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Summary

Myofibroblasts (myoFb) are phenotypically transformed, contractile fibroblast-like cells 

expressing α-smooth muscle actin microfilaments. They are integral to collagen fibrillogenesis 

with scar tissue formation at sites of repair irrespective of the etiologic origins of injury or tissue 

involved. MyoFb can persist long after healing is complete, where their ongoing turnover of 

collagen accounts for a progressive structural remodeling of an organ (a.k.a. fibrosis, sclerosis or 

cirrhosis). Such persistent metabolic activity is derived from a secretome consisting of requisite 

components in the de novo generation of angiotensin (Ang) II. Autocrine and paracrine signaling 

induced by tissue AngII is expressed via AT1 receptor ligand binding to respectively promote: i) 
regulation of myoFb collagen synthesis via the fibrogenic cytokine TGF-β1-Smad pathway; and ii) 
dedifferentiation and protein degradation of atrophic myocytes immobilized and ensnared by 

fibrillar collagen at sites of scarring.

Several cardioprotective strategies in the prevention of fibrosis and involving myofibroblasts are 

considered. They include: inducing myoFb apoptosis through inactivation of antiapoptotic 

proteins; AT1 receptor antagonist to interfere with auto-/paracrine myoFb signaling or to induce 

counterregulatory expression of ACE2; and attacking the AngII-AT1R-TGF-β1-Smad pathway by 

antibody or the use of triplex-forming oligonucleotides.
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 Introduction

Fibrosis is a fundamental component of the pathological remodeling found in the failing 

heart irrespective of its etiologic origins. In hypertensive heart disease, for example, a diffuse 

interstitial fibrosis and microscopic scarring are present in association with cardiomyocyte 

hypertrophy and atrophy which is found at sites of fibrosis [1, 2]. In ischemic 

cardiomyopathy, an important morphologic finding remote to an infarct scar is the widely 

scattered foci of microscopic scars, indicative of ongoing bouts of necrosis with reparative 

fibrosis [1, 3], and with an attendant atrophy of cardiomyocytes ensnared by fibrillar 

collagen. Scarring is also a feature of hypertrophic cardiomyopathy involving both the 

hypertrophied left and nonhypertrophied right ventricles and where heterogeneity in 

myocyte size is again seen [4, 5].

Myofibroblasts are responsible for scar tissue formation at every site of cardiomyocyte 

necrosis. Myocyte apoptosis elicits neither a wound-healing response nor scarring and 

therefore leaves no morphologic footprint [6]. Metabolic signaling from the myofibroblast 

secretome regulates ongoing fibrillar collagen production integral to the scar tissue 

formation and its subsequent turnover. During the early stages of wound repair, 

inflammatory cell-derived TGF-β1 induces the de novo expression of angiotensinogen, renin 

and angiotensin-converting enzyme (ACE) and the secretory phenotype of myofibroblasts 

and which, in turn, serves to generate angiotensin II at the site of repair (see Figure 1) [7-9]. 

The autocrine signaling invoked by this tissue peptide is mediated via AT1 receptor binding 

with the resultant expression of the fibrogenic cytokine transforming growth factor (TGF)-β1 

[10]. Together with activation of downstream connective tissue growth factor and Smad-

signaling pathway, the deposition of fibrillar collagen types I and III follows with scar tissue 

formation. An active interplay also exists between myofibroblasts and the extracellular 

structural protein matrix, including incorporation of latent TGF-β1 with its binding protein 

and its release and activation by proteases under the influence of reactive oxygen species 

[11]. The heterocellular paracrine signaling between myofibroblast-derived AngII and 

neighboring cardiomyocytes (see Figure 2) raises myocyte cytosolic [Ca2+]i to induce 

oxidative stress and activate redox-sensitive proteolytic ligases of the ubiquitin proteasome 

system (UPS) with resultant protein degradation leading to cell atrophy. Myofibroblasts also 

promote the dedifferentiation of these atrophic myocytes with re-expression of fetal genes, 

including β-myosin heavy chain and natriuretic peptides [12-20]. The re-expression of these 

fetal genes in atrophic myocytes, as well as in hypertrophied myocytes, is mediated by 

reduced intracellular thyroid hormone signaling. This localized hypothyroid state arises from 

the increased degradative activity of deiodinase-3 and its metabolism of T3 and T4 into 

inactive compounds [21-23].
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Given their diverse roles in cardiac remodeling, myofibroblasts and their secretome are 

targeted in the prevention of fibrosis. The purpose of this mini-review is to provide a 

perspective that addresses the role of myofibroblasts in cardiac repair, their secretome and its 

auto- and paracrine signaling by angiotensin II in leading to adverse myocardial remodeling, 

and finally several myofibroblast-directed cardioprotective strategies. A full discourse on the 

many aspects of myofibroblast biology and antifibrotic strategies that could be utilized in 

cardioprotection is beyond the scope of this report. The interested reader is referred to 

reviews found elsewhere [24-27].

 Myofibroblasts and Tissue Repair

Myofibroblast-mediated scar tissue formation appears following cardiomyocyte necrosis, 

irrespective of whether such cell loss involves a segment of myocardium with a macroscopic 

infarct scar or as a microscopic scar with the loss of individual myocytes. The origins of 

these fibroblast-like cells remain uncertain. Pericytes of the microvasculature, circulating 

fibrocytes derived from bone marrow stem cells, and usual interstitial fibroblasts have each 

been implicated [24, 28]. Valvular interstitial cells, normal residents of heart valve leaflets 

and having a myofibroblast phenotype, are another possible source [29]. An endothelial-

mesenchymal cell transition has also been suggested [30].

In response to inflammatory cell-derived TGF-β1 activation, myofibroblasts produce 

angiotensin II and fibronectin [31], creating a provisional scaffolding for the subsequent 

angiotensin II-AT1R-TGF-β1-Smad-mitogen-activated-protein-kinase-mediated deposition 

of fibrillar collagen types I and III [11, 32], the major structural proteins forming scar tissue 

[33, 34]. Stiff, cross-linked type I fibrillar collagen confers strength to resist scar 

deformation and, in turn, to resist myocardial thinning and ventricular chamber dilatation. 

And while the structural integrity of myocardium is preserved, its architecture, mechanical 

and electrical characteristics have been disrupted.

Myofibroblasts dominate the regulation of collagen turnover in the injured heart [35, 36]. 

Fibrillogenesis is self-regulated through myofibroblast expression of molecules requisite to 

the formation of angiotensin II and its subsequent autocrine signaling via AT1 receptor 

binding [10, 37-40]. At each site of scarring with their resident myofibroblasts, is the high-

density expression of ACE and AT1 receptor binding involving these cells irrespective of the 

injured tissue or the cause of injury [37-41]. The de novo generation of angiotensin peptides 

has been demonstrated in α-SMA-positive valvular interstitial cells and myofibroblasts 

harvested from a 4-wk-old infarct scar [29, 42]. Their ACE activity and responsiveness to 

ACE inhibition remains intact at each site, including that of the fibrosed visceral 

pericardium as detected by monitoring angiotensin II in the superfusate of the isolated 

perfused heart [43].

 Persistent Myofibroblasts and their Activity

Myofibroblasts persist for months [32] and even years [44] within an infarct scar. Their 

anticipated disappearance through programmed cell death when tissue repair is complete 

fails to occur [44]. Beyond their persistence is a secretory phenotype with ongoing scar 
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tissue collagen turnover to confer stability and strength to the infarct scar of this muscular 

pump. However, the mobility of α-smooth muscle actin-containing myofibroblasts in 

migrating to distant sites and the soluble signals they generate at these sites invokes a 

progressive fibrosis of myocardium. The pathophysiological mechanisms accounting for this 

progressive fibrosis, however, remain unclear. Several possibilities, each driven by reactive 

oxygen species derived from mitochondria and/or NADPH oxidase of these cells [45-47], 

could be theorized. A persistent highly synthetic myofibroblast phenotype with an excessive 

generation of type I collagen driven by angiotensin II-induced intracellular Ca2+ overloading 

with oxidative stress [48]. Another is repeated episodes of nonischemic cardiomyocyte 

necrosis, with each bout eliciting a wound-healing response. Such a repetition of the wound-

healing response would suggest myofibroblasts are never quiescent, instead remaining in an 

unrelenting profibrogenic phenotype.

 Myofibroblast Secretome: Autocrine Signaling

The de novo generation of the angiotensin II by myofibroblasts is a self-regulating autocrine 

signal that can lead to ongoing fibrosis via protracted AT1 receptor binding. Also involved in 

this self-sustained myofibroblast collagen synthesis is TGF-β1 [49] and Smad-dependent and 

Smad-independent proteins with connective tissue growth factor (see Figure 1) [50]. 

Downstream to AT1 receptor binding signal transduction pathways involve TGF-β1, Smad 

proteins, and connective tissue growth factor. Interleukins 1, 6, and 13, and noncoding RNA 

molecules are involved in regulating myofibroblast collagen synthesis [51]. Intracellular 

signaling pathways regulating the myofibroblast secretome and collagen turnover are under 

investigation [52]. TGF-β1, for example, regulates myofibroblast expression of scleraxis, a 

profibrotic transcription factor which stimulates collagen synthesis via a Smad-independent 

pathway [53]. TGF-β1 suppresses myofibroblast gene expression of matrix 

metalloproteinases involved in collagen degradation [54]. Because myofibroblasts are 

persistent and have ongoing auto-/paracrine activity, scar tissue is metabolically active [35].

 Myofibroblast Secretome: Paracrine Signaling

Fibrosis is a “crucial determinant” of the tissue heterogeneity found within the diseased 

myocardium of the failing heart [55]. Myocyte size is normally variable [56]; this variability 

is accentuated in the failing heart because tendrils of fibrillar collagen, emanating from scar 

tissue to secure it within this contractile organ, ensnare and immobilize neighboring 

cardiomyocytes (see Figure 2). In so doing, the work of these myocytes is reduced and 

disuse atrophy ensues [57].

Myofibroblast angiotensin II signaling has paracrine properties on neighboring myocytes 

again mediated by AT1 receptor binding with increments in cytosolic [Ca2+]i taking place 

via store-operated Ca2+ channels that induce oxidative stress and myocyte dedifferentiation 

with re-expression of β-MHC and ANP, a fetal gene program also found in hypertrophied 

myocytes. The important role of oxidative stress in promoting protein degradation with 

atrophy is further suggested by the response to antioxidants in its prevention [12-17, 19, 20, 

58-60]. Angiotensin II and oxidative stress are similarly involved in skeletal muscle atrophy 

[61]. Activation of redox-sensitive, proteolytic ligases (MuRF1 and atrogin-1) of the 
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ubiquitin-proteasome system with attendant protein degradation is essential to atrophy of 

immobilized myocytes ensnared by fibrillar collagen (see Figure 3) [20].

The loss of cardiomyocytes through necrotic and apoptotic forms of cell death, together with 

atrophic cardiomyocytes contribute to the progressive nature of heart failure. Collectively, 

the structural remodeling of myocardium by progressive accumulation of an excessive 

fibrillar collagen matrix has led to the concept of interstitial heart disease [62, 63]. 

Molecular signaling emanating from myofibroblasts are therefore logical targets for 

developing cardioprotective strategies to prevent fibrosis.

 Cardioprotective Strategies

Given the adverse impact of fibrosis on tissue stiffness, arrhythmogenesis, and the 

conversion of adaptive to pathologic hypertrophy, antifibrotic strategies are of marked 

interest. Several are briefly discussed.

 Subsarcolemmal Mitochondria

One strategy proposed to attenuate the appearance of cardiac fibrosis is mitochondria-

targeted interventions aimed at preventing cardiomyocyte necrosis, a requisite that initiates 

tissue repair with scarring. This mitochondria-targeted cardioprotective strategy has focused 

on interrupting the mitochondriocentric signal-transducer-effector pathway to necrosis by 

preventing subsarcolemmal mitochondrial Ca2+ overload. This includes the use of targeted 

antioxidants or inhibition of the opening of the mitochondrial inner membrane permeability 

transition pore which is less resistant in these organelles as contrasted to interfibrillar 

mitochondria [64-66]. Such strategies have included nutriceuticals (flavonoids) [67], 

pharmaceuticals (cyclosporine A or third-generation β-adrenergic-receptor antagonists) [68], 

inhaled hydrogen gas [69], or microRNAs [70-72].

 Myofibroblast Survival

Therapies that disrupt myofibroblast survival are another potential direction in 

cardioprotection. Apoptotic clearance of myofibroblasts would serve to remove the ongoing 

cellular supply of collagen. Nuclear factor kappa B (NF-κB), is integral to fibrogenesis and 

myofibroblast survival. Transcriptional inhibition of NF-κB, a redox-sensitive transcription 

factor, could inactivate antiapoptotic proteins [73] as may epigenetic modifications of 

myofibroblast gene expression and survival [74]. A DNA methylation inhibitor has shown 

promise in the treatment of hypertension-induced hypertrophy with fibrosis [75].

 Myofibroblast-Derived Angiotensin II

Angiotensin II and its AT1 receptor binding play a pivotal role in the autocrine regulation of 

collagen turnover and paracrine myocyte signaling. Losartan and valsartan, AT1 receptor 

blockers, have each proven cardioprotective [10, 40]. Other AT1 receptor antagonists 

likewise prevent reactive fibrosis and attenuate reparative fibrosis in the infarcted heart, in 

hypertensive heart disease, and in cardiomyopathy induced by rapid atrial pacing [37, 40, 

76-79]. Efficacy of AT1 receptor blockade in suppressing the myofibroblast-based ACE-
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angiotensin II-TGF-β1 signaling axis to fibrosis also has been demonstrated in other diseased 

cardiovascular tissues, including systemic arterioles and aortic aneurysm [80-82].

 ACE2 Expression

ACE2, a homologue of ACE, offers a counter-regulatory approach to the control of tissue 

angiotensin II. ACE2 hydrolyzes the octapeptide angiotensin II into angiotensin (1–7) which 

exerts its actions via binding to a Mas receptor. The ACE2-angiotensin (1–7)-Mas signaling 

axis is in equilibrium with the ACE-angiotensin II-AT1 receptor axis and angiotensin (1–7) 

is counter-regulatory to angiotensin II. Angiotensin (1–7) formation is dependent on 

angiotensin II as its substrate [83]. Increased levels of cardiac ACE2 and angiotensin (1–7)-

forming activity are found in the failing heart and its cardiomyocytes [84, 85] and ACE2 

activity is insensitive to ACE inhibitors [83]. AT1-receptor antagonists, on the other hand, 

increase cardiac expression of ACE2 [86, 87]. Loss of ACE2 augments maladaptive 

angiotensin II-based remodeling, including upregulation and activation of tissue matrix 

metalloproteinase [88]. These effects can be blocked by an AT1-receptor antagonist [88]. By 

contrast, overexpression of ACE2 and upregulated angiotensin (1–7) attenuate pathological 

remodeling [89, 90]. Chronic inhibition of ACE2 results in increased fibrosis [91].

 TGF-β1 Pathway

The TGF-β1 signaling pathway to collagen synthesis can be blocked using a TGF-β1 

antibody, antisense oligonucleotide, or its soluble truncated receptor [73]. The Smad 2/3 

pathway can be attenuated [92]. Downstream molecular events can be blocked by triplex-

forming oligonucleotides to prevent collagen gene transcription and the accumulation of scar 

tissue [67, 68, 71, 93-95]. Such triplex-forming sequences are present in the promoter of 

Col1α1 gene and form efficient triplexes with the exogenously added triplex-forming 

oligonucleotides and inhibit type I collagen accumulation. Their efficiency in the control of 

cardiac fibrosis remains to be elucidated.

 Limitations

One major caveat to these cardioprotective strategies is the fact collagen turnover is common 

to all tissues and must not be compromised. Cardiac-targeted strategies, therefore, must be 

tissue specific, delivered to precise cellular and subcellular locations. Moreover, scar tissue 

preserves the structural integrity of the heart. Should its formation be prevented at the site of 

myocyte necrosis, the myocardium would be weakened and subject to rupture. Limited 

proteolytic digestion of interstitial fibrosis, on the other hand, would be desirable if it 

releases atrophic myocytes ensnared by fibrillar collagen and regression of fibrous tissue 

would improve diastolic stiffness. Such has been attained in hypertensive heart disease with 

an ACE inhibitor or angiotensin-receptor antagonist [96-99].

 Summary and Conclusions

When cardiomyocyte necrosis occurs, a population of collagen-expressing myofibroblasts 

appears to produce scar tissue and preserve the structural integrity of injured myocardium. 

Persistent myofibroblasts and their secretory phenotype, however, continue their ongoing 

deposition of stiff, cross-linked type I fibrillar collagen. This progressive fibrosis has 
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multiple adverse consequences on its structure and function. Indeed, fibrosis is fundamental 

to adverse structural remodeling of the failing heart, irrespective of its etiologic origins, and 

draws attention to the important role of myofibroblasts and the entity interstitial heart 

disease.

The myofibroblast secretome and its angiotensin II–AT1 receptor–TGF-β1-Smad autocrine 

signaling pathway to fibrosis, is common to sites of healing in the heart, as well as other 

tissues and organs. Both auto- and paracrine signaling involving myofibroblasts and 

myocytes, respectively, can be interrupted with an AT1-receptor antagonist. By upregulating 

a counter-regulatory ACE2-angiotensin (1–7)-Mas receptor axis in degrading AngII, an 

alternate strategy in cardioprotection could be realized. Other cardioprotective strategies 

include: the use of mitochondria-targeted antioxidants to prevent cardiomyocyte necrosis 

and subsequent scarring; the use of therapies that modify myofibroblast survival; and 

targeting downstream pathways using microRNAs and triplex-forming oligonucleotides to 

prevent type I collagen transcription.

 Expert Commentary

As is the case for any organ, fibrosis disrupts architecture and function of its parenchyma. In 

the heart, fibrosis can preserve the structure of this hollow muscular organ when injured, but 

at the expense of its diastolic and systolic function. When cardiomyocyte necrosis occurs, a 

population of collagen-expressing myofibroblasts appear at the site of injury to produce scar 

tissue and repair the wound. Myofibroblasts are persistent and have secretory phenotype 

which continues their deposition of stiff, cross-linked type I fibrillar collagen at and remote 

to the site of injury with this progressive fibrosis having multiple adverse consequences on 

ventricular structure and function. Indeed, fibrosis is a fundamental component of the 

adverse structural remodeling of the failing heart and the entity interstitial heart disease. 

Fibrosis therefore draws attention to the important role of myofibroblasts and their active 

participation in adverse cardiac remodeling.

The myofibroblast secretome and its angiotensin II–AT1 receptor–TGF-β1-Smad autocrine 

signaling pathway to fibrosis, is common to sites of healing in the heart irrespective of the 

etiologic origins of injury. Autocrine signaling involving myofibroblasts and paracrine 

heterocellular signaling with myocytes can each be interrupted with an AT1-receptor 

antagonist. By upregulating a counter-regulatory ACE2-angiotensin (1–7)-Mas receptor axis 

in degrading AngII, an alternate strategy in cardioprotection could be realized. Other 

cardioprotective strategies include: the use of mitochondria-targeted antioxidants to prevent 

cardiomyocyte necrosis and subsequent scarring; the use of therapies that modify 

myofibroblast survival; and targeting downstream pathways using microRNAs and triplex-

forming oligonucleotides to prevent type I collagen transcription are each under 

investigation. These are but several strategies that are under consideration in the prevention 

of cardiac fibrosis.
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 Five-Year View

Heart failure continues to be a worldwide health problem of ever-increasing proportions. 

The appearance of the congestive heart failure (CHF) syndrome with its characteristic 

symptoms and signs is rooted in neurohormonal activation. Accordingly, today's 

management of CHF focuses on pharmacologic interference with effector hormones of the 

renin-angiotensin-aldosterone and adrenergic nervous systems. This is a palliative approach. 

It does not address the pathophysiologic basis of the heart's failure as a muscular pump. The 

adverse structural remodeling of myocardium by a progressive fibrosis imparted by a 

population of persistent, metabolically active myofibroblasts offers several potential 

cardioprotective strategies, which are under development and implementation. They include: 

inducing myofibroblast apoptosis through inactivation of antiapoptotic proteins; AT1 

receptor antagonist to interfere with auto-/paracrine myofibroblast signaling or to induce 

counterregulatory expression of ACE2; and attacking the TGF-β1-Smad pathway by 

antibody or antisense or triplex-forming oligonucleotides. Other potential strategies under 

development are beyond the scope of this brief perspective. This notwithstanding, targeting 

the secretory phenotype of this important nonmyocyte cell and its active participation in the 

appearance of interstitial heart disease offers potential in the prevention of heart failure. The 

next five years will determine whether this potential can be realized.
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Key Issues

• When cardiomyocyte necrosis occurs, a population of collagen-expressing 

myofibroblasts appear to produce scar tissue and preserve the structural 

integrity of injured myocardium.

• Myofibroblasts (myoFb) are phenotypically transformed, contractile 

fibroblast-like cells expressing α-smooth muscle actin microfilaments. They 

are integral to collagen fibrillogenesis with scar tissue formation at sites of 

repair irrespective of the etiologic origins of injury or tissue involved.

• MyoFb can persist long after healing is complete, where their ongoing 

turnover of collagen accounts for a progressive structural remodeling of an 

organ (a.k.a. fibrosis, sclerosis or cirrhosis). Such persistent metabolic 

activity is derived from their secretome consisting of requisite components 

in the de novo generation of angiotensin (Ang) II.

• Autocrine and paracrine signaling induced by tissue AngII is expressed via 

AT1 receptor ligand binding to respectively promote: i) regulation of myoFb 

collagen synthesis via the fibrogenic cytokine TGF-β1-Smad pathway; and 

ii) dedifferentiation and protein degradation of atrophic myocytes 

immobilized and ensnared by fibrillar collagen at sites of scarring.

• Several cardioprotective strategies in the prevention of fibrosis are 

considered. They include: inducing myoFb apoptosis through deactivation 

of antiapoptotic proteins; AT1 receptor antagonist to interfere with auto-/

paracrine myoFb signaling or to induce counterregulatory expression of 

ACE2; and attacking the TGF-β1-Smad pathway by antibody or the use of 

antisense or triplex-forming oligonucleotides.
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Figure 1. 
The myofibroblast secretory phenotype found at the site of healing. This myofibroblast 

secretome includes the de novo generation of angiotensin II and subsequent induction of 

collagen synthesis by these cells. Included in the secretome is the expression of renin, ACE 

and AT1 receptors. Autocrine actions of angiotensin II, mediated via AT1 receptor binding, 

results in expression of fibrogenic TGF-β1 and CTGF to stimulate myofibroblast production 

of fibronectin, which forms a provisional scaffold for type I and type III collagen 

fibrillogenesis. Abbreviations: ACE, angiotensin-converting enzyme; AT1, angiotensin II 

type 1; CTGF, connective tissue growth factor; MMPs, matrix metalloproteinases; TGF-β1, 

transforming growth factor β1. Adapted from Weber KT, Sun Y, Bhattacharya SK, Ahokas 

RA, Gerling IC. Myofibroblast-mediated mechanisms of pathological remodelling of the 

heart. Nat Rev Cardiol. 2013;10:15-26.
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Figure 2. 
Segmental myocyte atrophy along a myofiber composed of individual myocytes joined end-

to-end to form an in-series syncytium. Left panel: longitudinal perspective of several 

myofiber syncytia as seen by light microscopy. Arrowheads indicate atrophied cells 

composing this syncytia while arrows identify myofibroblasts juxtaposed to these atrophied 

myocytes (hematoxylin and eosin, ×200). Right panel: a schematic representation of normal 

and atrophic myocytes of the myofiber syncytium and where collagen fibrils emanating from 

scar tissue encircle myocytes. Myocytes so ensnared are smaller and subject to disuse 

atrophy. An activated myofibroblast with a fibrogenic phenotype is seen in proximity to an 

atrophied myocyte. Reprinted with permission from Al Darazi F, Zhao W, Zhao T, Sun Y, 

Marion TN, Ahokas RA, Bhattacharya SK, Gerling IC, Weber KT. Small dedifferentiated 

cardiomyocytes bordering on microdomains of fibrosis: evidence for reverse remodeling 

with assisted recovery. J Cardiovasc Pharmacol. 2014;64:237-246.
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Figure 3. 
Myofibroblast (myoFb) cross-talk with neighboring myocytes via paracrine signaling 

involving de novo angiotensin (Ang) II generation and AT1 receptor binding. Ensuing IP3 

stimulation leads to the release from and subsequent fall in endoplasmic reticulum [Ca2+]er 

whose Ca2+ sensor, STIM1, in turn, is then activated to promote store-operated Ca2+ channel 

entry (SOCE) to raise cytosolic [Ca2+]i and mitochondrial [Ca2+]m. Ensuing oxidative stress 

and reactive oxygen species (ROS) activate proteolytic UPS ligases (MuRF1 and atrogin-1) 

leading to myocyte protein degradation with resultant atrophy.
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