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Incorporation of subducted slab in arc volcanism plays an impor-
tant role in producing the geochemical and isotopic variations in
arc lavas. The mechanism and process by which the slab materials
are incorporated, however, are still uncertain. Here, we report, to
our knowledge, the first set of Mg isotopic data for a suite of arc
lava samples from Martinique Island in the Lesser Antilles arc,
which displays one of the most extreme geochemical and isotopic
ranges, although the origin of this variability is still highly
debated. We find the δ26Mg of the Martinique Island lavas varies
from −0.25 to −0.10, in contrast to the narrow range that charac-
terizes the mantle (−0.25 ± 0.04, 2 SD). These high δ26Mg values
suggest the incorporation of isotopically heavy Mg from the sub-
ducted slab. The large contrast in MgO content between perido-
tite, basalt, and sediment makes direct mixing between sediment
and peridotite, or assimilation by arc crust sediment, unlikely to be
the main mechanism to modify Mg isotopes. Instead, the heavy
Mg isotopic signature of the Martinique arc lavas requires that the
overall composition of the mantle wedge is buffered and modified
by the preferential addition of heavy Mg isotopes from fluids re-
leased from the altered subducted slab during fluid−mantle inter-
action. This, in turn, suggests transfer of a large amount of fluid-
mobile elements from the subducting slab to the mantle wedge
and makes Mg isotopes an excellent tracer of deep fluid migration.
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Arc volcanism records the elemental cycling between the
subducting slab and subarc mantle. Of particular interest is

the mechanism by which the subducted material is incorporated
into the arc lava. Except for the rare case where arc lava is the
direct melting product of a subducted slab (1), most scenarios
suggest that mantle wedge is the major magma source that melts
after being modified by fluids or melts derived from the sub-
ducted basalt and sediment (2, 3). In addition, processes such as
polybaric crystallization and crustal assimilation can also modify
the composition of arc magmas on their way to the surface.
These different processes have different implications on sub-
duction dynamics and elemental cycling, but, in many cases, they
are difficult to distinguish. One of the best examples comes from
studies of island arc lavas from the Lesser Antilles arc (Fig. 1).
Geochemical and Sr, Nd, Pb, Hf, and Li isotopic studies suggest
that the Lesser Antilles arc lavas incorporated a variable but to
some extent significant amount of subducted sediments (4–8).
However, the exact mechanism by which the sediment was in-
corporated into the lavas is still highly debated and involves
various processes such as crustal contamination, subarc mantle
metasomatism by fluids released from the slab, or melts derived
by partial melting of the subducted sediments (4–17).
Magnesium isotopes have the potential to provide new and

independent constraints on both source composition and pro-
cesses operating during the formation of arc magmas, not only
because Mg is a major element in all magmas but also because
surficial and low-temperature processes fractionate Mg isotopes
whereas high-temperature magmatic processes do not (18, 19)
(Fig. 2). Subducted marine sediments and altered basalts have
isotopic compositions different from those of the normal mantle
as sampled by global peridotite xenoliths (Fig. 2); however, they

generally have low Mg concentrations (18–25, *). In comparison,
altered abyssal peridotites have Mg concentrations similar to the
normal mantle whereas their Mg isotopic compositions are
heavier because of the impact of hydrothermal circulation during
accretion and residence in the deep ocean (Fig. 2).†,‡ Finally,
although the mechanism is still not well understood, studies of a
few arc peridotites show that they also have slightly heavier Mg
isotopic composition than the normal mantle (Fig. 2). Given
these observed ranges, Mg isotopes may help in understanding
the relative contributions of crustal and mantle components to
arc magmatism, but no systematic study of either continental or
island arc lavas has been carried out yet.
Here, we report Mg isotopic data for 27 arc lavas and 17

subducting forearc sediment samples. The lava samples are from
the Martinique Island and cover most of the chemical and iso-
topic variations in the Lesser Antilles arc (4, 5) (Fig. 1). The sed-
iment samples are from Deep Sea Drilling Project (DSDP) sites
543 and 144 (NE and SE of Martinique Island, respectively); they
cover the whole compositional spectrum of subducting sediments
and range in lithology from chalky ooze to terrigenous and pelagic
deposits (6, 7).
The sediments display a large range of δ26Mg (−0.76 to +0.52)

with an average of −0.10 ± 0.61 (2 SD) (Table S1). This large
variation is mainly controlled by sediment mineralogy, with carbon-
ate-rich samples at site 144 generally having light Mg isotopic
compositions, whereas clays, the dominant type of sediments at
site 543, have heavy isotopic compositions (Fig. 2). This miner-
alogical control is also evident in studies of loess, shale, mudrock,
and carbonates as well as leaching experiments that show pref-
erential enrichment of light Mg isotopes in carbonates over sil-
icates (26, 27).
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The δ26Mg values of Martinique lavas define a smaller range
from −0.25 to −0.10, and are, on average (−0.18 ± 0.07, 2 SD)
(Fig. 2), higher than midocean ridge basalt (MORB) (δ26Mg = −
0.25 ± 0.06, 2 SD) and mantle peridotite (δ26Mg = −0.25 ± 0.04 2
SD) (18, 23, 28, 29). This difference indicates that the source of
Martinique lavas is different from that of MORB, which could be
related to a diversity of processes that include seawater alteration for
submarine lavas, melting of a mantle source with different δ26Mg, or
crustal contamination during magma ascent.
Chemical weathering and seawater alteration can potentially

modify the Mg isotopic composition of arc basalts, and can shift
their δ26Mg to higher values if clays are the dominant alteration
products (24). However, the analyzed lava samples are all fresh
[loss on ignition (LOI) < 2% with one exception; Table S2], and
most erupted above sea level (4, 5). A previous Li isotopic study
on the same suite of samples has shown that only the three
samples that erupted as submarine lava have high δ7Li due to

interaction with isotopically heavy seawater (8). These three
samples, however, have Mg isotopic compositions similar to the
other samples. In addition, δ26Mg of Martinique arc lavas does
not correlate with their LOI. Therefore, different from Li iso-
topes, interaction with seawater has little effect on the δ26Mg.
The different behavior between Li and Mg isotopes likely reflects
the higher concentration of Mg over Li in basalts, which results
in an easier isotopic fractionation of Li than Mg during weath-
ering and alteration.
Partial melting of a peridotite source and fractional crystalli-

zation of olivine, pyroxene, and plagioclase can be ruled out too,
as these processes do not fractionate Mg isotopes (18, 28–30).
Nonetheless, arc lavas could potentially be isotopically heavier
than MORB if they were produced by partial melting of a
subducted oceanic crust, with garnet as a residual phase, e.g.,
adakite (1). This is because garnet has much lower δ26Mg rel-
ative to coexisting pyroxene, as was observed in cratonic and
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Fig. 1. (Upper) Geological map of the Lesser Antilles island arc and the two DSDP sites (sites 144 and 543). (Lower) Comparison of Martinique Island basalts
with other Lesser Antilles and worldwide island arcs in 87Sr/86Sr versus 206Pb/204Pb isotopic space (data compiled by Geochemistry of Rocks of the Oceans and
Continents database). Modified from ref. 4 with permission from Elsevier; www.sciencedirect.com/science/journal/0012821X.
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orogenic eclogites (31–33). However, this cannot be the cause of
the high δ26Mg values of Martinique lavas, because their chemical
compositions are inconsistent with derivation from slab melting,
i.e., adakite (4–7).
The forearc sediments that enter the Lesser Antilles Trench

have, on average, a heavy Mg isotopic composition (−0.10 ±
0.61, 2 SD) (Fig. 2); they could thus be a potential source for
the heavy Mg isotopic compositions of the Martinique lavas.
Equivalent sediments in arc crust through which the Martinique
lavas erupted could provide such a source, as well, if they were
assimilated into the lavas. Furthermore, due to the lack of Mg
isotope fractionation during prograde metamorphism (31, 33,
34), the metamorphic counterparts of the subducting sediments
should preserve their original Mg isotopic signature. Previous
isotopic studies of Martinique lavas show that the sedimentary
input increases with age from old to intermediate lavas whereas
it is much more variable in the recent lavas (4). However, Mg
isotopic compositions of the Martinique lavas do not correlate
with either age or any radiogenic isotopic system (Fig. 3), sug-
gesting that the presence of heavy Mg is not caused by sediment
addition to the subarc mantle source or directly to the lavas

themselves. Furthermore, neither binary mixing between subarc
mantle peridotite and sediments nor assimilation and fractional
crystallization of arc magma can explain the data (Fig. 3). In all
modeled mixing arrays, the amount of sediments required to
account for the δ26Mg measured in the lavas is unrealistically
high (>50%) due to the generally much lower Mg concentration
in sediment (2–3%) compared with basalt (8%) and peridotite
(48%) (25). Presence of such a large amount of sediment in a
source producing basalts and andesites is impossible from a
major element point of view. The opposite is true for elements
such as Nd, Sr, Pb, or Li, which are drastically more enriched in
sediment than in peridotite. In other words, a small addition of
sedimentary materials into a peridotite or basalt can change their
Nd, Sr, Pb, or Li isotopic compositions significantly, whereas a
very large amount of sediment is required to change their Mg
isotopic composition. The fact that δ26Mg varies little in Martinique
arc lavas, whereas their Nd, Sr, and Pb isotopes change significantly,
implies that (i) the peridotite in the mantle wedge has an un-
usual Mg isotopic composition and (ii) the impact of sedimen-
tary material, if any, is invisible from the Mg isotope perspective
because of the large concentration contrast.
Our conclusions above are consistent with the few available

Mg isotopic data for arc peridotites. Thus far, the only arc
peridotites analyzed for Mg isotopes come from Avacha Volcano
in Kamchatka, and they represent fragments of the subarc
mantle that has been metasomatized by fluids released from
the subducting Pacific plate (35). Their δ26Mg values vary
from −0.25 to −0.06 with an average of −0.18 ± 0.10 (2 SD)
(36), overlapping the Martinique arc lava range but signifi-
cantly different from values reported for normal mantle pe-
ridotites (18) (Fig. 2). Although the mechanism responsible
for the heavy Mg isotopic composition of these arc peridotites
is uncertain, it is possible that fluids coming from the sub-
ducted slab could modify the peridotite present in the mantle
wedge.
The few available δ26Mg data on altered MORB and abyssal

peridotite are shown in Fig. 2. Abyssal peridotites are of par-
ticular interest because they have high Mg concentrations and
their Mg isotopic compositions are on average heavier than
fresh MORB (−0.25 to 0.10, with an average of −0.12 ± 0.14,
2 SD).†,‡ The most likely explanation for their high δ26Mg is
that they were altered to various degrees by hydrothermal cir-
culation during and after emplacement onto the seafloor.†,‡ As
subducted altered basalts and abyssal peridotites contain large
amounts of fluids (their LOI is in the order of 10 wt.%), they
can be the source of vast volumes of Mg-rich fluids (37, 38)
released to the mantle wedge during dehydration of the sub-
ducted slab. These fluids infiltrate the mantle wedge through
fluid−peridotite interactions and modify its Mg isotopic com-
position toward a heavy value, which comprises the source of
the arc lavas.
Our interpretation that fluid−peridotite interactions in the

subarc mantle have shifted mantle wedge and Martinique
lavas to heavy Mg isotopic composition is also consistent
with other independent observations. Dehydration of the sub-
ducting slab has been called on to explain the high concen-
tration of fluid-mobile elements in Martinique lava samples
(5, 39) and, more generally, in a large number of island arcs
(40). In addition, the Sr isotopic composition of Martinique
lavas remains quite low, at about 0.7035, indicating that the
leached material is basaltic or peridotitic rather than sedi-
mentary (see ref. 5 for more details). It could, however, be
argued that the large amount of fluids needed to modify the
δ26Mg of the mantle wedge should also impact other geo-
chemical parameters. For example, ratios of mobile to im-
mobile trace elements should differ from normal mantle
melts. This is indeed the case for Martinique lavas that have
generally high Ba/Th and Pb/Ce ratios (85.3 ± 48.2 and 0.23 ±
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Fig. 2. Magnesium isotopic composition of Martinique arc lavas and sub-
ducting forearc sediments (sites 144 and 543). (Data are reported in Tables
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0.06, 1 SD, respectively) relative to the values of MORB (71.93 ±
8.32 and 0.0402 ± 0.0016, 95% confidence, respectively) (41).
However, no clear correlation exists between δ26Mg and Ba/Th or
Pb/Ce ratios in our dataset, mainly reflecting the combined ef-
fects of low concentrations of incompatible trace elements in
the dehydrated subducted slab and the residual mineralogy that

could retain some trace elements during melting and fractionation
processes.
Our study shows, for the first time to our knowledge, that

the Mg isotopic composition of some arc lavas differs from that
of MORB. Although both crustal assimilation during magma
ascent and sediment addition in the mantle wedge likely occur
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(4–17), neither of them can be the major process responsible
for the Mg isotopic variation in Martinique lavas due to the
large concentration contrast between sediment and arc lava
or peridotite. Instead, the difference between Martinique lavas
and MORB likely results from massive flux of dehydration
fluids that leave the subducted oceanic plate to invade the
mantle wedge and change its overall isotopic composition (Fig.
4). By combining Mg isotopes with radiogenic isotopes such
as Sr, Nd, or Pb, a better picture of the processes occur-
ring during arc genesis can be obtained: In contrast to trace

elements that track down the presence of enriched sedimentary
materials, a major element such as Mg may help pinpoint the
role of subducted products in the overall composition of
arc magmas.
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