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Optimal processes for probabilistic 
work extraction beyond the second 
law
Vasco Cavina, Andrea Mari & Vittorio Giovannetti

According to the second law of thermodynamics, for every transformation performed on a system 
which is in contact with an environment of fixed temperature, the average extracted work is bounded 
by the decrease of the free energy of the system. However, in a single realization of a generic process, 
the extracted work is subject to statistical fluctuations which may allow for probabilistic violations 
of the previous bound. We are interested in enhancing this effect, i.e. we look for thermodynamic 
processes that maximize the probability of extracting work above a given arbitrary threshold. For 
any process obeying the Jarzynski identity, we determine an upper bound for the work extraction 
probability that depends also on the minimum amount of work that we are willing to extract in case 
of failure, or on the average work we wish to extract from the system. Then we show that this bound 
can be saturated within the thermodynamic formalism of quantum discrete processes composed by 
sequences of unitary quenches and complete thermalizations. We explicitly determine the optimal 
protocol which is given by two quasi-static isothermal transformations separated by a finite unitary 
quench.

In classical thermodynamics1 the (Helmholtz) free energy of a system at thermal equilibrium is defined as 
F :=​ U −​ TS, where U is the internal energy, T is the temperature and S is the entropy. Whenever the environment 
is characterized by a fixed and unique temperature T, in every process connecting two states having free energy 
Fin and Ffin respectively, the work done by the system is upper bounded by the free energy reduction

≤ −∆ = − .W F F F: (1)in fin

The previous inequality is a direct manifestation of the second law of thermodynamics. Indeed for a cyclic 
process Δ​F =​ 0 and the bound (1) states that no positive work can be extracted from a single heat bath. However, 
according to the microscopic theory of statistical mechanics1, the work done by a system in a given transfor-
mation is non-deterministic and can present statistical fluctuations2–5. For macroscopic systems, like a gas in 
contact with a moving piston, these fluctuations are usually negligible and one can replace all random variables 
with their averages recovering the thermodynamic bound (1). For sufficiently “small” systems, i.e. those in which 
the number of degrees of freedom are limited and the energies involved are of the order of kBT, fluctuations are 
important and for each repetition of a given protocol the system can produce a different amount of work, which 
can be described as a random variable with an associated probability distribution3–5. Moreover a further source 
of difficulty in the description of “small” systems, like nano-scale devices, molecules, atoms, electrons, etc., is that 
quantum effects are often non-negligible and quantum fluctuations can also affect the work extraction process6–9.

The properties and the constraints characterizing the work probability distribution of a given process are 
captured by the so called fluctuation theorems which can be defined both for classical2,5,10–12 and quantum sys-
tems13–16. These theorems can be seen as generalizations of the second law for processes characterized by large 
statistical fluctuations. Indeed it can be shown11,12 that the expectation value of the work distribution always sat-
isfies the bound (1), while for a single-shot realization of the protocol it is in principle possible to extract a larger 
amount of work at the price of succeeding with a small probability3,4,12,17,18.

Our aim is to identify the optimal protocols for maximizing the probability of extracting work above a given 
threshold Λ​, arbitrarily larger than the bound (1). Differently from standard thermodynamics in which the opti-
mal procedures are usually identified with the quasi-static (reversible) transformations saturating the inequality 
(1), for the problem we are considering, fluctuations are necessary in order to probabilistically violate the second 
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law. Consequently, in this case optimality will require some degree of irreversibility. In our analysis we shall focus 
on processes obeying the Jarzynski identity11,13–15 which include all those transformations where a system orig-
inally at thermal equilibrium evolves under an externally controlled, time-dependent Hamiltonian and proper 
concatenations of similar transformations. In this context, as a first step we identify an upper bound for the proba-
bility of work extraction above the threshold Λ​ which depends on the minimum amount of work Wmin that we are 
willing to extract in case of failure of the procedure. We also identify the class of optimal protocols that enable one 
to saturate such bound. These correspond to have two quasi-static transformations separated by a single, abrupt 
modification of the Hamiltonian (unitary quench), the associated work distribution being characterised by only 
two possible outcomes: one arbitrarily above the bound (1) (success) and one below (failure). Explicit examples 
are presented in the context of discrete thermal processes19,20 and in the context of one-molecule Szilard-like heat 
engines21.

In the second part of the paper we focus instead on the upper bound for the probability of work extraction 
above a given threshold Λ​ which applies to all those processes that ensure a fixed value μ of the average extracted 
work. Also in this case we present explicit protocols which enable one to saturate the bound: it turns out that 
they belong to the same class of the optimal protocols we presented in the first part of the manuscript (i.e. two 
quasi-static transformations separated by a single, unitary quench).

Work Extraction Above Threshold Under Minimal Work Constraint
In 199711, motivated by molecular biology experiments, C. Jarzynski derived an identity characterizing the prob-
ability distribution P (W) of the work done by a system which is initially in a thermal state of temperature T and it 
is subject to a process interpolating from Hin to Hfin. The process can be an Hamiltonian transformation or, more 
generally, an open dynamics obeying the requirement of microreversibility10. The identity is the following:

∫= =β β β− ∆

−∞

∞
e e P W e dW: ( ) , (2)

F W W

where β =
k T

1

B
, Δ​F =​ Ffin −​ Fin, with Fin, Ffin being the free energies associated to the canonical thermal states with 

Hamiltonian Hin and Hfin respectively. Notice that, while Fin corresponds to the actual free energy of the initial 
state, Ffin is not directly related to the final state which may be out of equilibrium but only to its final Hamiltonian 
(in all the processes considered in this work, however the initial and final states are always thermal, and Ffin is also 
the actual free energy of the system). Notice also that by a simple convexity argument applied to the exponent on 
the right-hand-side of Eq. (2) one gets the inequality

∫= ≤ −∆
−∞

∞
W P W WdW F: ( ) , (3)

which is the counterpart of (1) for non-deterministic processes.
For quantum systems, because of the intrinsic uncertainties characterizing quantum states, identifying a 

proper definition of work is still a matter of research6,9,22–24. However, if we assume to perform a measurement of 
the energy of the system before and after a given unitary process, the work extracted during the process is opera-
tionally well defined as the decrease of the measured energy. Also in this quantum scenario, it can be shown13–15 
that the work distribution obeys the Jarzynski identity (2).

Among all (unitary or non-unitary) processes interpolating from an initial Hamiltonian Hin to a final 
Hamiltonian Hfin and fulfilling (2), we are interested in maximizing the probability of extracting work above a 
given arbitrary threshold Λ, i.e. in computing the quantity

Λ Λ≥ = ≥P W P W( ) : max ( ),
(4)max

all processes

where

∫Λ≥ = .
Λ

+∞
P W P W dW( ) : ( ) (5)

This problem is particularly interesting and non-trivial only when the threshold is beyond the limit (1) 
imposed by the second law, i.e. when Λ >​ −​Δ​F. Indeed for lower values of Λ, it is known that the probability 
(4) can be maximized to 1 by an arbitrary thermodynamically reversible (quasi-static) process, deterministically 
extracting W =​ −​Δ​F. Exploiting statistical fluctuations, larger values of work can be extracted3,4,12,17,18. But what 
are the corresponding probabilities and the associated optimal processes?

To tackle this problem we start considering those processes which, beside fulfilling (2), satisfy also the 
constraint

= ∀ <P W W W( ) 0, , (6)min

with Wmin an assigned value smaller than or equal to Λ​ (consistency condition being Λ​ the work threshold above 
which we would like to operate) and −​Δ​F (by construction, being the latter an upper bound to the average 
work of the process, see Equation (3)). This corresponds to set a lower limit on the minimum amount of work 
that we are willing to extract in the worst case scenario, the unconstrained scenario being recovered by setting 
Wmin →​ −​∞​ (instead taking Wmin =​ 0 we select those processes where, in all the statistical realizations no work is 
ever provided to the system).
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Under the above hypothesis the following inequality can be established

Λ≥ ≤
−

−

β β

βΛ β

− ∆
P W e e

e e
( ) ,

(7)

F W

W

min

min

which in the unrestricted regime Wmin →​ −​∞​, yields

Λ≥ ≤ β Λ− +∆P W e( ) , (8)F( )

that was already demonstrated in ref. 12. Again we stress that both bounds (7) and (8) are relevant only for Λ​ >​ −​Δ​F,  
while for Λ​ ≤​ −​Δ​F they can be trivially replaced by P (W ≥​ Λ) ≤​ 1.

The proof of the general bound (7) follows straightforwardly from the identity (2) and the definitions of Λ 
and Wmin. Indeed, we can split the integral appearing in (2) as the sum of two terms that can be independently 
bounded as follows:

∫ ∫

∫ ∫
Λ Λ

= +

≥ +

= − ≥ + ≥ .

β Λ β

Λ

β

β Λ βΛ

Λ

β βΛ

− ∆ ∞

∞

e e P W dW e P W dW

e P W dW e P W dW

e P W e P W

( ) ( )

( ) ( )

(1 ( )) ( ) (9)

F

W

W W

W

W

W

min

min

min

min

Equation (7) finally follows by solving the resulting inequality for P (W ≥​ Λ). We summarize the bounds given 
in this this paragraph in Fig. 1.

Attainability of the bound (7).  By close inspection of the derivation (9) it is clear that the only way to sat-
urate the inequality (7) is by means of processes whose work distribution is the convex combination of two delta 
functions centered respectively at W =​ Wmin and W =​ Λ​, i.e.

δ Λ δ= − + − −P W p W p W W( ) ( ) (1 ) ( ), (10)min

with p =​ P (W ≥​ Λ) equal to the term on the rhs of Eq. (7), i.e.

=
−

−
.

β β

βΛ β

− ∆
p e e

e e (11)

F W

W

min

min

Yet it is not obvious whether such transformations exist nor how one could implement them while still obey-
ing the Jarzynski identity. To deal with this question in the following we present two different schemes both capa-
ble of fulfilling these requirements proving hence that the following identity holds:

Λ≥ =
−

−

β β

βΛ β

− ∆
P W e e

e e
( ) ,

(12)
W

F W

Wmax
( )min

min

min

Figure 1.  Contourplot of the optimal probability Λ≥P W( )W
max
( )min  of Eq. (12) as a function of Λ and Wmin 

for β = 1
2

 and −ΔF = 1. If Λ​ ≤​ −​Δ​F the probability of success is equal to 1 independently from Wmin. For 
Λ​ ≥​ −​Δ​F the bound is non trivial and is given by Eq. (7). Values of Wmin larger than Λ​ or larger than −​Δ​F 
needs not to be considered.
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(see Fig. 1 for a contour plot of this optimal probability). The first example is based on a specific theoretical frame-
work (the discrete quantum process approach) introduced in ref. 20 for modeling thermodynamic transformations 
applied to quantum systems. While the attainability of (7) does not require us to consider a full quantum treatment 
(only the presence of discrete energy exchanges being needed, not quantum coherence), the use of this technique 
turns out to be useful as it provides a simplified, yet fully exhaustive description of the involved transformations. 
The second example is instead fully classical and it is based on an idealized one-molecule Szilard-like heat engine.

Optimal transformations by discrete quantum processes.  Following the approach presented in refs 
19 and 20 in this section we consider protocols composed by the concatenation of only two types of operations: 
discrete unitary quenches (DUQs) and discrete thermalizing transformations (DTTs). A DUQ applied to a system 
described by an input density matrix ρ and Hamiltonian H, is an arbitrary change of the latter which does not 
affect the former, i.e.

ρ ρ ρ

→ ′

→ ′ =

H H ,

, (13)

DUQ

DUQ

H′​ being the final Hamiltonian of the system. A DTT instead is a complete thermalization towards a Gibbs state 
of temperature T without changing the system Hamiltonian, i.e.

ρ ρ ω

→ ′ =

→ ′ = β

H H H,

, (14)

DTT

DTT
H
( )

with ω =β β−e Z: /H
H( ) , where β =:

k T
1

B
 and Z :=​ Tr[e−βH] the associated partition function. Operationally, a DUQ 

can be implemented by an instantaneous change of the Hamiltonian realized while keeping the system thermally 
isolated. A DTT instead can be obtained by weakly coupling the system with the environment for a sufficiently 
long time. The convenience for introducing such elementary processes is that the energy exchanged during a 
DUQ and a DTT can be thermodynamically interpreted as work and heat respectively, without any risk of ambi-
guity typical of continuous transformations in which the Hamiltonian and the state are simultaneously changed. 
On the other hand, as shown in refs 19 and 20, continuous transformations can be well approximated by a 
sequence of infinitesimal DUQs and DTTs.

In order to show that Eq. (7) can be saturated we then focus on a N-long sequence of alternating DUQs and 
DTTs operated at the same temperature T and connecting an input Gibbs state ω βH

( )
in

 to a final Gibbs state ω βH
( )

fin
 via 

the following steps (an example for N =​ 2 is shown in Fig. 2):

ω ω

ω ω

ω ω

ω ω

→ →

→ →

→ →

→ →

β β

β β

β β

β β

−

−

−

−





H H

H H

j H H

N H H

Step 1: , ,

Step 2: , ,

Step : , ,

Step : , , (15)

DUQ
H

DTT
H

DUQ
H

DTT
H

j
DUQ

j H
DTT

H

N
DUQ

N H
DTT

H

0 1
( ) ( )

1 2
( ) ( )

1
( ) ( )

1
( ) ( )

j j

N N

0 1

1 2

1

1

Figure 2.  Sequence of two “steps”, each one composed of a DUQ and a DTT. Each configuration point (ρ, H) 
is represented by a red square if it is an equilibrium configuration (ωH, H), and by a blue circle otherwise.
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where for j =​ 0, 1, ···, N, Hj represents the Hamiltonian of the system at the end of the DUQ of the j-th step and 
where for easy of notation we set H0 :=​ Hin and HN :=​ Hfin. As further assumption we shall also restrict the analysis 
to those cases where all the Hj entering the sequence (the initial and the final one included) mutually commute, 
i.e. [Hj, Hj+1] =​ 0. Accordingly the action of each DUQ corresponds to a simple shift of the energy levels without 
changing the corresponding eigenstates:

∑ ∑= → = .+
+H E k k H E k k

(16)j
k

k
j DUQ

j
k

k
j( )

1
( 1)

Also, since all the Gibbs states ω βH
( )

j
 are diagonal in the same energy basis k{ }, quantum coherence will not 

play any role in the process, meaning that the results we obtain could be directly applicable to classical models. 
This is not a strong limitation since, as we are going to show, thermodynamically optimal processes saturating (7) 
are already obtainable within this limited set of semi-classical operations.

To determine the probability distribution of work for a generic sequence (15) observe that in the j-th step work 
can be extracted from (or injected to) the system only during the associated DUQ20. Here the state is described by 
the density matrix ω = ∑β −

−
p k kH k k

j( ) ( 1)
j 1

, with

= β− −
−

−
p e Z: / , (17)k

j E
j

( 1)
1k

j( 1)

being the probability of finding it into the k-th energy eigenstate whose energy passes from −Ek
j( 1) to Ek

j( ) during 
the quench. When this happens the system acquires a ∆ = − −E E E:k

j
k

j
k

j( ) ( ) ( 1) increment of internal energy, corre-
sponding to an amount of −∆ = −−E E Ek

j
k

j
k

j( ) ( 1) ( ) of work production (the system being thermally isolated dur-
ing each DUQ). Accordingly the probability distribution of the work done by the system during the j-th step can 
be expressed as the sum of a collection of Dirac delta functions:

∑ δ= + ∆ .−P W p W E( ) ( )
(18)j j

k
k

j
j k

j( 1) ( )

At the next step the system first thermalizes via a DTT which, independently from the previous history of the 
process, brings in the Gibbs state ω βH

( )
j
, and then undergoes to a new DUQ that produces an extra amount of work 

Wj+1 whose statistical distribution Pj+1(Wj+1) can be expressed as in Eq. (18) by replacing j with j +​ 1. The total 
work W extracted during the whole transformation (15) can finally be computed by summing all the Wj’s, the 
resulting probability distribution being

∫ ∫ δ= − + +  P W dW dW P W P W W W W( ) ( ) ( ) ( ( )), (19)N N N N1 1 1 1

which can be easily shown to satisfy the Jarzynski identity (2) (see section Methods) and hence the inequality (7) 
which follows from it.

It is a basic result of thermodynamics and statistical mechanics that the inequality (1) can be saturated by 
isothermal transformations in which the system is changed very slowly in such a way that its state remains always 
in equilibrium with the bath1. These operations are usually called quasi-static or reversible. In the framework of 
discrete quantum processes quasi-static transformations can be obtained in the limit of infinite steps N →​ ∞​ 
while keeping fixed the initial and final Hamiltonian of the sequence. Indeed, as shown in refs 19 and 20, interpo-
lating between the initial and final Hamiltonian by a sequence of infinitesimal changes (e.g. fulfilling the con-
straint β∑ ∆ E 1k k

j( ) ) each followed by complete thermalizations, one can saturate the bound (1). In terms of 
the probability distribution (19) one can easily show19 that in the quasi-static limit we obtain a delta function 
centered in −​Δ​F =​ Fin −​ Ffin, i.e.

δ= + ∆
→∞

P W W F( ) ( ), (20)N

which means that for every realization of the process the work extracted is the maximum allowed by the second 
law (1) with negligible fluctuations. This can be understood from the fact that the total work W is the sum of N 
independent random variables Wj and therefore we expect the fluctuations around the mean 〈​W〉​ to decay as 

N1/ . Moreover, since the Jarzynski identity (2) must hold, the only possible value for the mean of an infinitely 
sharp distribution is 〈​W〉​ =​ −​Δ​F.

We can now come back to our original problem of determining the maximum probability of extracting an 
amount of work larger than an arbitrary value Λ, for fixed values of the initial and final Hamiltonians Hin and Hfin.

If the threshold is below the free energy decrease of the system, i.e. if Λ ≤​ −​Δ​F, the problem is trivial. In this 
case a quasi-static transformation interpolating between the initial and final Hamiltonian is optimal. Indeed, as 
expressed in Eq. (20), the work extracted in the process is deterministically equal to −​Δ​F which is larger than Λ​. 
Formally, integrating (20), we have that for a quasi-static process

Λ Λ
Λ

≥ =





≤ −∆
> −∆ .

P W F
F

( ) 1, for ,
0, for (21)

The cumulative work extraction probability (21) shows that, although quasi-static processes are optimal 
for Λ​ ≤​ −​Δ​F, they are absolutely useless for Λ​ >​ −​Δ​F where the probability drops to zero. Then, if we want 
to explore the region Λ >​ −​Δ​F which is beyond the limit imposed by the second law, it is clear that we have to 
exploit statistical fluctuations typical of non-equilibrium processes.
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Consider next the case of a threshold larger than the decrease of free energy Λ >​ −​Δ​F. To identify an optimal 
process fulfilling (7) it is sufficient to focus on the simplest scenario of a two-level system with energy eigenstates 
|0〉​ and |1〉​ and such that the eigenvalue associated with |0〉​ always nullifies, i.e. =E 0j

0
( )  for all j. Accordingly each 

Hamiltonian and corresponding Gibbs state can be expressed in terms of a single real parameter E j
1
( ):

ω= =
+

+
.β

β

β

−

−
H E

e

e
1 1 ,

0 0 1 1

1 (22)
j

j
H

E

E1
( ) ( )

j

j

j

1
( )

1
( )

In this way the generic process described in (15) is completely characterized by assigning a sequence of N +​ 1 
parameters E E E E{ , , , , }N

1
(0)

1
(1)

1
(2)

1
( )  arbitrarily interpolating between the initial value =E E1

(0)
in and the final 

value =E EN
1
( )

fin.
Let us then focus on the protocol composed by the following three steps and summarized in Fig. 3:

(a)	� perform a quasi-static transformation from the initial value Ein to the value Ea to be fixed later on:

+ + …E E E E{ , , 2 , , }, (23)n ain in i 

�with  being a small increment which we shall send to zero while sending the associated number of steps 
= −N E E /a a in   to infinity;

(b)	� apply a finite DUQ from Ea to another arbitrary value Eb >​ Ea also to be fixed later on, followed by a complete 
thermalization:

 →
+

E E ; (24)a
DUQ DTT

b

(c)	 perform a quasi-static transformation from Eb to the desired final value Efin:

+ + …E E E E{ , , 2 , , }, (25)b b b fin 

where, as in step a),  is a small increment which we shall send to zero by sending the associated number of 
steps = −N E E /c bfin  to infinity.

In the limit → 0 , since the initial and final configurations are fixed the only free parameters of this protocol 
are Ea and Eb, and they will affect the final probability distribution of the work done by the system. In particular 
according to Eq. (20), the work extracted in the two quasi-static transformations a) and c) is deterministically 
given by the corresponding free energy reductions, i.e. the quantities

= −
= −

W F F E
W F E F

( ),
( ) , (26)

a n a

c b

i

fin

respectively, with = − +
β

β−F E e( ) : log( 1)E1 . The work extracted in the intermediate operation b) instead is 
Wb =​ 0 if the system is in the the state |0〉​ (this happens with probability =

+ β−p
e
1

1 Ea
) while it is equal to the 

negative quantity Wb =​ Ea −​ Eb if the system is in the state |1〉​ (which happens with probability 1 −​ p). Accordingly 
the total work W =​ Wa +​ Wb +​ Wc is a convex combination of two delta functions:

δ δ= − + − −P W p W W p W W( ) ( ) (1 ) ( ), (27)max min

Figure 3.  Scheme of the optimal process saturating the bound (7), valid for a two-level system with 
Hamiltonian H = E1|1〉〈1|. The process is divided in three steps: a) a quasi-static transformation where the 
value of E1 varies from Ein to Ea, b) an Hamiltonian quench from Ea to Eb followed by a thermalization, c) a final 
quasi-static transformation from Eb to Efin.
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where

= − ∆ + − > −∆W F F E F E F: ( ) ( ) , (28)b amax

= + − < −∆ .W W E E F: (29)a bmin max

Equation (27) is of the form required to saturate (7), see Eq. (10). Indeed from Eqs (28) and (29) it is easy 
to check that all values of Wmax >​ −​Δ​F and Wmin <​ −​Δ​F can be obtained by properly choosing Ea and Eb, with 
Eb >​ Ea. Moreover the function that gives Wmin and Wmax from Ea and Eb is a bijection, that can be inverted 
obtaining:

=
−

−
β

β β

β β
−

− ∆

− ∆
e e e

e e
,

(30)
E

F W

W F
a

max

min

=
−

−
β

β β

β β
−

∆ −

− ∆
e e e

e e
,

(31)
E

F W

W F
b

max

min

and hence

=
−
−

β β

β β

− ∆
p e e

e e
,

(32)

F W

W W

min

max min

the positivity of this expression being guaranteed by the ordering

≤ −∆ ≤W F W , (33)min max

which naturally follows from Eq. (3). Equations (10) and (11) are finally obtained from (27) and (32) by simply 
taking Wmax =​ Λ.

From the above analysis it is evident that optimal processes saturating (7) can be obtained only for transfor-
mations that are quasi-static apart from a single finite DUQ which introduces a single probabilistic dichotomy on 
the final work distribution as required by Eq. (10). For a two-level system, we have just shown that they are char-
acterized by the two parameters Ea and Eb (the values of Ein and Efin being fixed by the initial and final 
Hamiltonians). However their choice is also completely determined by the desired maximum and minimum work 
values entering (7): Λ and Wmin. Therefore we conclude that, for a two-level system, the optimal process presented 
here is unique up to global shifts of the energy levels (which we have fixed imposing =E 0j

0 ). This however is no 
longer the case when operating on d-level systems with d ≥​ 3, multiple number of optimal protocols being allowed 
in this case (see section Methods for details).

Optimal transformations by one-molecule Szilard-like heat engine.  In this section we present a 
second example of a process which allows us to saturate the bound (7). At variance with the one introduced in the 
previous section the model we analyze here is fully classical even though slightly exotic as it assumes the existence 
of an ideal gas composed by a single particle (same trick adopted in ref. 21). As shown in Fig. 4 such a classical 
particle is placed in a box divided in two chambers by a wall, in which a little door can be opened allowing the 
particle to switch from a side to the other. The right edge of the box is connected to a piston, that can extract 
mechanical work, and the whole system is in contact with a heat bath of temperature T.

In the initial and final configuration the door is open, the only difference being the position of the piston. The 
free energy difference can be computed following the relation F =​ U −​ TS and the fact that the entropy depends 
logarithmically on the volume1:

β
∆ = −










.F V

V
1 log

(34)
fin

in

We will show that, in order to saturate the equation (7) with the above initial and final conditions the optimal 
protocol is the following (see Fig. 5):

(a)	� keeping the door opened, perform a reversible isothermal expansion from the volume Vin to the volume Va to 
be fixed later on;

(b)	� after closing the door, do a reversible isothermal compression from the volume Va to the volume Vb, then 
open the door and let the system thermalize;

(c)	 perform a reversible isothermal expansion from the volume Vb to the volume Vfin.

The work extracted during the isothermal expansions a) and c) is

β β
=










+










.+W V

V
V
V

1 log 1 log
(35)

a c
a

bin

fin

On the contrary to compute the work extracted in the compression we have to distinguish two cases:
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Figure 4.  An ideal classical system in which we can study the probabilistic extraction of work is composed 
of a box divided into two chambers, with a door regulating the flux of a single particle between them. 

Figure 5.  Scheme of the optimal process saturating the bound (7) for a one particle perfect gas. The process 
is divided in three steps: (a) a reversible isothermal expansion from Vin to Va in which the door is open, (b) a 
reversible isothermal compression between Va and Vb in which the door is closed, (c) a reversible isothermal 
expansion to the final volume Vfin in which the door is open.
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1.	 The particle is in the left side, then the compression requires no work.
2.	 The particle is in the right side then the work extracted is the negative quantity

β
=





−
−






W V V
V V

1 log ,
(36)

b
b L

a L

where VL is the constant volume of the left chamber.
Now observing that the probability of the particle being in the left chamber is just equal to the ratio between 

VL and Va, i.e. p =​ VL/Va the work distribution of the process can be expressed as:

δ δ= − + − −P W p W W p W W( ) ( ) (1 ) ( ), (37)max min

with

= = + .+W W W W W: , : (38)a c bmax min max

Notice also that from Eqs (34), (35), (36) and (38) we can cast p as in Eq. (32), indeed

= =
−

−
=

−
−

β β

β β

−
−
−
−

− ∆
p V

V
e e
e e1

,
(39)

L

a

V
V

V V
V V

V V
V V

F W

W W

b

a

b L

a L

b L

a L

min

max min

where the second equality can be obtained with a little algebra and the last one follows multiplying both the 
numerator and the denominator by V V

V V
f a

i b
. Then, as in the case of the discrete quantum process analyzed in the 

previous section, this protocol saturates the inequality (7) by simply setting Wmax =​ Λ​, the values of Va and Vb 
being univocally fixed by the relations:

=
−

−

β β

β β− ∆
V V e e

e e
,

(40)a L

W W

F W

max min

min

=
−

−

β β

β β

− −

∆ −
V V e e

e e
,

(41)b L

W W

F W

max min

min

whose positivity is guaranteed once again by the ordering (33).
The protocol presented here clearly shares strong similarities with the two-level model presented in the pre-

vious section. Indeed the two reversible isothermal expansions in which the particle is free to go throw the door 
can be put in a formal correspondence with the two quasi-static transformations of Fig. 5. Analogously the inter-
mediate compression of Fig. 5 corresponds to the finite DUQ of the quantum model. Notice finally that, since in 
the ideal gas model the closing of the door at stage b) is a reversible operation, it looks like we are extracting work 
in a reversible way over the threshold −​Δ​F, a fact which is impossible1. This however is not the case since the 
thermalization that follows the opening of the door after the compression makes the process globally irreversible 
and the probabilistic outdoing of −​Δ​F is fully justified.

Work Extraction Above Threshold Under Average Work Constraint
In the previous section we derived a bound for the probability P (W >​ Λ​) when the minimum extracted work 
Wmin is fixed. We are going to solve the same problem with a different constraint, fixing the average extracted work 
instead of the minimum, i.e. replacing Eq. (6) with the condition

∫ µ= =
−∞

∞
W P W WdW( ) , (42)

with μ ≤​ Λ​ being a fixed value. As we shall see in the following this problem admits optimal processes which have 
the same dichotomic structure as the optimal solutions one gets when imposing the constraint on the minimal 
work production. To be more precise Eqs (10) and (11) still provide the optimal solutions by setting Wmin to fulfil 
Eq. (42), i.e. solving for the following transcendental equation

µ = Λ + − =
− Λ + −

−
.

β β β β

β β

− ∆ Λ − ∆

Λ
p p W e e e e W

e e
(1 ) ( ) ( )

(43)

F W F

Wmin
min

min

min

Noticing that μ is strictly increasing in Wmin for every fixed Λ​ (see Fig. 6) and so there exists one and only one 
value Wmin[Λ​, μ] that solves equation (43). We can then conclude that the optimal probability in this case is given 
by the function

Λ≥ =
−

−
µ

β β µ

β β µ

− ∆ Λ

Λ Λ
P W e e

e e
( ) ,

(44)

F W

Wmax
( )

[ , ]

[ , ]

min

min

which we have plotted in Fig. 7 for fixed values of Δ​F and β.
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To prove the above results we adopt the Lagrange multiplier technique to study the stationary points of Eq. (4) 
under the constraint (42). Also, to avoid technicalities we find it convenient to discretize the probability distri-
bution, a trick which allows us to impose the positivity of P (W) by parametrizing it as q2(W) with q(W) being an 
arbitrary function. Accordingly the Lagrangian of the problem can be written in this way:

 ∑ ∑ ∑ ∑λ λ µ λ= +




 −





 +





 −





 +





 −







β β
µ

≥Λ

− ∆p W e q W e q W W q W( ) ( ) ( ) ( ) 1 ,
(45)W

J
W

W F

W W

2 2
1

2

where λJ, λμ and λ1 are the Lagrange multipliers that enforce, respectively, the Jarzynski identity (2), the average 
constraint (42), and the normalization. Deriving with respect to q(W) we hence obtain the following Lagrange 
equation:

λ β λ λ
Θ − Λ + + + 

 =
β

µq W W e W( ) ( ) 0, (46)J
W

1

with Θ​(W) being the Heaviside step function. The above identity must hold for all W: accordingly the supports of 
q(W) and of the function in the square brackets must be complementary. This last term nullifies in at most three 

Figure 6.  Contour plot of the average work μ for β = 1
2

 and −ΔF = 1, as a function of Wmin and Λ. The 
plot clarifies the increasing behaviour of μ as a function of Wmin for every fixed value of Λ​.

Figure 7.  Contourplot of the optimal probability Λ≥P W( )W
max
( )min  of Eq. (44) for β = 1

2
 and −ΔF = 1, as a 

function of μ and Λ. By definition μ can not exceed −​Δ​F and the problem for Λ​ ≤​ −​Δ​F becomes trivial, so we 
excluded those regions from the plot.
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points (say W1, W2, and W3), only one of which (say W3) is above the threshold Λ​ (verifying this property is easy, 
since the zeroes are the crossing points between an exponential function and a piecewise linear function). Thus 
we can suppose that q(W), and hence the corresponding probability distribution P (W) =​ q2(W), is non zero on 
only these selected points. Indicating with p1, p2 and p3 the values assumed by P (W) on W1, W2 and W3 we can 
then express the problem constraints as follows

+ + =p p p 1, (47)1 2 3

µ+ + =p W p W p W , (48)1 1 2 2 3 3

+ + = .β β β β− ∆p e p e p e e (49)
W W W F

1 2 3
1 2 3

Among all possible solutions of these last equations we have finally to select those which provide the maxi-
mum value for the probability of extracting work above the threshold Λ​, i.e. remembering that only W3 can be 
larger than or equal to Λ​, this corresponds to select the solution with the largest value of p3. To solve this last 
problem we resort once more to the Lagrange multiplier technique under the Karush-Kuhn-Tucker conditions25 
to enforce the positivity of W3 −​ Λ​. Accordingly the new Lagrangian is now

∑ ∑ ∑λ λ µ λ η′ = + ′




 −





 +

′




 −





 +

′




 −





 + Λ −β β

µ
=

− ∆

= =
p e p e p W p W1 ( ),

(50)
J

i

W
i

F

i
i i

i
i3

1

3

1

3

1
1

3

3
i

with

η Λ η− = ≥ .W( ) 0 and 0 (51)3

The KKT conditions are necessary (even if not sufficient) for a point to be a constrained maximum, and they 
allow two kind of solutions:

1.	 The maximum is in the internal part of the region described by the inequality constraint, then W3 ≠​ Λ and by 
the conditions (51) we obtain η =​ 0. In this case the Lagrange equations relative to Wi (i =​ 1, 2, 3) are:

βλ λ

′ + ′

 =
β

µp e 0, (52)i J
Wi

then either W1 =​ W2 =​ W3 >​ Λ or, if one or more of the pi are equal to zero, the Wk for k ≠​ i are all equal. 
These solutions have to be rejected, because they fail to satisfy the constraint (48).

2.	 The maximum is on the boundary of the inequality constraint then W3 =​ Λ. From the conditions (51) η can 
be different from 0, then, although the Lagrange equations for W1 and W2 are still described by the (52) the 
one for W3 is not. Thus either W1 =​ W2 ≤​ Λ =​ W3 or one between p1 and p2 vanishes. In both cases the sup-
port of the work distribution reduces to two points.

We conclude that in order to maximize P (W ≥​ Λ) when the average extracted work μ is fixed, the distribution 
must be different from zero in only two values, Λ​, and a smaller one we call Wmin, i.e. as anticipated at the begin-
ning of the section, they must have the form (10) yielding Eq. (44) as the optimal probability of work extraction 
above threshold.

Discussion
In this paper we studied single-shot thermodynamic processes focusing on the specific task of probabilistically 
extracting more work than what is allowed by the second law of thermodynamics. We found that for all processes 
obeying the Jarzynski identity, there exists an upper bound (7) to the work extraction probability which depends 
on: how large is the desired violation, the minimum work that we are willing to extract in case of failure, and the 
free energy difference between the final and initial states. Moreover, within the formalism of discrete quantum 
processes, we have shown that the bound can be saturated and we determined the corresponding optimal pro-
tocols. Analogous results have been obtained also when replacing the constraint on the minimal work with a 
constraint on the average work extracted during the process.

With our analysis we hope to contribute to the yet quite unexplored regime3,4,12,17,18 in which statistical fluc-
tuations are not considered as a problem but as an advantage of microscopic thermodynamics, in the sense that 
they can be artificially enhanced in order to obtain tasks which are otherwise impossible in the thermodynamic 
limit. With respect to standard thermodynamics, in this regime we should adopt a completely different paradigm 
for judging what is a “good” process. Indeed quasi-static processes are usually considered as optimal since they are 
reversible, they do not produce excess entropy, they allow to reach the Carnot efficiency, etc. On the other hand, as 
we have shown in this work, in specific regimes in which fluctuations are “useful” the perspective is reversed and 
non-equilibrium processes becomes operationally optimal.

Our findings could be experimentally demonstrated in every classical or quantum thermodynamics experi-
ment involving large work fluctuations. For example experimental scenarios which are currently promising are: 
organic molecules26,27, NMR systems28,29, electronic circuits30,31, trapped ions32, colloidal particles33, etc. In all 
these contexts, up to now the task has been mainly focused on the verification of quantum thermodynamic prin-
ciples and fluctuation theorems. We believe that, similar experimental settings can be easily optimized in order to 
maximize the probability of work extraction, approximately realizing the ideal processes proposed in this work.
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Methods
Jarzynski identity for the discrete process.  Here we show that the discrete process described by the 
sequence (15) satisfies the Jarzynski identity (2). Ultimately this is a direct consequence of the fact that each single 
DUT +​ DTT process fulfills such relation13. Indeed from Eq. (19) we can write

∫ ∫ ∫

∑

β β

= =

= =
∑

= = − − = − ∆

β β β

β
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+ +

− − ∆ + +∆
− + +
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( ) ( )
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0
0
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N
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1
1

1
(1) ( ) 1

1
(1) ( )

where in the last identities we used Eq. (17) and the fact that the partition function Zj of the Gibbs state ω βH
( )

j
 is 

connected to its Helmholtz Fj free energy via the identity = ∑ = .β β− −Z e ej k
E Fk

j
j

( )

Optimal processes for discrete transformation with d > 2 level systems.  In the main text we have 
shown that a two level system is already enough to achieve the maximum work extraction probability dictated 
by the bound (7). However, for experimental reasons, one may be forced to work with a system characterized by 
d >​ 2 energy levels, and we may be interested in determining what are the optimal processes in this context. In 
the main text we noticed that the presence of only one quench is a necessary condition to saturate the bound (7). 
That kind of reasoning holds for systems of arbitrary dimension, from which Eq. (10) is obviously independent. 
Thus, looking for an optimal process involving a d-dimensional system we have to slightly modify the procedure 
described in the main text although the structure remains the same. Explicitly:

1.	 Perform a quasi-static transformation that brings all the initial energies eigenvalues Ek
(0) of the system to 

their final values, except one of them (say the m-th one), that is instead brought to the value Ea which will be 
fixed later on, i.e.

→ ∀ ≠

→ .

E E k m

E E

,

(54)
k

N

m a

(0)
0
( )

(0)

2.	 Apply a finite DUQ which moves the m-th level from Ea to a value Eb >​ Ea followed by a complete thermaliza-
tion of the system.

3.	 Perform a quasi-static transformation that brings Eb to the final value Em
N( ), in this way the system reaches the 

final configuration.

As in the two-level case discussed in the main text the distribution of work is given by the sum of two delta 
functions terms (27) the only difference being in the value of the probability p0 which now is given by

=
∑

∑ +

β

β β
≠

−

≠
− −

p e

e e
,

(55)
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E
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k
N
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N

a

( )

( )

while the difference of the free energies associated with the intermediate steps of the protocol which enters 
Eq. (28) is now expressed as

β
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We can then calculate Ea and Eb from Eqs (28), (29) and (56) obtaining:
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Then, computing the success probability with the equation (55) we find that p as exactly the same form we 
have for the d =​ 2 case, i.e. Eq. (32). As a final remark we notice that the protocol saturating the bound is not 
unique for d ≥​ 3, because in this case there are multiple degrees of freedom in the system. For example there 
are different equivalent choices of the energy level Em, moreover other optimal protocols involving multi-level 
quenches could exist.
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