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Monolayer MoS2 Bandgap 
Modulation by Dielectric 
Environments and Tunable 
Bandgap Transistors
Junga Ryou1, Yong-Sung Kim1,2, Santosh KC3 & Kyeongjae Cho3

Semiconductors with a moderate bandgap have enabled modern electronic device technology, and the 
current scaling trends down to nanometer scale have introduced two-dimensional (2D) semiconductors. 
The bandgap of a semiconductor has been an intrinsic property independent of the environments and 
determined fundamental semiconductor device characteristics. In contrast to bulk semiconductors, 
we demonstrate that an atomically thin two-dimensional semiconductor has a bandgap with strong 
dependence on dielectric environments. Specifically, monolayer MoS2 bandgap is shown to change 
from 2.8 eV to 1.9 eV by dielectric environment. Utilizing the bandgap modulation property, a tunable 
bandgap transistor, which can be in general made of a two-dimensional semiconductor, is proposed.

Atomically thin two-dimensional (2D) semiconductors have attracted a great deal of attention for their superior 
properties in electronic devices. Monolayer (ML) molybdenum disulfide (MoS2) has shown high electron mobil-
ity of about 217 cm2 V−1 s−1 and an excessively high current on/off ratio of an order of 108 in a field effect tran-
sistor (FET)1,2. However, the superior properties have been achieved only with a supporting substrate and a gate 
dielectric in a top gate FET structure, such as the HfO2/MoS2/SiO2 stack1,2. Without the top gate high-k dielectric, 
large reduction of the electron mobility has been reported1–3, and it has been believed to be due to the environ-
mental dielectric screening (EDS) effect suppressing the Coulomb scattering of carriers with charged impurities 
in the 2D semiconductors2,4. The EDS effect has also been reported to change the defect level with the band gap 
and induce deep- to shallow-level transition of dopants, enhancing the carrier concentrations significantly and 
the electrical conductivities5. Furthermore, the exciton binding energies have also been reported to be affected by 
the EDS effect strongly in 2D semiconductors6,7.

A moderate bandgap size is a determining characteristic property of a semiconductor. Nonetheless, an accu-
rate evaluation of the bandgap in low dimensional semiconductors has not been as simple as in conventional bulk 
semiconductors. It is well established that the bandgap size of MoS2 layers has a strong dependence on the number 
of layers. Furthermore, in a spatially isolated low dimensional system (e.g. freestanding 2D semiconductors), the 
strong unscreened Coulomb interaction (through the space outside of the 2D materials) makes the quasiparticle 
(QP) renormalization of electrons huge. Within the GW approximation, the electronic bandgap of a freestanding 
ML MoS2 has been predicted to be about 2.8 eV (refs 8–12). Due to the strong exciton binding (~1 eV)8–12, the 
optical bandgap has been obtained to be about 1.8 eV from the photoluminescence (PL) and optical absorption 
experiments13, which agree with the theoretical Bethe-Salpeter-Equation (BSE) calculations9–12. Since the exciton 
binding energy is large, the measured optical bandgaps are not accurate representation of semiconductor band-
gap, determined by the energy difference between valence and conduction band edges. Eliminating the excitonic 
effect, the measurements of the electronic bandgap have given diverse results. With intercalated potassium (K) in 
a bulk MoS2, a quasi ML MoS2 has been fabricated from a bulk MoS2, and a direct bandgap of 1.86 eV at the K val-
ley has been measured using angle-resolved photo-emission spectroscopy (ARPES)14. For a chemical vapor dep-
osition (CVD) grown ML MoS2 on a Au(111) substrate, the ARPES bandgap of about 1.39 eV has been measured, 
which is very small15. In scanning tunneling spectroscopy (STS) measurements, the bandgap of a ML MoS2 on 
graphite substrate has been measured to be 2.15 eV (ref. 16) and that on a bilayer graphene to be 2.16 eV (ref. 17), 
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which are larger than other measured values, but still significantly lower than the predicted GW value of 2.8 eV 
(refs 8–12). In a ML MoS2 phototransistor that has the Al2O3/MoS2/SiO2 stack structure, the electronic transport 
bandgap of the ML MoS2 has been measured to be 1.8 eV, in which the optically excited excitons are separated to 
generate electron and hole carriers by applying the source and drain bias voltages18. As such, the measured elec-
tronic bandgap sizes have been in a wide range (1.39–2.16 eV), and the bandgap changes have been speculated to 
be introduced by the EDS10,15,17 or carrier-induced bandgap renormalization19 effect. Nevertheless, the measured 
bandgap sizes are significantly smaller than the accurate GW bandgap of 2.8 eV. These findings indicate that the 
traditional concept of assigning a well-defined bandgap size for a specific semiconductor (e.g., 1.1 eV for Si) as 
a fundamental material property may not be applicable to 2D semiconductors, and that the electronic bandgap 
may have strong dependence on the environments. Considering the fundamental role of the bandgap size in 
electronic device applications, it is critical to develop a fundamental and quantitative understanding on how the 
environmental effects change the bandgap sizes of 2D semiconductors.

In this study, as a representative 2D semiconductor, we investigate the bandgaps of a ML MoS2 with various 
environments based on GW calculations, and predict a wide range of bandgap size determined by the strong 
effects on the ML MoS2 embedded in a device structure. The bandgap of ML MoS2 is found to change by the 
surrounding medium according to the dielectric constant (κ E) of the environment. Specifically, the GW band-
gap changes from 2.8 eV of freestanding MoS2 down to about 1.9 eV for MoS2 in a sandwich structure between 
two high-k dielectrics. On the other hand, the bandgap changes down to 2.2 eV for a supported structure on 
ultrahigh-κ E dielectrics. These GW bandgap changes are continuous functions of dielectric constant of the sur-
rounding medium. Based on this finding, it is suggested that there should be transport barriers to electrons and 
holes in the ML MoS2 channel between near the metallic contacts and near the gate dielectric in a device struc-
ture, because of the different screening environments (and correspondingly different bandgap sizes) surrounding 
the ML MoS2. When the barriers are controlled by an external source, a tunable bandgap transistor can be made 
possible utilizing the environment-dependent property of the 2D semiconductors.

Results and Discussion
DFT and GW bandgaps of ML MoS2 with environments. First, we consider five ML MoS2 model 
systems with different dielectric environments for full DFT and GW calculations: (A) a freestanding ML MoS2 
surrounded by vacuum, (B) ML MoS2 on a HfO2 substrate, (C) ML MoS2 sandwiched by HfO2, (D) ML MoS2 on a 
Au substrate, and (E) ML MoS2 sandwiched by Au. We construct the model atomic structures for the five systems 
as shown in Fig. 1a–e. The details of the structures are described in the Supplementary Materials. The calculated 
band structures within the local density approximation (LDA) are plotted in Fig. 1g–k. The LDA band structures 
indicate that the ML MoS2’s have a direct bandgap of 1.8 eV at the K valley irrespective of the environments. The 
electronic structure analysis shows that the orbitals of the valence band maximum (EV) and the conduction band 
minimum (EC) at the K valley are characterized as the Mo 4d atomic orbitals. These atomic orbitals are located in 
the middle of the three atomic layers of ML MoS2 layer, and they have negligible hybridization with the orbitals 
of the nearby surrounding materials that interacts with the ML MoS2 through the van der Waals gap. The LDA 
bandgap at the K valley is about 1.8 eV agreeing with previous DFT calculations and found to remain unchanged 
with different environments. For the metallic Au environments (Fig. 1j,k), the Au related states (6s) are found 
inside the bandgap of the ML MoS2, but they can be clearly distinguished from the ML MoS2 states (shown as blue 
dots). Within the LDA, the Au 5d states are found inside the valence bands of the ML MoS2, and the Fermi level 
(EF) is found to be located at EV +  0.8 eV or EC −  1.0 eV.

The calculated GW band structures of the ML MoS2 with the same environments are plotted in Fig. 1m–q. 
They also show that the ML MoS2 has a direct bandgap at the K valley irrespective of the environments, as in the 
case of the LDA. The direct bandgap at the K valley of the freestanding ML MoS2 (Fig. 1m) is 2.8 eV in GW, close 
to the previous calculations8–12. The GW bandgap of the ML MoS2 on HfO2 (Fig. 1n) is calculated to be 2.6 eV, 
and that of the ML MoS2 sandwiched by HfO2 (Fig. 1o) is 2.4 eV, which are smaller than that of the freestanding 
ML MoS2 (2.8 eV). Since the electronic orbital hybridization between the MoS2 and the nearby HfO2 dielectric 
is negligible, as shown in the LDA results (Fig. 1h,i), the main cause of the bandgap reduction in the GW calcu-
lations is expected to be the EDS effect on the QP bandgap renormalization. The size of the bandgap reduction 
is significant, up to by 0.4 eV, in the presence of HfO2 layers. The ML MoS2 on the Au metallic substrate (Fig. 1p) 
is found to have a direct bandgap of 2.3 eV at the K valley in the GW calculations, and the ML MoS2 sandwiched 
by the Au layers (Fig. 1q) has a GW bandgap of 2.1 eV. The bandgap reduction is even more significant, up to by 
0.7 eV, by the metallic Au environments.

GW bandgaps of ML MoS2 with effective medium. In order to investigate the primary effect of EDS 
on the bandgap of ML MoS2, we incorporate the effective environmental dielectric constant (κ E) into the dielec-
tric matrix of the screened Coulomb (W) interaction in GW calculations. Details of the procedure are described 
in the Supplementary Materials. With this approach that includes the EDS effectively in GW, there are several 
advantages besides making it possible to study separately the EDS effect: reducing the computational costs of 
GW calculations with environments, and making it possible to include additional polarizability into the screened 
Coulomb (W) interaction. Note that the dielectric effect of liquid medium on ML MoS2 bandgap can be mod-
eled by the effective dielectric medium. The quasiparticle renormalization in the GW approximation (Fig. 1m-r) 
includes only the electronic contribution of screening into the screened Coulomb (W) interaction. Since high-κ E 
dielectrics such as HfO2 (ε 0 ≅  26) usually have large ionic contribution (ε 0− ε ∝ ≅  21) to the dielectric screening, 
the renormalization of electrons in the ML MoS2 would be further modified by the ionic screening of the sur-
rounding materials. However, this ionic screening effect is neglected in the GW calculations of the band struc-
tures shown in Fig. 1n–r. In order to include such an ionic contribution of screening explicitly, the GW plus the 
lattice polarization effect (LPE) can be applied to the calculation of the bandgap renormalization. In some ionic 
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solids, the inclusion of the LPE has been reported to lead to a large shrinkage of the bandgap20–22. Compared to 
full GW +  LPE, effective dielectric medium method provide an alternative efficient approach to include full die-
lectric effects on the MoS2 bandgap.

The calculated GW bandgaps of ML MoS2 with an effective dielectric constant (κ E) of the environments are 
plotted as a function of the κ E in Fig. 2a. With κ E =  1, the ML MoS2 represents the freestanding isolated one in vac-
uum, and the GW bandgap is found to be 2.8 eV at the K valley. With increasing the dielectric constant, κ E, the GW 
bandgap is found to drop rapidly down. With the one-side dielectric, in such a case of the supported ML MoS2 on 
a substrate, the GW bandgap is found to reduce down to about 2.2 eV with a ultrahigh-κ E dielectric (at κ E =  30).  

Figure 1. Atomic structures and electronic band structures. (a–f) Atomic structures of the freestanding ML 
MoS2 (a), ML MoS2 on HfO2 substrate (b), ML MoS2 sandwiched by HfO2 (c), ML MoS2 on Au metallic substrate 
(d), ML MoS2 sandwiched by Au (e), and ML MoS2 sandwiched by Ag (f). The Mo, S, Hf, O, Au, and Ag atoms 
are indicated by the purple, yellow, gold, red, yellow, and blue color balls, respectively. (g–l) Calculated LDA band 
structures of the freestanding ML MoS2 (g), ML MoS2 on HfO2 (h), ML MoS2 sandwiched by HfO2 (i), ML MoS2 
on Au (j), ML MoS2 sandwiched by Au (k), and ML MoS2 sandwiched by Ag (l). The blue filled dots (g–l) indicate 
the projected states to the ML MoS2. (m–r) Calculated GW band structures of the freestanding ML MoS2 (m), ML 
MoS2 on HfO2 (n), ML MoS2 sandwiched by HfO2 (o), ML MoS2 on Au (p), ML MoS2 sandwiched by Au (q), and 
ML MoS2 sandwiched by Ag (r) are shown. The red filled dots (m–r) indicate the projected states to the ML MoS2. 
The arrows (g–r) indicate the direct bandgap at the K valley of the ML MoS2. The Fermi levels of the Au and Ag 
containing systems (j–l,p–r) are indicated by the green dashed lines.
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With the both-side dielectric, as in a typical top-gate FET structure, the GW bandgap of the ML MoS2 is found to 
be smaller down to about 1.9 eV with a ultrahigh-κ E dielectric of κ E =  30. It is notable that the bandgap reduction 
is very rapid in the range 1 <  κ E <  5, and most of the bandgap reduction, about 80%, occurs with κ E =  5. Thus, the 
presence of a moderate dielectric material in vicinity of a ML MoS2, can strongly affect the bandgap renormaliza-
tion in the ML MoS2, even though it is not an ultrahigh-κ E dielectric.

The experimentally measured bandgap of 2.15 eV in STS16 for the ML MoS2 on graphite substrate is close 
to the obtained asymptotic value of 2.2 eV for the one-side dielectric, and the STS bandgap of 2.16 eV for the 
ML MoS2 on a bilayer graphene substrate17 is also close the value. The measured ARPES bandgap of 1.86 eV for 
the K-intercalated MoS2 (ref. 14) is close to the obtained bandgap of ML MoS2 embedded in high-κ E dielectric 
(1.9 eV). The measured ARPES bandgap of 1.39 eV for the ML MoS2 on Au substrate15 indicates a rather strong 
interaction at the interface, as shown in our previous metal-MoS2 interface study18. The measured bandgap of 
1.8 eV for the ML MoS2 in the Al2O3/MoS2/SiO2 stacked top-gate FET19 is closer to the asymptotic value of 1.9 eV 
obtained for the both-side dielectric system. An additional reduction of the bandgap may be possible by the 
carrier-induced renormalization of bandgap20 in n-type ML MoS2 FET.

Absolute band edge levels of ML MoS2 with environments. We now investigate the absolute band 
edge levels (relative to vacuum level) of ML MoS2 with including the EDS effect. Figure 2b shows the band edge 
levels of ML MoS2 in LDA and those in GW with various κ E. The EV and EC in LDA are found to be − 6.16 and 
− 4.31 eV, respectively, which are close to the previous LDA calculations (− 5.98 and − 4.29 eV)23. The absolute 
GW band edge levels are obtained using the bandgap center alignment scheme23, and the obtained EV and EC 
in GW with κ E =  1 are − 6.64 and − 3.83 eV, respectively, in good agreement with the previous GW calculations 
(− 6.50 and − 3.74 eV, respectively)23. The calculated GW band edge levels with κ E plotted in Fig. 2b show that the 
EV increases up and the EC decreases down monotonically with increasing κ E, approaching the LDA values of EV 
and EC with ultrahigh-κ E.

For the (strained) Au metal, the work function (5.4 eV) level is located at EV +  0.8 eV or EC −  1.1 eV with 
the LDA band edge levels. They agree with those obtained in our atomistic GW calculations (EV +  0.8 eV or 
EC −  1.0 eV) (Fig. 1j,k). In the atomistic GW calculations, the EF is found to be located at EV +  1.0 eV or EC −  1.3 eV 
in the Au supported structure and at EV +  0.9 eV or EC −  1.2 eV in the Au sandwiched structure (Fig. 1p,q). If 
we use the GW band edge levels without EDS (κ E =  1), the Au work function level is located at EV +  1.2 eV or 
EC −  1.6 eV, which is far from the atomistic GW calculations (EV +  0.9 eV or EC −  1.2 eV, as shown in Fig. 1q). 
When we use the GW band edge levels with ultrahigh-κ E (says κ E =  30), the Au work function level of EV +  0.8 eV 
or EC −  1.1 eV is close to the atomistic GW results (EV +  0.9 eV or EC −  1.2 eV) (Fig. 1q). Note that within the GW, 
the Au 5d states are found to emerge inside the bandgap of ML MoS2 (Fig. 1p,q), which is in contrast to the LDA 
results (Fig. 1j,k). Although both the LDA and GW results indicate that the Au work function level is located deep 
inside the bandgap of ML MoS2, and some experiments have shown that Au produces n-type Schottky contacts to 

Figure 2. Bandgap and absolute band edge levels. (a) Calculated GW bandgaps at the K valley of the ML 
MoS2 on a substrate (red) and in a sandwich structure (black), as a function of the effective dielectric constant  
κ E of the environment. (b) Calculated absolute GW band edge levels of the ML MoS2 sandwiched by the 
effective dielectric media having κ E. They are compared to the absolute band edge levels in LDA. The work 
function levels of Au (at − 5.1 eV) and the strained (used in our calculations) Au (at − 5.4 eV) are indicated by 
the dashed and dotted line, respectively.
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ML MoS2 (refs 24,25). Au has been typically used as a n-type contact metal to MoS2 (refs 1,26,27), which may be 
due to the Fermi level pinning at the interface near to the EC of MoS2 (refs 18,27–29).

In our calculations, the Au(111) slab is strained by + 9.6% (tensile) to match in lattice to the 1 ×  1 ML MoS2. 
In order to match the lattice constant of Au with the MoS2 within a few % of strain, a larger supercell, for example 
2 ×  2 Au(111) slab and √ 3 ×  √ 3R30° MoS2 with 5.0% of compressive strain, is required with the number of atoms 
exceeding 33, with which the GW calculation is computationally demanding. One effect of the tensile strain on 
the Au(111) slab is lowering the Fermi level with smaller band dispersions, and the work function of the strained 
Au(111) is 5.4 eV, while that of the unstrained Au(111) is 5.1 eV, as indicated in Fig. 2b. In both cases, the Fermi 
level crosses the Au(111) 6s-bands and is located inside the MoS2 bandgap. Both are metallic with the 6s Fermi 
electrons, having the infinite static dielectric constants. Since the quasi-particle bandgap dependence on the die-
lectric constant is very weak with the large static dielectric constant, less than 0.1 eV when κ E >  10 (see Fig. 2a), 
the quasi-particle bandgap of the ML MoS2 is not expected to be significantly altered by the applied strain on the 
Au(111). We check another metallic slab, Ag(111), to test the quasi-particle bandgap of ML MoS2 with metallic 
screening. The Ag(111) slab is strained by 9.4% (tensile) to match with the 1 ×  1 ML MoS2. The calculated band 
structures of the ML MoS2 with Ag(111) in the sandwich structure are shown in Fig. 1l (LDA) and Fig. 1r (GW). 
The obtained GW bandgap of the ML MoS2 is 2.11 eV with the metallic Ag(111) environment, which is nearly the 
same to the GW bandgap (2.09 eV) of the ML MoS2 with the metallic Au(111).

Bandgaps of ML MoS2 in FET. Figure 3 illustrates the effect of EDS on the bandgap of ML MoS2 in var-
ious environments. In an isolated freestanding ML MoS2, the strong Coulomb interaction (through the free 
space) between electrons makes the QP renormalization of electrons huge leading to a large bandgap (Fig. 3a). 
However, with a dielectric environment, the Coulomb interaction between electrons in the ML MoS2 is addition-
ally screened, and the QP bandgap of the ML MoS2 is correspondingly reduced (Fig. 3b representatively for the 
both-side HfO2 dielectrics). In a typical top-gate FET device structure, a channel is located between a substrate 
and a gate dielectric. The channel is also connected with metallic contacts in the source and drain regions. Such 
typical device structure is shown in Fig. 3c with the metallic contact regions (representatively both-side Au) at 
both ends and the channel region with nearby dielectrics (representatively both-side HfO2) in the central region. 
For this structure, the EDS effect surrounding the ML MoS2 should be different for the source/drain and channel 
region. The different EDS strengths of metal and gate dielectric would result in different bandgaps in different 
regions. Under the metallic source/drain contact regions, the electronic bandgap should be smaller than in the 
channel region between the gate dielectric and the substrate. According to our atomistic GW calculations, the 
bandgaps in the source and drain regions with the both-side Au contacts are 2.1 eV, while the bandgap in the 
channel region with the both-side HfO2 dielectrics is 2.4 eV. The EV and EC offsets (Δ EC and Δ EV) in the ML 
MoS2 channel are 0.1 and 0.2 eV, respectively. It indicates that there are an electronic transport barrier (Δ EC) of 

Figure 3. Schematic figures of screening and band diagrams. (a) Strong Coulomb interaction (weak 
screening) between electrons (red lines) in the freestanding ML MoS2 and the wide bandgap. (b) Moderate 
Coulomb interaction (moderate screening) between electrons (green lines) in ML MoS2 with both-side (HfO2) 
dielectric environments and the reduced bandgap. (c) Weak Coulomb interaction (strong screening) between 
electrons (blue lines) in ML MoS2 with both-side metallic (Au) environments, in conjunction with the ML MoS2 
with both-side (HfO2) dielectric environments. The band offsets are indicated in the band diagram below, which 
act as transport barriers to electrons (Δ EC) and holes (Δ EV). (d) A hypothetical device structure composed of a 
ML MoS2 sandwiched by Au metallic contacts at both the ends and a dielectric material in the central region, of 
which the dielectric constant [κ E(V)] is variable with the electric field applied by the gate voltage (V). The band 
diagram shows the tunable transport barriers to electrons [Δ EC(V)] and holes [Δ EV(V)].
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0.2 eV from the source to the channel, and a hole transport barrier (Δ EV) of 0.1 eV, even though the ML MoS2 
channel itself is homogeneous atomically, due to the different EDS effects (see bottom in Fig. 3c). This type of 
environmentally induced barriers has not been known, and can be important in low-dimensional electronic 
devices. Especially, they can play a role of suppressing off-state leakage current in FET by blocking the minority 
carrier transport.

If the κ E of the gate dielectric can be controlled externally, both the electron and hole transport barriers can be 
controlled, as schematically illustrated in Fig. 3d. In this tunable bandgap FET, both the hole and electron trans-
port barriers can be controlled by the gate, which is the main difference from the conventional FET that controls 
only the band offsets between the source/drain and the channel (and thus the transport barrier of only one type 
of carrier). Such tunable bandgap is highly desirable to optimize and design a novel electronic device, and bilayer 
graphene has been utilized to realize the tunable bandgap FET, in which the bandgap is varied by an external elec-
tric field to break the inversion symmetry of the bilayer graphene30. While the bilayer graphene system is highly 
restrictive in symmetry, the bandgap tuning by EDS can be applied generally to low dimensional semiconductors 
without any symmetry requirements. A challenge to realize the tunable bandgap FET by EDS is on controlling the 
environmental (gate) dielectric constant (κ E) externally. Recently, the electrically controlled dielectric materials 
utilizing ferroelectric properties have been suggested31, and such ferroelectric materials32–35 can be promising as 
gate dielectric materials in the EDS-based tunable bandgap FET. Polar instability at the phase transition36 can be 
also utilized to vary the dielectric constant, and distance control from the gate dielectric to the 2D semiconductor 
channel can be another way to control the EDS externally, which can function as an electromechanical device.

Conclusions
Electronic bandgap of a 2D semiconductor, ML MoS2, depends on the nearby dielectric environments, through 
the screened QP renormalization of electrons in the ML MoS2. The bandgap tends to reduce with increasing the 
environmental dielectric constant. In a ML MoS2 FET, the vicinity of metallic contacts gives smaller bandgap 
than that of the gate dielectric, and there should be valence and conduction band offsets between the regions. 
The band offsets can play a role of barriers to electron and hole transports through the channel. Utilizing the 
environment-dependent property of the bandgap, a tunable bandgap FET is suggested, which operates with the 
bandgap controlled by an external source to control the electron and hole transport barriers.

Methods
Density-Functional Theory and GW Calculations. The mean-field density-functional theory (DFT) 
calculations were performed with the Quantum-Espresso code with the local density approximation (LDA)37. 
The kinetic energy cutoff for the plane-wave basis expansion of the wave-functions was 40 Ry. The 24 ×  24 ×  1 
k-point sampling in the hexagonal Brillouin zone (BZ) of the 1 ×  1 ML MoS2 was used. The GW calculations were 
performed with the BerkeleyGW code38,39. The kinetic energy cutoff for the plane-wave basis expansion of the 
dielectric matrix was 6 Ry. The number of conduction bands used in the calculations of the static irreducible ran-
dom phase approximation (RPA) polarizability and the Coulomb-hole self-energy was 100 for the free-standing 
1 ×  1 ML MoS2. For the 1 ×  1 ML MoS2 with the HfO2 and Au environments, the number of conduction bands 
used was around 700. The limited number of conduction bands can affect the GW eigenvalues at the M point 
in the hexagonal BZ40, but those at the K point converge fast with respect to the number of conduction bands. 
When we used more number of conduction bands, and the GW bandgaps at K were not significantly affected. The 
generalized plasmon pole (GPP) approximation was used for the frequency dependence of the dielectric matrix. 
We applied slab truncation scheme for the Coulomb interaction to minimize the supercell interaction for the 
free-standing ML MoS2 and the ML MoS2 with the HfO2 environments.

Model Atomic Structures. The 1 ×  1 hexagonal unit cell for the ML MoS2 was used. The lattice constant was 
fixed to 3.16 Å, which is the LDA optimized value for the free-standing ML MoS2. With the 1 ×  1 in-plane perio-
dicity of the ML MoS2, the HfO2 was modeled by the O-terminated 1 ×  1 HfO2(111) slab, and the Au was modeled 
by the 1 ×  1 Au(111) slab. With these interface structures, the HfO2 and Au slabs are hydrostatically strained by 
− 8.5% (compressive) and + 9.6% (tensile), respectively, to match their lattice constants to that of the ML MoS2 
(3.16 Å). The atomistic environments are only model systems that represent dielectric and metallic environments. 
Six Hf atomic layers were used for the HfO2 dielectric slab, and six Au atomic layers were used for the Au metal-
lic slab, as shown in Fig. 1b–e in the main article. For all the interfaces, we used the interface spacing of 2.975 Å 
(between the atomic layers), which was chosen arbitrary as the same to the interlayer spacing between the MoS2 
layers in bulk 2H-MoS2. The vacuum thickness of about 12 Å in the supercell was used. The ideal (as-cleaved) 
atomic structures for the HfO2 and Au slabs were used to see only the electronic EDS effect.
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