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Abstract

Background: Bell-shaped and terraced dose-response relations have been observed in single
ligand application for enzymes, carriers, transporters, G protein-coupled receptors as well as for
other receptive units. It seems that there is still a need for new models as analytical tools for such
dose-responses, especially in the light of expanding di- and multi-merization of the receptive units
for functionality.

Results: Self-inhibition by drugs is analyzed in the frame-work of a theoretical homotropic two-
state model, HOTSM. The model is a cubic reaction scheme based on a combination of
conformational isomerization between two states within a receptive unit and ternary-complexing
of two identical agonist molecules with the receptor. Concepts and terms related to self-inhibition
are presented. HOTSM has seven independent parameters. Making a few simplifying assumptions
narrows its analysis to initially look at four parameters. Some conclusions to be drawn are that a
first level of spontaneous activity is solely determined by an isomerization constant, L. As ligand
concentration rises, all seven parameters influence a second level of activity. At high ligand
concentrations, a third level of activity is determined by only four of the seven constants, viz. the L
constant and three intrinsic efficacy related constants, g, b, and d. The third level is given by |/[| +
I/(L-a-b-d)]. The third level may be above, at, or below the first and second levels. When the third
level is above the first level, dose-responses may be bell-shaped, terraced, or reversed bell-shaped
while when it is below the first level, dose-responses can attain forms of bell-shapes, reverse
terraces, or reverse bell-shapes. To exemplify its use, the HOTSM is fitted to experimental dose-
responses from sources in the literature. Development of the HOTSM is reviewed.

Conclusions: The homotropic two-state model, HOTSM, is a novel model for analyses of dose-
responses at equilibrium that are co-operative or show bell-shapes of auto-antagonism.

Background

Agonists, inverse agonists, and antagonists all bind in a
competitive fashion to primary binding sites in receptive
complexes and thereby affect the function of receptors.
The function of and binding to receptors and enzymes
may further be modulated by allosteric compounds [1-6].
Such modulators, conventionally termed "effectors" in
enzymology, bind to sites sterically separate from the pri-

mary binding site. Thus, the effect of binding a modulator
molecule resembles non-competitive kinetics.

Regulatory modulation of receptor and enzyme function
may be divided into heterotropic and homotropic allos-
teric behavior as originally defined by Monod and co-
workers |7]. Heterotropic allostery is seen when an effect of
a bound agonist or an enzymatic conversion of substrate
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to product is altered by the binding of a different modula-
tor molecule, eventually a product molecule, to a site dif-
ferent from the primary binding site on the receptive unit
or the enzyme complex. Homotropic allostery, on the other
hand, is seen when the agonist or the substrate itself binds
to a modulator site and thereby affects the function of
receptors or enzymes. This latter type of allosteric behav-
ior is characterized as co-operative, and as such the term
"co-operative" is used here in its strict sense only related
to auto-modulation [5,8]. Dose-response relations with
bell-shapes and terraces have been observed in single lig-
and applications both for enzymes [9,10], channel-,
pump-, and co-transporters [11-14], carriers [15], tyrosine
kinase receptors [16,17], and G protein-coupled recep-
tors, GPCRs, for neurotransmitters, hormones, and chem-
okines [18-25].

Some recent examples of treatment by model of bell-
shaped dose-responses have been carried out for receptive
units in general [26], for monomeric enzymes [27], for
growth hormone receptors [28], and for aggregation in
antigen-antibody interactions [29].

With the realization of widespread dimer and multimer
formation in functional units, including GPCRs [30], and
the recognition of additional allosteric sites in these recep-
tive unit [3,31,32] as well as for ABC transporters [33] and
many others, it seems that there is still a need for mecha-
nistic models where primary ligands (agonists) can oper-
ate as auto-modulators of function and simulate dose-
response relations that display self-modulation in the
form of either terraced curves or bell-shaped relations.
One such model is the homotropic two-state model,
HOTSM, presented here.

The HOTSM, which is a cubic ternary-complex reaction
scheme, should be distinguished from two other recently
developed cubic ternary-complex models. Thus, Hall has
advanced a cubic ternary-complex reaction scheme with a
receptor, an agonist, and a heterotropic modulator mole-
cule in the form of an allosteric two-state model, ATSM
[34]. This model is well-suited for analyzing dose-
response data when the concentration of either the ago-
nist or the modulator are varied separately. Another cubic
ternary-complex reaction scheme developed for signal
transduction in G protein coupled receptors, the so-called
cubic ternary-complex model, CTCM, has been thor-
oughly analyzed by Weiss et al [35-37]. For the CTCM it is
exclusively the activated and G protein-coupled receptor
conformations that participate in the measured response.

Both agonism and agonist modulation appear simultane-
ously as the agonist concentration is varied in the
HOTSM. Indeed, the HOTSM may describe self-modula-
tory phenomena of bell-shape, reverse bell-shape, terraces
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and reverse terraces found in dose-response relations. The
HOTSM appears as an appropriate reaction scheme in the
analysis of dose-response relations for functional dimers
as well as for other multimeric systems with a single type
of ligand present. A historical development leading to the
HOTSM is placed in Appendix

Concepts and developed terms

Concentration-dependent auto-antagonism and time-dependent
desensitization

When a self-inhibitory dose-response relation is consid-
ered from an aspect of its dependence on the CONCEN-
TRATION of a primary agonist or substrate, we may refer
to such type of self-inhibitory phenomena as auto-antago-
nism or negative co-operativity. Alternatively, when the
TIME-dependent aspect of self-inhibitory reaction kinetics
is at center stage, we speak about desensitization or inactiva-
tion. Auto-antagonism due to increasing ligand concentra-
tion is by definition the same as negative co-operativity,
since the term "co-operative", here, is solely used for
homotropic allostery [5,8]. Meanwhile, "negative co-
operativity" is related to shallow hyperbolic dose-
response curves and usually does not cover bell-shaped
dose-responses of auto-antagonism.

Results

The homotropic two-state model, HOTSM

In order to avoid misunderstandings, note that the term
"two-state" refers to states of an unliganded receptive unit,
and not to all possible receptor conformations.

HOTSM. Its analysis and evaluation

Fig 1 shows the equilibrium reaction scheme for homo-
tropic allostery including two ligand binding sites, identi-
fied by the position on either side of the receptor symbol
R, with possible different affinities, Agand A,,, as well as
unique intrinsic efficacy constants a and b for a bound
agonist at either site, and further encompassing a two-
state mechanism for activation of the receptive system,
either in form of a 7-TM/tyrosine kinase receptor entity,
an enzyme with prosthetic groups and co-factors, or a
transport unit with several subunits, such as ion channels
and pumps.

The symbols and parameters for the HOTSM reaction
scheme in Fig 1 are listed below:

S = agonist or substrate and its concentration

R; RS; SR; SRS; and R*; R*S; SR*; and SR*S = concentra-
tion of various receptor conformations. "R" symbols with
an "*" indicate active conformations, while "R" symbols
without an "*" are receptive units in a quiescent state.
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Reaction scheme for the homotropic two-state model, HOTSM. R is a receptive entity and S is a ligand, that can bind to two
sterically separate sites in R. This is signified by positioning at either side of symbol R. The receptive unit in the unliganded con-
dition exists in two conformations, a reactive form R and an active form R*. Arrows pointing into the plane of paper indicate
the flow direction of signal transduction. There are 7 equilibrium constants in the HOTSM reaction scheme. All symbols are

explained in the text.

L = the isomerization constant between unbound R* and
R, equal to R*/R

Ag = the equilibrium association constant for S at the
orthosteric site of R

Ay = the equilibrium association constant for S at the
allosteric site of R

a = intrinsic efficacy for R = R* when § is already bound
to the orthosteric site

b = intrinsic efficacy for R = R* when S is already bound
to the allosteric site

¢ = co-operativity coefficient for S on binding to liganded
R at either site

d = co-operativity coefficient for one ligand to be bound
when another ligand is already bound to R*'s or an intrin-
sic efficacy constant when two ligands are bound.

All seven system constants from L to d are forward con-
stants. This choice was made to make it easier to appreci-
ate the function of each parameter as the analysis
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develops. Meanwhile, note that the efficacy-, co-operativ-
ity-, and isomerization constants are neither microscopic
nor macroscopic [cf. [34]], and that the present isomeriza-
tion constant L is reciprocal to the isomerization constant
given for the original allosteric model, where the allosteric
constant L was equal to R/R* [7], or in their terminology
Ty/R,.

Active receptor conformations in the HOTSM are depicted
in Fig 1, and their fractional dose-response equation is
given by

activity _ ROrROS SR* SR S (1)
total ROrROS SR+ SIS R RS SR SRS '

This may be reformulated to

LE{1+b Dy 5 +a DAg (301 +b @ @ &y, 3))
1+ Ay 5 +Ag B {1 +c Dy B)+LI{1+b Dy B+a D BI{1+b B @ @Ay [5))

or in a simplified form

active _  x

Functional — HOTSM,
total

y+x
wherex=L-(1+b-Ay-S+a-Ag-S-(1+b-c-d-Ay-S))
andy=1+Ay - S+Ag'S - (1+c-AyS).

The saturation-variant of the fractional occupation rela-
tion for HOTSM is given by

saturation __x Binding - HOTSM (3).
total x+y

wherex' =x-L +y- 1.

I shall first deal with an analysis of the functional
HOTSM.

Functional-HOTSM. General considerations

Three plateaus of the functional-HOTSM

In the HOTSM, there are three levels of activated receptor
conformations, Fig 2.

A basic level, which we may call the "first plateau", FP, is
that of spontaneously active receptor conformations, R*,
before any ligand is added. In absence of ligands, the frac-
tion of activated receptors is equal to FP = R*/[R+R*] = L/
[1+L] = 1/[1+1/(L)], and thus independent of all parame-
ters except for L.

A second level of activity is found in the mid range of lig-
and concentrations, where ligands associate with the two
binding sites to form in particular R*S and SR*. The form
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and height of this second plateau, SP, and its position on
the concentration axis all depend on the values of the
seven independent parameters describing HOTSM.

A third level appears at high ligand concentrations, when
ligands are bound to both primary and allosteric sites,
maximizing the SRS and SR*S receptor conformations.
The level of response at the third plateau, TP, is only
dependent on four of the system constants, viz. a, b, d, and
the isomerization constant L, and is thus independent of
parameters Ag, A,,, and c. The third plateau is given by 1/
[1+1/(L-a-b-d)].

From the expressions for the first and third plateau, it is
easily deduced that TP is above FP for a-b-d > 1 and
below fora-b-d < 1.

Bell-shapes, terraces, and co-operativities

It turns out that there are three features of the system activ-
ity to be analyzed in response to varying the values of the
seven system constants, Fig 2. These three features are:

1) bell-shaped dose-responses with maxima and minima. We
may ask, when does the HOTSM elicit a bell-shaped dose-
response with an activity lower than maximum at higher
concentrations of ligand. Which constants determine such
behavior and which values for the constants are required?
And furthermore, when reverse bell-shaped behavior with
a minimum is observed, what are the values of relevant
parameters?

2) terraced and reversed terraced dose-responses. The question
is, which parameters are essentially involved when
HOTSM yields either increasing or decreasing terraced
dose-responses? And, which values are required for these
parameters?

3) co-operativity — positive or negative. For co-operativity,
without a bell-shaped dose-response relation, it is logical
to ascertain which values of relevant parameters make the
dose-response curve of HOTSM deviate from hyperbolic
dose-response curves operative for simple one-sited
systems.

Before a more detailed analysis of varying a single or a few
parameters, the principal shapes that the dose-response
curve of HOTSM can attain, as it possesses three plateaus,
are demonstrated in figure 2 and listed here. The first and
third response plateaus are locked with parameters L, a, b,
and d. The position of the second plateau is further deter-
mined by parameters ¢, Ag, and A, and this plateau may
a) be above the two other plateaus forming bell-shapes, b)
be in between FP and TP yielding terraced or reverse ter-
raced dose-responses, or c) be below both the other two
plateaus and result in reverse bell-shaped dose-responses,
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Figure 2

The response level of the functional-HOTSM has three plateaus. A first response-plateau, FP, in the absence of ligands is equal
to I/[1+ 1/(L)]. A third response-plateau, TP, at high agonist concentrations is given by I/[1+1/(L-a-b-d)]. Finally, a second-
response plateau, SP, at intermediate ligand concentrations is dependent on all 7 parameters. The three plateaus may be above,
at, or below each other, panels A-D, rendering dose-response curves that are positive or negative co-operative, bell-shaped or
terraced, as well as reverse bell-shaped or reverse terraced. Parameter values in panels A-D were arbitrarily chosen in order
to demonstrate several aspects of the model. Ag varied in three steps from 10-2 (------ ) to 102 (== by a factor 100 in panels
A and B, while Ay varied in three steps from 0.3 (------ ) to 3000 (-------) by a factor 100 in panels C and D. The remaining
parameters were fixed. Thus in panel A: L = 1/4, A,=20,a=100,b=0.01,c=0.0l,andd = |7. In panel B: L =4, A, =20, a =
10,b=0.01,c=0.0l,and d=0.7. In panel C: L= /4, A;=1,a =100, b =0.01,c=0.0l,and d = |17. And in panel D: L = 4, Ag
=1,a=10,b=0.01,c=0.0l,andd =0.7.
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Fig 2. The second plateau may even disappear when values
for ¢ are above unity, and this will render increasing or
decreasing mono-phasic dose-response curves, displaying
negative or positive co-operativity as demonstrated later.

Simplifying constraints

Initial constraints

In analysis of HOTSM, the ratio between unbound recep-
tive molecules in active and reactive states, R*/R = L, is
assumed to be at a low value of 1/30. Thus, the analysis of
HOTSM is simplified by choosing L to be fixed at 1/30,
meaning that the system operates at a 3% spontaneous
activity.

Furthermore, in order to look at the system with a reason-
ably high response, initially I choose parameter a, as the
intrinsic efficacy on ligand binding at the orthosteric
binding sites, to be well above unity, a >> 1, although, due
to symmetry of the model, values for the intrinsic efficacy
constants b and a may be interchanged without affecting
the response curve, indicating that the concepts of the lig-
and as either primary ligand or modulator molecule can
be switched freely. Finally, as the co-operativity parameter
¢ does not change the level of either the first or third pla-
teau of response, this parameter is initially kept less than
one, ¢ < 1. With these initial conditions the analysis nar-
rows down to look for effects of variations in Ag, A,,, b,
and d, and how they affect the characteristics of the system
activity. This analysis is followed by a look at effects of var-
ying ¢, L, and a.

Varying a single or a few of the parameters

Examples of varying constant b

Fig 3 shows the effect on the dose-response curve of vary-
ing the intrinsic efficacy constant for ligands at the modu-
lator site, parameter b, in five steps with the other
parameters fixed as indicated. The five values of constant
b in panel A demonstrate how this parameter determines
the second and third plateau of dose-response. With b < 1
and Ag=A,,=1, forb-d < 0.5 the dose-response curves are
bell-shaped, and for b-d > 0.5 they are terraced. When a
>b, for b-d = 0.5 the dose-responses are mono-phasic, cf
Table 1. Fig 3 panel B is a 3-D illustration of separately var-
ying the ligand concentration either at the orthosteric or
at the modulator site for b = 10. Rising a plane along the
response axis, following the arrow in the concentration
plane of Fig 3B, will cut the 3-D topography and produce
the 2-D curve in panel 3A for b = 10.

Examples of varying constant d

Fig 4 shows the effect of varying the co-operative affinity
constant of active receptors/receptor double-liganded effi-
cacy constant, parameter d, in five steps with the rest of
independent constants kept fixed as indicated. Constant
d, like b, also determines the second and third plateau of
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the dose-response curve. In Panel A, since a <b, the dose-
response curve is bell-shaped for b-d = 0.5, cf Fig 3 and
Table 1. Panel B in Fig 4 is a 3-D representation of the
HOTSM function where the ligand concentration at the
orthosteric and modulator sites are varied separately for d
= 0.005. Rising a plane along the response axis, following
the arrow in Fig 4B, will cut the 3-D topography and
render the 2-D curve in panel 4A for d = 0.005.

As indicated in panels 3B and 4B, there are four plateaus
in the 3-D topography of the HOTSM. One plateau is
determined by parameter L; of two other plateaus, one is
mainly determined by parameter a4 and one by parameter
b, while a fourth plateau is determined in particular by
parameter d as well as by a, b, and L.

The 2-D and 3-D plots in Figs 3 and 4 illustrate the passage
from a homotropic two-state model, HOTSM, with a sin-
gle independent variable to an allosteric two-state model,
ATSM [34], with two different ligand concentrations as
independent variables, one for an agonist and another for
a heterotropic modulator, cf Comparison of HOTSM with
ATSM in the Discussion.

Examples of varying constant A

Fig 5 shows examples of the effect of varying the affinity
constant for ligand binding at the primary site, A. In Fig
5A and 5B the affinity constant for ligand binding at the
primary site, parameter Ag, is varied in five steps while the
rest of the parameters are kept fixed as indicated, with b <
1. The third plateau of d-r curves goes from above the first
and second plateau, as the product a-b-d is kept above 1,
panel A, to below, as the product a-b-d is reduced below
1, panel B. The d-r curves, thus, display terraced, mono-
phasic, bell-shaped, and reverse bell-shaped dose-
response curves as Ag, b, and d varies. A situation where
the third plateau is below plateau 1 but above plateau 2,
is shown in Fig 2B curve 3. The criteria for panel B in Fig
5 can yield reverse terraced d-r curves, but this is more
clearly demonstrated in Fig 2B curve 2, where the value of
L is increased to 4.

Fig 5C and 5D shows d-r curves with the same variations
of Agas in panels A and B, but now keeping b > 1. The third
plateau of dose-response curves decreases from above to
below the first and second plateau, going from panel C to
D by shifting the product a-b-d from above 1, panels C,
to below 1, panel D, resulting in terraced, mono-phasic,
and bell-shaped curves.

A summary of the effects of combined variations in Ag
together with b and d on the HOTSM dose-response curve
is given in table 1.
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Figure 3
Examples of varying parameter b for the functional-HOTSM dose-responses. Panel A, parameter b is varied in five steps
increasing by a factor 10 from 10-2(—) to 100 (-..-..-..) with the other parameters fixed as indicated. Panel B is a 3 dimensional

plot of separately changing the ligand concentration at either the orthosteric site, "O", the modulator site, "M", or simultane-

ously at both sites. Such 3-D plots are relevant for the switch from the HOTSM to the ATSM. Notice that a = 100 is above b
= 10, and compare with figure 4B.

Table I: Dose-response shapes for functional-HOTSM, when varying b, b-d, and Ag. Ay, a, L, and c are fixed (A4=1,a=100,L = 1/30, c

< 1). With Ag < | at high agonist concentrations, the second HOTSM response level is below the start level when b < |, Fig 5A and B,
and above when b > |, Fig 5C and D.

b b-d As> | As< | Fig

<l >| terraced, mono-phasic mono-phasic, reverse bell-shaped 5A

<l = mono-phasic mono-phasic, reverse bell-shaped -

<l =0.5 bell-shaped, mono-phasic mono-phasic, reverse bell-shaped -

<l <0.5 bell-shaped bell-shaped, mono-phasic, reverse bell-shaped 5B & Fig 2B
>| <0.5 bell-shaped bell-shaped, mono-phasic, terraced 5D

> =05 bell-shaped bell-shaped & , mono-phasic, terraced -

>| =1 mono-phasic, terraced terraced -

>| >| terraced terraced 5C

S For g >>b the bell-shape disappears and becomes mono-phasic.
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d=0.005
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(L-a-b-)d

100

fractional response (%)
[4,]
o

Examples of varying parameter d for the functional-HOTSM dose-responses. Panel A, parameter d is varied in five steps
increasing by a factor 10 from 5 x 103 (—) to 5 x 10! (-..-..-..) with the other parameters fixed as indicated. Panel B is a 3
dimensional plot of separately changing the ligand concentration at either the orthosteric site, "O", the modulator site, "M", or
simultaneously at both sites. Such 3-D plots are relevant for the switch from the HOTSM to the ATSM. Notice thata = 10 is

below b = 100, and compare with figure 3B.

Examples of varying constant A,

Fig 6 shows examples of the effect of varying the affinity
constant for ligand binding at the modulator site, A,,. Ay,
is varied in five steps while the other independent param-
eters are kept fixed as indicated. In Fig 6A and 6B param-
eter b is <1, while in panels C and D parameter b is > 1. In
Fig 6, moving form panel A to B, the third plateau shifts
from above the first and the second plateaus to being
below these two plateaus. For large enough values of A,,,
A, > 1000, the HOTSM dose-response curves display
inverse agonism in the low range of ligand concentra-
tions. With the criteria in Fig 6A and 6B, we find terraced,

mono-phasic, bell-shaped and reverse bell-shaped dose-
response curves. Slightly altering these criteria with A,
around 1 can also yield reverse terraced curves when the
third plateau is below both the first and second plateaus,
more clearly shown in Fig 2D, curve 2, varying A,,. With
the conditions indicated for the dose-response curves in
Fig 6 panels C and D, i.e. b > 1 as well as a > 1, there are
no reversed bell-shapes or inverse agonism, no matter if
the third plateau is above, at, or below the first and second
plateaus. All the dose-response curves are either terraced,
mono-phasic, or bell-shaped as A, varies. A summary of
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Figure 5
Dose-response relationships for the functional-HOTSM varying parameter Ag in five steps from 104 (—) to 104 (-..-..-..) by a fac-

tor 100. Other parameters were varied as indicated. In panels A and B, b is less than unity, in panels C and D, b is above unity.
The third plateau, I/[I+1/(L-a-b-d)], is above the first and second plateaus in A and C and below the first plateau in B and D.
Thus, with conditions a and b > |, the second plateau is always above the first plateau, panels B and D.
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the effects on HOTSM dose-responses due to combined
variations in A, b, and d are listed in table 2.

Considerations on Ag versus Ay,

From the combined results of analyzing variations in Ag
and Ay, when b < 1 <a, as in panels A-B of Figs 5 and 6,
there is "high-end inverse agonism" for Ag>>A,, and "low-
end inverse agonism" for Ag <<A,,, also demonstrated in
Fig 2A,2B,2C,2D. Although not demonstrated, the con-
verse is true for a < 1 <b due to symmetry of the model.

Constant c

Analogous to how the affinity constants Agand A,, affect
the level of response at the second plateau and its position
on the agonist concentration axis, ¢, a pure co-operativity
factor of affinity, does influence the level of the second
plateau in HOTSM and shifts its position and extension
along the concentration axis. By increasing ¢ above unity,
it can eliminate the appearance of a second plateau.

Fig 7 shows examples of how the affinity constant ¢ can
separate the second and the third plateau of activity in
HOTSM, without influencing the level of the first and
third plateau. For ¢ < 1 and with the third plateau above
the first and second plateaus, i.e., a-b-d > 1, the HOTSM
yields mono-phasic and terraced dose-response curves,
Fig 7A. While, for ¢ and b equal to or >1 plus a > 1, the sec-
ond and third plateaus are layered on top of each other
thus masking these two separate levels, Fig 7 panel A. Fur-
ther, ¢, b, and a > 1 elicits the steepest dose-responses.
These response curves may be analyzed for their positive
co-operativity by fitting a four parameter Hill equation to
generated response data. The conclusion of such an anal-
ysis is that the Hill coefficient reaches a maximum of 2 in
the HOTSM, but as ¢ is lowered, the Hill coefficient may
drop below unity, Fig 7 panel A. In case the second level
is in below the first and third level while the third level is
below the first, we will observe mono-phasic or reverse
bell-shaped curves, Fig 7B.

Variation in L

Parameter L is involved in the level of all three plateaus of
the HOTSM dose-response curves, Figs 2 and 8. The
higher the value of L the higher the level of all three
plateaus. Since the first level of the dose-response is equal
to the spontaneous level of activity for receptive units,
parameter L also determines the size of possible inverse
agonism, Fig 2. For use of the term "inverse agonism" see
the comment on "inverse allosteric agonists" in section
HOTSM and inverse agonism below. The first response pla-
teau, solely determined by L, is not relevant for enzymes
or transporters, since their activity is only measurable in
the presence of ligands.

http://www.biomedcentral.com/1471-2210/4/11

Constant a as intrinsic efficacy at the orthosteric site

So far in this analysis, constant a has been taken as the
intrinsic efficacy for ligand binding at the primary binding
site. When complexes R*S and SR* are equally active as
indicated in Fig 1, then in a classic comprehension of the
terms "orthosteric" (primary) and "allosteric" (secondary,
modulator) sites, it is required for a to be larger than b,
and Agto be above A, in order for a by definition to be the
intrinsic efficacy constant and Ag the affinity constant for
binding at orthosteric binding sites of the system. A bit
more detailed: for a > 1 >b, a is the intrinsic efficacy at the
orthosteric site no matter what the relation is between the
two affinity constants Aq and A,,, while for a >b >1, a is
only the intrinsic efficacy constant at the orthosteric site if
also Ag>Ay,.

The manner in which a and b affect the HOTSM dose-
response relation is further visualized in panels 3B and
4B. Here parameters a and b determine either of two
plateaus when ligands interact separately with a primary
site, "O", or a modulator site, "M", as for the allosteric
two-state model, ATSM.

Other features of the HOTSM

Co-operativity — positive or negative — in HOTSM

As already mentioned, examples of negative and positive
co-operativity are demonstrated for the HOTSM in Fig 7A.
Employing the Hill coefficient from a Hill plot analysis on
the generated dose-response curves as a measure of co-
operativity, we can identify that positive co-operativity
may be observed for the HOTSM increasing to Hill coeffi-
cients of 2, curve 1 Fig 7A, while negative co-operativity is
observed as the Hill coefficient falls below unity, curve 2
Fig 7A, and may even drop to zero and negative values, B
panels in Figs 5, 6, and 7.

Conditions for reverse bell-shaped responses
Conditions for when the HOTSM elicits reverse bell-
shapes can be derived from the realization, that a first
level of dose-response is below a third level whena-b-d >
1 and the other way around, that a first level of response
is above a third level whena-b-d < 1.

Thus, fora-b-d > 1 there is reverse bell-shaped responses,
curve 3 in Fig 2A and 2B, when

Ayt+Ag+c Ay Ag [S]>b-Ay+a-Ag+a-b-d-c- Ay - Ag [S]

and for a-b-d < 1 there is reverse bell-shaped responses,
curve 3 in Fig 2C and 2D, when

(1+Ay [S]+Ag-[S])-a-b-d>1+b-Ay-[S] +a-Ag[S].
It may be seen that all system parameters except L are

involved in these conditions and that reverse bell-shapes
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Dose-response relationships for the functional-HOTSM varying parameter Ay, in five steps from 104 (—) to 104 (-..-
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factor 100. Other parameters were varied as indicated. In panels A and B, b < |, and in panels C and D, b > |. The third pla-
teau, |/[1+1/(L-a-b-d)], is above the first and second plateaus in panels A and C and below the first plateau in panels B and D.
With conditions b < | and TP > FP, the HOTSM results in reverse bell-shaped dose-effect curves, panels A to C. For the con-
ditions a and b > 1, the second plateau is always above the first plateau, panels B and D.
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Table 2: Dose-response shapes for functional-HOTSM, when varying b, b-d, and Ay. Ag, a, L, and c are fixed (Ag=1,a =100, L = 1/30, c <
1). With Ay > | at low agonist concentrations, the second HOTSM response level is below the start level when b < |, Fig 6A and B, and
above when b > |, Fig 6C and D.

b b-d Ay> 1 Ay< Fig
<l =1 reverse bell-shaped, mono-phasic, terraced terraced 6A
<l =0.5 reverse bell-shaped, mono-phasic, terraced, mono-phasic ~ mono-phasic, bell-shaped -
<l <0.5 reverse bell-shaped, mono-phasic, terraced, mono-phasic  bell-shaped 6B & Fig2 D
bell-shaped
>| >| terraced terraced 6C
>| <0.5 terraced, mono-phasic, bell-shaped bell-shaped 6D
A B
Fixed Fixed
As=1  a=100 As=1  a=01
L=1/30 b= L =4 b= 001
Ay=1 d=30 Ay=1 d= 300
100 PR - 100
; 7 i P
/ /
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1
Figure 7
Dose-response relationships for the functional-HOTSM with focus on variation in c. Constant c is varied in five steps from 10
4(—) to 10#(-..-..-..) by a factor 100. Other parameters were varied as indicated. The third plateau at high concentrations, 1/

[1+1/(L-a-b-d)], is independent of parameter c. Parameter ¢ determines the width of the second plateau, thus for decreasing val-
ues of ¢ the width broadens. The third plateau, TP, is above the first and second plateaus in panel A. In panel B, TP is below the
first plateau but above the second plateau, eliciting reverse bell-shaped curves for certain parameter values. Fitting a four
parameter Hill equation to the steepest dose-response curve | in panel A yields a Hill coefficient, ny, equal to 1.99, while a fit
to the dose-response curve 2 in panel A give ny = 0.68, for ¢ = 100.
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A principal drawing of the three plateaus for the functional-HOTSM. Parameters that determine each plateau are indicated to
the right. The first plateau is determined by the fraction of R* conformations in the absence of ligands. When maximal fractions
of SRS and SR*S are obtained at high ligand concentrations, the level of response is given by the four parameters g, b, d, and L,
see Fig |, and not dependent on either ¢, As, or Ay. The three latter parameters determine the width and the mid-point posi-

tion at the concentration axis of the second plateau of response.

only appear for a given range of ligand concentrations.
From these conditions it may also be derived that either a
or b have to be <1 in order to observe reverse bell-shaped
dose-responses.

The midpoint of the second plateau

The second plateau, SP, of the HOTSM dose-response
curve is illustrated in Fig 8. The response level of the mid-
point of this plateau is determined by all seven system
constants as indicated in Figs 2 to 7. The effect of parame-
ter ¢ on the second plateau and its midpoint is only indi-
rect, since ¢ as demonstrated in Fig 7, only squeezes or

broadens this plateau along the agonist concentration
axis. Thus for values of ¢ > 1, as already stated, this second
level may vanish completely. The position and extension
of the second plateau on the agonist concentration axis is
also determined by affinity parameters Agand A,,, and like
parameter ¢ they do not alter the height of the second
plateau. Increasing both Agand A, with an identical factor
moves the midpoint of SP to the left on the agonist con-
centration axis with the same factor, while reducing both
parameters with the same factor moves the midpoint to
the right with an identical factor. These changes in Aqand
A,, does not alter the extension of the second plateau. For
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this to happen, the two affinity parameters must change
values in opposite directions. Parameters a, b, d, and L
does not affect the position of the midpoint for the second
plateau on the agonist concentration axis.

Application of HOTSM to experimental data

The usefulness of the HOTSM as a tool for mechanistic
interpretation of experimental dose-response data is illus-
trated here in a preliminary fashion by fitting the model
parameters to examples from the literature. In the analysis
a few simplifying constraints on the parameters are imple-
mented. Thus, in all the examples a = b and in the exam-

A
Winding & Bindslev 1993

40

30 .

(arbitrary)

20
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1
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C

40
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Log [PGl;] (uM)

Figure 9
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ples with convex bell-shaped dose-response curves, Ag is
kept equal to A,, as well. These assumptions simplify the
parameter fitting and are justified for receptive units sup-
posed to consist of homo-dimers. Values for parameter L
and factor L-a-b-d are determined from estimates of the
basal and third level of activity and used in the analyses.

1) We found a dramatic auto-antagonism for acetylcho-
line when stimulating exocrine secretion in tracheal epi-
thelium [18]. Fitting the HOTSM to data from this study
is presented in Fig 9A for L fixed at 1/100. Obtained
parameter values are in the figure legend.

B
40
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Examples of fitting HOTSM to experimental data sets taken from indicated sources. The general constraints for fitting is that all
seven parameters are positive and a = b. Panel A: additional conditions for a fit to the data set of Winding & Bindslev [18] are:
L =1/100 and Ag = Ay; which yields a=b=93.7 £ 11.8,c=0.677 £ 0.295,d = 1.05 £ 1.18-104, and A; = Ay = 0.329 + 0.069.
Panel B: additional conditions for a fit to the Kinet et al [38] data are: L = /100 and Ag = Ay; yieldinga =b =54.2 £ 2.7, ¢ = 5.03
£3.25:103,d=520+2.11-103, and A;= Ay = 7.81 + 1.39. Panel C: the convex bell-shaped data set of Accomazzo et al [Fig
I A in 39] has the following conditions added to the general constraints: L = 0.1765 and A; = A; yieldinga=b =3.48 £ 0.16, c
=3.79-104+ 2.202-10-3, d = 0.634 % 0.633, and A; = Ay, = 0.496 £ 0.129. Panel D: the reverse bell-shaped data set from
Accomazzo et al [Fig ID in 39] has the following conditions added to the general constraints: L = 0.2658, a-b-d = 1.938, A; < I,
and Ay > |. The obtained fitted parameters are: a = b = 0.532 + 0.030, ¢ = 0.337 £ 0.176, A;= 1.47 £ 0.79 - 102, and Ay = 68.3
+ 36.2. From the fitted value for a and b, parameter d may be calculated: d = 1.938/(0.532)2 = 6.85.
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2) Kinet et al [38] measured transcriptional induction by
the prolactin hormone. A fit of the HOTSM to their exper-
imental data is shown in Fig 9B, again with L fixed at 1/
100, and yields values for parameters as indicated in the
figure legend.

3) A third and a fourth example are taken from
Accomazzo et al [39], who presented both ordinary and
reverse bell-shaped dose-responses for cAMP production
by PGI, and PGE,. Fits of the HOTSM to their data are pre-
sented in Figs 9C and 9D. Parameter L was estimated to
0.177 for the convex bell-shape of cAMP production with
increasing PGI, concentration.

For the concave (reverse) bell-shaped dose-response curve
in Fig 9D, parameter L was estimated to 0.266 and the fac-
tora-b-d to 1.94. In this example, parameters Agand Ay,
were allowed to vary independently, an obligatory condi-
tion in order to get a fit to reverse bell-shapes when
parameter a and b are kept equal. The HOTSM parameter
estimates for these two example are also in the figure
legend.

Estimates of factor a-b-d

To get good fits of the HOTSM to dose-response data, it is
recommended, if possible, to operate within a narrow
range of values for the product a-b-d. This product may
be estimated from a combined determination of the ini-
tial level of response, which yields the value of parameter
L, and of the third plateau, equal to 1/[1+1/(L-a-b-d)].
Thus, when bell-shaped or terraced d-r curves are
obtained it may be worth analyzing the d-r relations at
high enough concentrations of the ligand in order to get a
good estimate of a third plateau. This is not the usual prac-
tice. When deviations from simple Langmuirian dose-
responses appear, practice is to abrogate ligand applica-
tion before a possible third plateau is reached.

Binding-HOTSM

Binding experiments

A formula describing the binding-variant of the HOTSM is
given in equation 3. Due to the symmetry of the HOTSM,
its concentration-binding curves are all mono-phasic
increasing from 0 to 100%, with varying steepness, but
without bell-shapes, terraces, or reverse ditto. Examples of
the dose-binding relations varying the single parameters
are shown in Fig 10. Table 3 is a summary of the effects on
position and steepness of concentration-binding curves
due to varying each of the seven parameters in the
HOTSM reaction scheme for ligand binding. Displacing
bound tracer ligand with its non-radioactive isotope will
yield the same concentration-binding relations, just in
reverse, as all parameters are the same. The HOTSM may
thus be useful for an analysis of the steepness for frac-

http://www.biomedcentral.com/1471-2210/4/11

tional binding in tracer concentration-saturation and -dis-
placement experiments.

Terraced and bell-shaped concentration-displacement
relations seen with heterotropic modulators, as found and
analyzed with one-state equilibrium or kinetic models by
for instance Wreggett & Wells [40] and Avlani et al [41],
are relevant for the allosteric two-state model ATSM, but
not for HOTSM. Meanwhile, the ATSM in its presented
form for binding [34] does not cover bell-shaped or ter-
raced concentration-displacement relations by hetero-
tropic ligands.

Discussion

Themes related to the homotropic two-state model
Mechanistic interpretation of experimental data by HOTSM and
Hill's equation

The HOTSM is a mechanistic model. In the theoretical
presentation of the HOTSM, Fig 1, it is assumed that a sin-
gle receptive unit possesses two binding sites that can
interact on a graded scale, which is measurable as varia-
tion in parameters such as A,,, b, ¢, and d. Meanwhile, the
interpretation of the HOTSM parameters will depend on
the actual system under analysis.

Applying the HOTSM in an analysis of dose-response data
from systems with G protein coupled receptors, these
parameters may be relevant for steps down-stream from
the receptor sites in the signal-transduction pathway. As
an example, for mGluR dimers the parameters A,,, b, c,
and d may pertain to conformational changes at the inter-
face between the two receptor subunits [6].

Ordinary (convex) and reverse (concave) bell-shaped
dose-response curves have often been analysed by a sum
of two Hill equations [20,22,39]. However, these analyses
have their limitations, since as a mechanistic description,
Hill equations only cover for full simultaneity in occu-
pancy, equal to an all-or-none co-operativity between
binding sites or subunits. Therefore, development of new
mechanistic models like the HOTSM seems warranted.

There are 6-7 system constants to be determined in both
the HOTSM and the double-Hill equation. For the
HOTSM, parameter L can often be estimated from the
initial activity with no ligand present and the factor
L-a-b-d from the activity at high concentrations of an
agonist. Also the range of parameters ¢, Ay, and Ay, may be
estimated from the obtained dose-response curves. These
estimates will simplify the least-square analysis for non-
linear parameter fitting.

As presented here in its simplest form, the HOTSM is lim-
ited by its failure to describe steep dose-responses. Its
maximal Hill coefficient is 2, Fig 7. Therefore to analyse
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Examples of the concentration-binding relationships for HOTSM when varying parameters L or c in five steps from 104 (—) to
104 (-..-..-..) by a factor 100. Other parameters were varied as indicated. With a > | and increasing ligand concentrations,

parameter L is the sole system constant that can move the concentration-binding curves for HOTSM either to the left, for b >
I, panel A, or to the right, for b < I, panel B. Examples of varying parameters ¢, b and Agare shown in panels C and D. The

effects of increasing parameter L, ¢ and the other five parameter on the position and steepness of the concentration-binding
curves for the HOTSM are summarized in table 3.
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Table 3: Effects on position and steepness of concentration-saturation relationships when varying single independent system constants.
Parameter values were typically varied between 10-4to 104. Except for indicated variations in a, the table is collected for parameter a

= 100.

increasing value of parameter

a left

b left

c left

d left

Ag left

An left

L for Ag> | left

LforAg&b <1 right®

move mono-phasic dose-binding curves to

Hill coefficient of dose-binding curves may go from

<l > ~I
<l - ~I
-2
<l > ~I
-2
-2
-2
I,ford>>11—>2

*for d >>> | may go left

steep dose-response relationships, a further development
of the HOTSM will be necessary. On the contrary,
although use of the Hill equation most often only yields a
semi-quantitative estimate of co-operativity for the
studied system, it is capable of fitting to steep accelerating
dose-responses.

Interpretation of HOTSM parameters based on experimental data
In evaluation of parameters from theory adjusted to
experimental data as exemplified in Fig 9, parameter a was
kept equal to b and parameter Ag equal to A,,, except for
the example in Fig 9D with reverse bell-shaped dose-
response, where Ag and A, were allowed to vary
independently. These simplifying assumptions for two
separate binding sites seem reasonable when dealing with
receptive units likely to consist of homo-dimers.

Reverse bell-shaped dose-responses are discussed sepa-
rately in a section below.

For the first example of fitting theory to experimental
data, Fig 9A, a detailed interpretation of the parameter
estimates involve a discussion of muscarinic receptors
with a focus either on orthosteric and allosteric binding
sites [31,32], on oligo/dimer interactions [42] as
suggested in the original article, on bifurcation further
down-stream in the signal-transduction pathway [43], or
on regulatory changes as desensitization mechanisms that
vary with ligand concentration, also discussed by Winding
& Bindslev [18].

In the second data example from Kinet et al [38], interpre-
tation of obtained parameters is most likely related to the
dimerization of prolactin receptors upon activation [44]
and an ensuing interaction at the interface between two
receptor subunits. All seven HOTSM constants may be

dependent on such an interaction. But, since conforma-
tional steps of importance for function in this system may
be physically remote from the actual process of dimeriza-
tion, differentiating between effects of dimerization and
of functional conformation, based on the obtained
parameter values, will require knowledge about states of
activation for the dimer and the full chain of events in
signaling.

In the two examples above, Fig 9A and 9B, where param-
eters a and b were found >1, the "negative" coupling is
effectuated by parameter d << 1, sufficient to result in bell-
shaped dose-responses. One interpretation of the low val-
ues for parameter d is a possible prevention of receptor
activation when both binding sites are occupied, although
an experimental verification of such a scenario has to be
established. The value of ¢, which determines broadness
of the bell, was much less than unity for the broadest bell-
shape in the Kinet et al example and closer to unity for the
Winding & Bindslev data. This is in accordance with the
theoretical analysis evaluating the effects of varying a sin-
gle parameter, see Results section on varying ¢, and
indicates a tighter negative coupling between sites on
binding for the example in Fig 9A.

In the two examples from Accomazzo et al's study [39],
Fig 9C and 9D, it is possible to make an accurate estimate
of the distribution between unliganded active and reactive
(quiescent) receptor conformations. Thus R*/R = L =
0.177 in the first example, Fig 9C, and = 0.266 in the sec-
ond example, Fig 9D. Further, for the second data set in
figure 9D a rough estimate of the factor L-a-b-d can be
assessed, yielding 1.94 for a-b-d on a relative scale.

The obtained parameter estimates may be interpreted in
the light of an interaction being either at the interface
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between two simultaneously expressed receptors or at a
step further down-stream in the signal chain, as assumed
by the authors [39].

Experimental reverse bell-shaped dose-responses

Reverse bell-shaped dose-response relations are often seen
when two GPCRs, coupled to different G proteins, are
expressed simultaneously and actually rendered probable
as a bifurcation due to coupling to different G proteins
[22,23,39,43]. However, this is not an explanation for the
reverse bell-shaped dose-response relation as seen in the
Hornigold et al study, when expressing a single mus-
carinic receptor subtype, m3, in CHO cells [22]. Here
dimerization of m3 receptors is a more likely explanation
for bell-shaped dose-responses.

Therefore, in the second example by Accomazzo et al,
with a = b Fig 9D, a possible interpretation of the PGE,-
dependent reverse bell-shaped dose-response seems to be
that, by dimerization of two PGE, subtype receptors, the
affinities at the two binding sites are dramatically altered,
as the fitted value of parameter A,, has to be nearly 5000
fold higher than Agto accommodate theory to experimen-
tal data, Fig 9D. Meanwhile, intuitively this does not seem
to be a correct explanation, although coupling to G pro-
teins might induce such a differentiation between Ag and
Ay

A second possibility is instead to keep Ag= A,  and let a
and b float independently of each other. Meanwhile, it
turns out that these conditions cannot accommodate the
model to experimental data in Fig 9D, and neither to the
m3 data in Hornigold et al [22], fitted results not shown.

Thus, in case the HOTSM is the right mechanistic model
for PGE, effects on cAMP production in smooth muscle
cells [39], and for methacholine effects on forskolin-
induced cAMP generation [22], a third possibility might
be an emergence of an alternative homotropic binding
site in the receptive unit due to dimerization. Obviously,
studies that can substantiate either of these interpretations
- establishment of two non-identical binding sites upon
dimerization or the appearance of a supplementary,
homotropic allosteric site with or without dimerization -
will be interesting to follow. One place to start could be
the structure of functional m3 receptors in CHO cells as
they result in reverse bell-shaped dose-responses, even
when expressed as the sole receptor type [22].

Required reciprocity

The present analyses make explicit, that with the full
reversibility in the models, they satisfy Colquhoun's justi-
fied demand for thermodynamic reciprocity in modeling
the affinity and efficacy for binding and function [45].
This reciprocity also allows the primary binding site and
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the modulator binding site to be conceived as fully sym-
metrical and interchangeable. Obviously, mathematical
derivation of a fractional activity from a completely sym-
metric model does not differentiate between two such
binding sites, and therefore, the behavior of the model
yields completely symmetrical solutions at binding to
either of the two sites. In analysis of HOTSM, the distinc-
tion between a primary site and a modulator site is
obtained by choosing different intrinsic affinities and effi-
cacies. For example with 1) a >1 >b or 2) a >b > 1 and Ag
>A,,, the right side of the receptor, Fig 1, is a primary bind-
ing site while the left side is an allosteric site in the classic
sense, see earlier section on Constant a as intrinsic efficacy
at the orthosteric site.

Comparison of HOTSM with ATSM

The constants L, Ag, and a in HOTSM, Fig 1, have the same
significance as they have for the ATSM [34]. In the
HOTSM, the modulator association constant A,, is the
equilibrium affinity constant for the binding of ligand S to
a modulator site indicated at a position to the left of R, b
is the intrinsic efficacy for ligand S, when bound to the
modulator site, and ¢ is the co-operative coefficient for lig-
and S, when binding to either the primary or the modula-
tor sites on R, Fig 1. Meanwhile, in the ATSM, constants
Ay b, and ¢ are for the association of a heterotropic allos-
teric molecule, M, to the modulator site. Furthermore, in
HOTSM, constant d is a complex constant for the ligand S.
Either, it is related to co-operative effects of S, when one
binding site is occupied by S, the receptor is activated, and
a second ligand S is to be bound either to the primary or
the allosteric site. Or, d is related to activation of the recep-
tor when both sites are occupied by S. Constant d has the
same significance in the ATSM, but with an M ligand
bound at the modulator site. The conclusions in Tables 1
and 2 for the functional-HOTSM are true for the func-
tional-ATSM as well, when replacing ligand S at the
modulator site with a heterotropic modulator M and
employing fixed concentration ratios of agonist and heter-
otropic modulator molecules, that is, the concentration
ratio [S]/[M] is maintained as the doses of the ligands
varies. The theoretical switch from an ATSM analysis, with
separate changes in agonist and modulator concentra-
tions, to a HOTSM protocol, with an [S]/["M"] ratio fixed
as the ligand concentration varies, is illustrated in the 3-D
plots of Figs 3 and 4. Keeping [S]/[M] ratios fixed in dose-
response experiments is thus equal to following the
arrows depicted in the concentration plane of panel B in
Figs 3 and 4. An analysis of such protocols is strongly rec-
ommended as its outcome may have clinical relevance,
see the section below on optimal-fixed-concentration
ratios, OFCORs.

For both HOTSM and ATSM, it is the L constant that deter-
mines the level of spontaneous activity, Figs 2 and 8. Var-
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ying L will essentially lift or decrease the level of
spontaneous response before adding any ligands. The L
constant was mostly kept at a low value in this analysis.
But of course, if experimenting with receptive units that
are spontaneously active at a high level, the HOTSM as
well as the ATSM with larger values for L will be interest-
ing choices to use in analyses for the behavior of inverse
agonists, Fig 2 panel B and D.

As mentioned, ¢ does not affect the third plateau of the
HOTSM. For the ATSM, this conclusion is also reached by
Hall for his y constant [34], comparable to the present ¢
coefficient.

HOTSM, ATSM, and inverse agonism

In the cyclic-two-state model, cTSM, discussed in section
2 of the appendix, inverse agonists are defined as ligands
that have an intrinsic efficacy parameter a less than 1,
when interacting with the primary binding site [55]. Since
both HOTSM and ATSM include the cTSM, inverse
agonism is also part of these two models. Thus, with a sin-
gle ligand present, operating at the primary binding site of
the ATSM, it will reduce spontaneous activity of the recep-
tive unit if the intrinsic efficacy parameter a is less than
unity. For the HOTSM it is a bit more complex, as a single
ligand can interact with two binding sites. Conditions for
a reduction of spontaneous activity in the HOTSM is
when the second plateau is lower than the first plateau or
when the first and second plateaus are equal and the third
plateau is lower.

Meanwhile, when a heterotropic ligand, that is known to
interact with a non-primary binding site, reduces the
receptor response, such a reduction in spontaneous activ-
ity may be referred to as "inverse allosteric agonism". An
experimental parallel to this inverse allosteric agonism is
seen for heterotropic ligands of the subfamily 3 of 7-TM
receptors including the metabotropic glutamate receptors,
mGluRs. Here molecules such as MPEP, Bay36-7620, and
CPCCOEt, known to interact with non-primary modifier
sites, are presently being marketed as inverse agonists [6].
In accepting the concepts developed for both the cTSM,
the HOTSM, and the ATSM, a better term for this type of
antagonists, seems to be "inverse allosteric agonists" or
just "allosteric modulators". They do not interact directly
with the primary glutamate sites.

A point to observe in this connection, is that the above
concept of an inverse agonist is at variance with the origi-
nal use of the term "inverse agonist". The term was intro-
duced for heterotropic inhibitors at the benzodiazepine
modulator site of GABA, ligand-gated channels [46] and
actually is still in use with that meaning for allosteric
modulators at the GABA, receptor [2].
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HOTSM and optimal-fixed-concentration ratios, OFCORs

For systems that desensitize and display auto-antagonism,
it seems relevant to evaluate the effects of a competitive
inhibitor included together with agonist application,
since competitive antagonists may protect against adverse
effects of high agonist concentration, including auto-
antagonism.

One such type of analysis was carried out for exocrine
secretory processes in a tracheal tissue with acetylcholine
as primary ligand and atropine as competitive antagonist
[18]. Both drugs seem to operate at an orthosteric and an
allosteric binding site. At high enough concentrations,
ACh auto-antagonized 100% its own induced secretion,
Fig 9A. This auto-antagonism of ACh could be reversed by
atropine. Using a single-state reaction scheme with nine
receptor conformations and an analysis of the involved
equilibrium parameters, it was possible to predict a fixed
concentration ratio for a mixture of acetylcholine and
atropine, the optimal-fixed-concentration ratio = OFCOR,
that would allow maximal stimulation over a large dose
range, rather independent of the absolute level of drug
concentration. Moreover, an experimental verification of
the derived OFCOR was also demonstrated for this sys-
tem, thus largely avoiding auto-antagonism by ACh as the
dose was increased of the ACh/atropine mixture with the
right OFCOR [18]. Since there might be potential thera-
peutic aspects in obtaining OFCOR:s for clinically relevant
situations [25], it seems reasonable to analyze, somehow
even on an individual basis, drug desensitization and
auto-antagonism responses in the light of HOTSM and
ATSM and obtain OFCORs for better drug application.
Arguments have also been advocated to circumvent
adverse effects and non-specific activities of ligands in reg-
ular drug applications by use of allosteric compounds for
7-TM receptors in clinical trials [3,5,30,34,41,47].

Conclusions

The mechanistic, homotropic two-state model, HOTSM,
for dose-responses is based on a receptor system with two
separate binding sites, one primary (orthosteric) and
another modulatory (allosteric), plus a receptive unit that
can isomerize between two states, an active and a reactive
conformation. HOTSM turns out as a relevant tool to
analyze the phenomena of negative co-operativity, auto-
antagonism, "concentration-dependent desensitization",
or bell-shaped dose-response curves, as well as a model
for positive co-operativity or terraced dose-response rela-
tionships. The HOTSM can also be fitted to experimen-
tally observed inverse agonism and even reverse terraced
and reverse bell-shaped dose-responses with single
ligands.

The HOTSM together with cognate forms of the model,
such as ATSM, will be of use in the analyses of complex
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dose-response data including auto-antagonism and auto-
antagonism reversed by modulators as demonstrated by
the OFCOR principle. Combining the HOTSM and the
ATSM may thus be of help in constructing better drug
therapy by mixtures of opposing drugs.

Methods

Data generation and data analyses

SigmaPlot, SP, software version 5.0 (SPSS Science, Chi-
cago, IL) was used both for theoretical data generation
and non-linear fitting of theory to experimental data. A
user-defined SP program developed by Dr. T'fadalou for
generation of all dose-response data is available at http://
www.mfi.ku.dk/bindslev. Generated dose-response data
may be plotted in 2-D for one or two ligands and in 3-D
for two ligands. As the 3-D mesh command in the original
software only yields symmetrical solutions, a subroutine
is included in the developed program for non-symmetri-
cal 3-D mesh plots such as in Figs 3B and 4B.

Appendix. Development of the HOTSM

Here is a brief account of the development of 1) auto-
antagonism, 2) the cyclic-two-state model, cTSM, and 3)
the ternary-complex model, TCM, leading to the HOTSM.

Single-state models and formulation of auto-antagonism

In biology, a mathematical expression for drug self-inhi-
bition goes back to Haldane's formulation of inhibition at
high substrate concentrations with bell-shaped dose-
response curves. Haldane's expression for substrate-inhi-
bition was published in his book "Enzymes" [48] and
writes in the terminology of the present text:

bound _ S
total 1 o, Ay (32
Ag

This formula was tested already in its publication year by
Murray, who found that the expression simulated experi-
mentally obtained dose-response data [49].

For the next 20 years there was a growing awareness of
bell-shaped auto-antagonism in mathematical terms [50].
Single-state theories about self-inhibition were further
developed with Ariéns' understanding of auto-antago-
nism from the start of the 1950s, based on experimental
observations of dualistic action by single ligands [51].
And, single-state receptor models are still invoked for bell-
shaped dose-responses [52,53].

The cyclic two-state model, cTSM

The first explicitly formulated two-state model with com-
plete thermodynamical reciprocity is reaction scheme 5 by
Katz and Thesleff [[54], K&T-5] for the desensitizing reac-
tion of muscle contraction measured as membrane poten-
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tial under ionophoretic application of acetylcholine at
superficial neuro-muscular junctions of frog sartorius
muscle. Transcribing the K&T-5 nomenclature into the
present terminology, the following K&T-expression is
obtained for the concentration-dependent fractional
decay

decay _ 1
total 1+ 1+Ag 8
Li{1+a g [S)

When this fractional decay is replaced by activation, its
formula describes just as well a fractional activity of recep-
tors dependent on ligand concentration. We may call this
activation scheme the cyclic two-state model, cTSM. The
behavior of ¢TSM involves spontaneous activity and
inverse agonism and was scrutinized in detail by Leff [55].

In the field of enzymology, several approaches were taken
in the 1950s to formulate an isomerization step for
activation of the "unbound" enzyme moiety [56,57].
Meanwhile, Botts and Drain, as the first, formulated and
evaluated a cyclic two-state reaction scheme for substrate
to product conversion, involving a reversible conforma-
tional change of an enzyme in the un-liganded state [58]
parallel to the cTSM for auto-modulation. Homotropic
allostery involving two-state receptive units has been en
vogue since 1965, exemplified as concerted and sequen-
tial models for binding of O, to hemoglobin and for sub-
strate-induced enzyme activity with Hill coefficients
deviating from unity [7,59]. Cyclic and even cubic two-
state models for 7-TM receptors were developed some-
what later [60]. Two-state models for auto-antagonism in
monomeric receptive entities have been discussed, of
which some are equilibrium models, while others include
slow non-equilibrium pathways [27,61].

The ternary-complex model, TCM

The development of ternary-complex models was driven
by the discovery of GTP-regulated functions of the adeny-
lyl cyclase enzyme. The GTP-dependence of hormone-
activated cAMP production initially discovered by Rod-
bell and co-workers [62] and the ensuing isolation of the
first G protein [63] invoked the whole field of G protein-
coupled receptors. During these ten years from 1971 to
1981, the idea was born of a transducing mechanism
involving additional membrane-confined components
besides the hormone, the receptor, and the effector
enzyme and this concept affected signal-transduction
models developed during that period [60]. De Lean and
co-workers [64] published a survey of such models, now
often regarded as the reference to the description of the tri-
partite complexation of receptor, agonist/hormone, and
G protein, the ternary-complex model = TCM.
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After an unequivocal demonstration of spontaneously
active forms of un-liganded 7-TM receptors of the & opioid
sub-family [65], it was natural to combine the ¢cTSM and
the TCM in an extended-ternary-complex model, ETCM
[66]. The development of a TCM, comprising spontane-
ous receptor activity, peaked in 1996 with three papers on
a cubic ternary-complex model, CTCM [35-37,67]. The
culmination of combining a cTSM with a TCM to form a
cubic ternary-complex model is a major step forward in
analysis of dose-response relations involving G proteins.
However, both the HOTSM and the ATSM are alternative
themes on cubic two-state models.

Abbreviations

FP, SP and TP = first, second, and third plateau; ATSM =
allosteric two-state model; CTCM = cubic ternary-complex
model; cTSM = cyclic two-state model; ETCM = extended
ternary-complex model; HOTSM = homotropic two-state
model; K&T-5 = Katz and Thesleff model 5; OFCOR(s) =
optimal-fixed-concentration-ratio(s).
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