline setting, as well 
as in salvage therapy for refractory disease (Table 
1). Targeting multiple signaling pathways may 
also be effective in overcoming resistance from se-
condary activation of parallel signaling pathways[20]. 
Alternatively, administering anti-EGFR therapies in 
a pulsatile manner instead of to the point of clinical 
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progression may prolong antiEGFR therapy efficacy. 
A recent study that performed dynamic monitoring 
of tumor somatic variants through circulating tumor 
DNA demonstrated a decrease in drug resistant 
KRAS clones upon withdraw of cetuximab, allowing 
for the reemergence of drug sensitivity to anti-EGFR 
therapy[21]. This suggests a rationale for intermittent 
EGFR blockade, and explains for the seldom efficacy 
seen with rechallenging antiEGFR therapies. Lastly, 
inhibitors of the MAPK and PI3K/Akt/mTOR pathway 
are considered to cause G1 cell cycle arrest through 
the suppression of Dtype cyclins and the upregulation 
of cell cycle inhibitors[22,23]. Pre-clinical studies have 
demonstrated potent inhibition of G1/S transition and 
phosphorylation of retinoblastoma (Rb) protein with 
the inhibition of the MAPK and PI3K/Akt pathway[24]. 
The combination of MEK and CDK inhibitors may 
be considered a potential strategy in treating RAS 
activated CRC or in tumors harboring mutations in 
CDK.

BRAF mutations in CRC
BRAF V600E mutations occur in up to 5% of meta
static CRC[25,26] and are often associated with a 
more aggressive phenotype (with the exception in 
microsatellite instability high CRC, where the effect is 
attenuated). Patients with BRAF V600E mutations tend 
to respond poorly to conventional chemotherapy and 
have worse outcomes[6,2731]. The constitutive activation 
of BRAF evading any upstream inhibition of EGFR may 
explain the limited clinical benefit seen with anti-EGFR 
therapies in BRAF mutant metastatic CRC[6,32,33].

In metastatic melanoma, inhibition of BRAF with 
small molecule inhibitors has led to improvement in 
clinical outcomes in patients whose tumors exhibit 
mutations in BRAF[3437]. However, the clinical efficacy 
from single agent BRAF inhibition has not translated to 
patients with BRAF mutant metastatic CRC[36,38]. The 
lack of anti-tumor activity may be a result of insufficient 
inhibition of the MAPK pathway as a result of a 
feedback loop mechanism, resulting in the persistent 
activation of the MAPK signaling pathway[16,39] (Figure 
1). To overcome this compensatory mechanism, 
the combination of tyrosine kinase inhibitors aimed 
at inhibiting the MAPK pathway has resulted in an 
improvement in treatment efficacy in comparison 
to singleagent BRAF small molecule inhibitor in 
metastatic melanoma[40]. Based on these results, a 
phase Ⅱ study investigating the clinical activity from 
the combination of BRAF and MEK inhibition with 
dabrafenib and trametinib was conducted in patients 
with BRAF mutant metastatic CRC[41]. While modest 
clinical activity was observed with the combination, 
with 12% of patients experiencing either a partial 
or complete response, correlative laboratory studies 
suggest an inhibition in MAPK signaling in patients 
receiving the combination[37]. The absence of significant 
anti-tumor activity may be attributed to insufficient 
suppression of MAPK signaling, which may be due to 
upstream activation of EGFR, leading to reactivation of 
MAPK and other integral signaling pathways[15]. Based 
on this rationale, ongoing studies are investigating the 
combination of antiEGFR therapies with BRAF tyrosine 
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Table 1 Ongoing combination targeted therapy trials for colorectal cancer

Agent(s) Class of agent Phase Trial number1 Misc

MEK162 + Panitumumab MEK tyrosine kinase inhibitor, anti-EGFR 
mAb

Ⅰb/Ⅱ NCT01927341 mCRC with mutant or wild-type RAS 
tumors

Dabrafenib + Trametinib + 
Panitumumab + 5-Fluorouracil

BRAF tyrosine kinase inhibitor, MEK 
tyrosine kinase inhibitor, anti-EGFR mAb

Ⅰ/Ⅱ NCT01750918 BRAF-V600E mutant + and in pts with 
secondary resistance to anti-EGFR mAb

LGX818 + Cetuximab ± BYL719 BRAF tyrosine kinase inhibitor, anti-EGFR 
mAb, PI3K tyrosine kinase inhibitor

Ⅰ/Ⅱ NCT01719380 BRAF mutant mCRC

Irinotecan + Cetuximab ± 
Vemurafenib

anti-EGFR mAb, BRAF tyrosine kinase 
inhibitor

Ⅱ NCT02164916 BRAF mutant mCRC

Neratinib + Cetuximab HER-2 tyrosine kinase inhibitor, anti-EGFR 
mAb

Ⅰ/Ⅱ NCT01960023 KRAS, NRAS, BRAF, PIK3CA wild type

1Utilizing the NCT number, clinical trial information can be obtained at https://clinicaltrials.gov. mAb: Monoclonal antibody; mCRC: Metastatic colorectal 
cancer; EGFR: Epidermal growth factor receptor; PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha; BRAF: v-Raf murine 
sarcoma viral oncogene homolog B.

Figure 1  RAS/RAF/MEK/ERK pathway and mechanisms of resistance 
to BRAF inhibition. The figure above shows the MAPK pathway and the 
compensatory feedback loop activation (arrow) despite BRAF inhibition, 
resulting in the upstream reactivation of the MAPK pathway.
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receptors consisting of four members (FGFR1, 2, 3 
and 4). These receptors bind to one of 18 secreted 
glycoprotein ligands, or fibroblast growth factors 
(FGFs), to their extracellular domain[48]. Binding of 
the appropriate ligand results in FGFR dimerization, 
autophosphorylation and activation of downstream 
signaling pathways that include the MAPK, PI3K/Akt 
and signaling transducer and activator of transcription 
or STAT pathway, inducing cell differentiation, growth 
and survival[49]. FGFR overexpression has been 
identified in CRC samples, where the presence of FGFR 
signaling has been identified as playing an important 
role in the tumor microenvironment, with a correlation 
in FGFR overexpression with tumor invasion, advanced 
stage disease and chemotherapy resistance[5053]. Pre
clinical studies have demonstrated the reversal of 
chemotherapy resistance by combining small molecule 
FGFR inhibitors with chemotherapy in CRC cell lines, 
confirming the importance of targeting this receptor 
and representing a potential strategy in overcoming 
treatment resistance in CRC[54]. 

C-MET (MET)
Hepatocyte growth factor receptor, also known as 
cMET, is a protooncogene that encodes the tyrosine 
kinase receptor for hepatocyte growth factor (HGF). 
Abnormal expression of cMET through somatic 
mutations or overexpression has been identified in up 
to 66.7% of CRC samples and its microenvironment 
and is a negative prognostic marker related to tumor 

kinase inhibitors in patients with BRAF mutant mCRC 
(Table 1)[4245].

GENOMIC DIVERSITY AND ITS ROLE IN 
DEVELOPING PERSONALIZED THERAPIES 
WITH TARGETED AGENTS IN CRC
While RAS mutations are the most common genomic 
alteration in CRC, recent efforts have allowed us 
to understand the genomic diversity and identify 
potential therapeutic targets of interest in this 
disease[46,47]. Through the efforts of The Cancer 
Genome Atlas (TCGA), 224 CRC cases underwent 
extensive molecular characterization to describe the 
genomic landscape present in CRC[46]. 24 genes were 
significantly mutated, where most were an actionable 
mutation, including ERBB2 (HER-2/neu) mutations, 
a therapeutic target in HER-2 positive gastric and 
breast cancer, were identified in 19% of tumors[46]. 
This comprehensive assessment allowed us to have 
a better understanding of the genomic landscape, 
in addition to identifying several potential targetable 
genes of interest that are essential for tumor growth 
and carcinogenesis that we will discuss in further detail 
below (Table 2).

Fibroblast growth factor receptor in CRC
The fibroblast growth factor receptors (FGFR) com
prise a group of highly conserved tyrosine kinase 

Table 2  Tumor genomic variants and potential targeted therapies of interest

Gene Agents of 
Interest

Mechanism of action Phase Trial number1 Comment

FGFR (FGFR1, FGFR2, 
FGFR3, FGFR4)

Ponatinib Multi-kinase small molecule inhibitor Ⅱ NCT02272998

BGJ398 Pan FGFR small molecule inhibitor Ⅰ NCT01928459
RET Cabozantinib Multi-kinase small molecule inhibitor Ⅰ NCT02008383 Cabozantinib + panitumumab

Vandetanib Multi-kinase small molecule inhibitor Ⅰ NCT01582191
Apatinib Multi-kinase small molecule inhibitor
Ponatinib Multi-kinase small molecule inhibitor Ⅱ NCT02272998
RXDX-105 RET and BRAF small molecule inhibtor Ⅰ NCT01877811
Sunitinib Multi-kinase small molecule inhibitor
Sorafenib Multi-kinase small molecule inhibitor Ⅰ NCT01531361

HER-2 AZD8931 Small molecule inhibitor of EGFR, HER-2, HER-3 Ⅰ/Ⅱ NCT01862003 AZD8931 + FOLFIRI
Neratinib Small molecule inhibitor of EGFR, HER-2, HER-3 Ⅱ NCT01953926

HER-2 vaccine B cell peptide vaccine Ⅰ NCT01376505
T-DM1 Antibody-drug conjugate of traztuzumab and 

DM1
Ⅱ HERACLES-

RESCUE
At the time of traztumab 

failure
Pertuzumab Anti HER-2 monoclonal antibody Ⅱ HERACLES Pertuzumab + trastuzumab

Lapatinib Anti HER-2 small molecule inhibitor Ⅱ HERACLES Lapatinib + trastuzumab
c-MET (MET, HGFR) Crizotinib Multi-kinase small molecule inhibitor NCT02510001 Crizotinib + PD-0325901

Tivantinib c-MET inhibitor NCT01892527 Tivantinib + cetuximab
Cabozantinib c-MET and VEGFR2 inhibitor

INC280 Small molecule inhibitor of c-MET Ⅱ NCT2205398 INC280 + cetuximab
AMG102 HGF inhibitor
AV299 HGF inhibitor

1Utilizing the NCT number, clinical trial information can be obtained at https://clinicaltrials.gov. FGFR: Fibroblast growth factor receptor; EGFR: 
Epidermal growth factor receptor; BRAF: v-Raf murine sarcoma viral oncogene homolog B; HER-2: Human growth factor receptor 2; HGFR: Hepatocyte 
growth factor receptor; TDM-1: Ado-trastuzumab emtansine; VEGFR: Vascular endothelial growth factor receptor.
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oncogenesis, invasiveness, local recurrence, and 
chemotherapy resistance[5558]. MET activation confers 
acquired anti-EGFR therapy resistance, through re-
activation of anti-apoptotic signaling pathways, 
including the PI3K and MAPK pathways[5962]. Thus, 
inhibiting cMET represents an emerging target of 
interest in the development of novel agents in CRC. 
Pre-clinical studies have demonstrated that the 
blockade of cMET inhibits tumor growth in CRC cell 
lines[63,64], thus agents targeting MET, including small 
molecule multikinase inhibitors (e.g., crizotinib, 
tivantinib), HGF inhibitors (e.g., AMG102, AV299) and 
immunotherapeutic agents are of interest and under 
investigation in the treatment of CRC. 

RET
RET is located on chromosome 10q11.2 and encodes 
a transmembrane receptor tyrosine kinase that has 
three unique isoforms[65]. Four ligands can bind and 
activate RET, leading to the aberrant activity of several 
signaling pathways including PI3K/Akt and MAPK 
pathway[66]. While the aberrant expression of RET 
may function as an oncogene in certain solid tumor 
malignancies including papillary and medullary thyroid 
cancers[67], in colorectal cancer RET has been identified 
as a tumor suppressor and as an oncogene. Studies 
have shown that the hypermethylation and mutational 
inactivation of RET, as well as RET fusions, promote 
colorectal cancer formation[6870]. In several studies, 
RET mutations were identified in up to 7% of mCRC 
samples[46,71,72]. Regorafenib, an approved multi-target 
small molecule inhibitor in metastatic CRC[73], has 
demonstrated tumor growth inhibition in RET mutant 
cancer cells lines[70,74], and may explain part of its 
efficacy in this disease. Further studies investigating 
its activity in RET mutant CRC is warranted as it may 
provide further benefit in this specific cohort of CRC 
patients. 

HER-2/Neu
Human growth factor receptor 2, also known as 
HER-2 or HER-2/neu, is part of the human epidermal 
growth factor receptor family and has been identified 
as an oncogene in several solid tumor malignancies, 
including CRC. Its overexpression has been a poor 
prognostic biomarker in breast cancer and is an 
effective therapeutic target in breast and gastric 
cancer[7577]. Studies evaluating HER-2 overexpression 
in CRC have identified HER-2 somatic mutations and 
amplification in 7% of patients with CRC[46], where pre
clinical studies have demonstrated its role in inducing 
resistance to antiEGFR therapy, and its inhibition 
showing durable tumor regression with antiHER-2 
therapy[78]. Based on these findings, the HERACLES 
trial, a phase Ⅱ study investigated dual anti-HER-2 
therapy blockade in patients with HER-2 amplified 
(immunohistochemistry staining 3+ or 2+ with FISH 

positive (HER2:CEP17 ratio > 2) in > 50% of tumor 
cells) mCRC with previous anti-EGFR therapy. Patients 
received the combination of trastuzumab, an anti 
HER-2 monoclonal antibody with either lapatinib, a 
small molecule inhibitor of HER-2 or pertuzumab, an 
anti HER-2 monoclonal antibody. Early results from the 
lapatinib and trastuzumab arm demonstrated a 35% 
response rate and median progression free survival of 
5.5 mo, despite being heavily pre-treated after failing 
multiple lines of therapy[79]. Based on these findings, 
anti HER-2 therapy may be an effective treatment 
option in a preselected patient population with mCRC. 

DNA mismatch repair genes and their therapeutic 
relevance in advanced CRC
Mismatch repair (MMR) genes function to remove 
erroneous DNA nucleotides during mitosis. With 
deficient MMR activity, altered DNA nucleotides are 
incorporated into cells that increase their risk in 
forming into a neoplastic, hypermutated makeup[80], 
resulting in microsatellite instability. Deficient MMR 
activity is found in approximately 15% of CRC, in 
which 3% is attributed to Lynch Syndrome through 
germline mutations in MLH1, MSH2, MSH6, PMS2 or 
EPCAM3 genes[81,82]. The remaining 12% is due to 
sporadic inactivation of MLH1. While microsatellite 
instability (MSI) is a driver for tumor formation and 
proliferation in CRC, recent studies have demonstrated 
its relevance for potential novel therapeutic agents 
in this cohort of CRC. Tumors expressing MSI have 
been characterized by an intense immune infiltration, 
likely related to a high density of mutations, creating 
numerous neoantigens and targets for immune 
therapies. Based on this rationale, a singlearm 
phase Ⅱ study was conducted to assess the clinical 
efficacy of pembrolizumab, a programmed cell death 
protein (PD)1 inhibitor, in patients with treatment 
resistant, metastatic cancer that did or did not 
express mismatchrepair deficiency[83]. Individuals 
with deficient MMR colorectal cancer experienced a 
response rate of 40% and immunerelated PFS of 
78% at 20 wk. Interestingly, a lack of activity was 
associated with mismatch repairproficient CRC 
patients, confirming that immunotherapeutic agents 
may be beneficial in only certain cohorts of CRC, unless 
alternative approaches can be developed to transform 
tumors into an immune-responsive phenotype[83]. 
Based on these findings, several ongoing clinical trials 
are investigating various novel, immunotherapeutic 
agents in the treatment of CRC that include studies in 
patients with MSI high tumors and those with positive 
PDL-1 expression (Table 3). While current trials will 
substantiate the role of immune therapy in CRC, a 
better understanding of mechanisms of acquired 
resistance, optimal duration of necessary treatment 
and predictive biomarkers associated with treatment 
efficacy are paramount.
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Tumor genomic assessment at the time of acquired 
therapy resistance in mCRC
While anti-tumor activity from targeted therapies 
can lead to dramatic responses, the clinical benefit is 
often limited due to inherent and acquired resistance 
through the acquisition of new tumor genomic alter-
nations, including the oncogenic activation of MET 
or acquiring RAS mutations, as described above. 
While tumor genomic alterations are usually assessed 
through tumor samples, obtaining tissue can be 
challenging due to insufficient material from tumors 
only accessible through fine-needle aspirates, as well 
as the invasive nature of such procedures. 

Tumor circulating free DNA can be non-invasively 
assessed in peripheral blood, a “liquid biopsy,” through 
the assessment of circulating tumor DNA (ctDNA) 
and tumor cells (CTCs) and are present in advanced 
malignancies[84,85]. CtDNA and CTCs can provide 
dynamic assessments of tumor specific mutations 
that may arise during the course of therapy. Although 
previous methodologies demonstrate low rates of 
sensitivity and concordance, the incorporation of 
new technology, including real time digital PCR has 
increased sensitivity (87.2%) and specificity (99.2%) 
in identifying tumor specific mutations responsible 
for treatment resistance in patients who initially 
responded to targeted therapies[18]. While there are 
limitations, including false negative results as well as 
the inability to identify genomic alterations from central 
nervous system (CNS) lesions, this non-invasive 
tool can monitor patients for resistanceconferring 
mutations as well as assessing all tumors concurrently, 
as heterogeneity can exist between different foci of 
disease. 

CONCLUSION
Advancements in genomic sequencing have resulted in 
our increased understanding of the genomic landscape 
of CRC, allowing us to develop and tailor personalized 
therapies for patients. Despite these improvements, 
future studies are needed to characterize and un
derstand the functionality of the various different 
mutations of each gene, including mutational as
sessment at the time of treatment failure. This will 
allow us to improve therapies for patients with CRC 

by assessing the prognostic and potential therapeutic 
implication of genes of interest, and to identify 
predictive biomarkers of response and resistance.
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