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Bioinformatic analysis of Escherichia coli proteomes revealed that
all possible amino acid triplet sequences occur at their expected
frequencies, with four exceptions. Two of the four underrepre-
sented sequences (URSs) were shown to interfere with transla-
tion in vivo and in vitro. Enlarging the URS by a single amino
acid resulted in increased translational inhibition. Single-molecule
methods revealed stalling of translation at the entrance of the
peptide exit tunnel of the ribosome, adjacent to ribosomal nucle-
otides A2062 and U2585. Interaction with these same ribosomal
residues is involved in regulation of translation by longer, natu-
rally occurring protein sequences. The E. coli exit tunnel has evi-
dently evolved to minimize interaction with the exit tunnel and
maximize the sequence diversity of the proteome, although allow-
ing some interactions for regulatory purposes. Bioinformatic anal-
ysis of the human proteome revealed no underrepresented triplet
sequences, possibly reflecting an absence of regulation by interac-
tion with the exit tunnel.

translation | bioinformatics | stalling peptides | underrepresented
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The 20 naturally occurring amino acids can form 8,000 triplets,
160,000 quadruplets, and so forth. The bacterial proteome of

about 5 million amino acids can contain, on a random basis, 600
copies of each triplet and 30 copies of each quadruplet. The
resulting sequence diversity of the proteome underlies the great
variety and specificity of protein structure and function (1).
There is a seemingly limitless capacity for the evolution of cat-
alytic activities, protein–ligand interactions, and protein–protein
interactions (2). Bacteria are usually successful in adapting to
their environment, no matter how harsh, and to the available nu-
trient source, no matter how unlikely. The question naturally arises
of whether there are limitations. Here, we have asked whether all
possible amino acid sequences are used in the bacterial pro-
teome; whether some occur less frequently than others; and,
if so, what are the possible reasons. We have exploited the
comprehensive proteomic data now available by screening for
sequences lacking in proteomic datasets. We have screened
multiple bacterial proteomes to reveal triplet and quadruplet
sequences that occur at frequencies either below [underrep-
resented sequences (URSs)] or above (overrepresented se-
quences) the frequencies expected on a random basis, and we
have determined the cause of occurrence of URSs.

Identification of URSs in Escherichia coli
To identify potentially significant URSs, we analyzed all identi-
fied ORFs in the proteomes of 29 strains of Escherichia coli for
which the entire genome had been sequenced, annotated, and
deposited [using the Genome Information Broker DNA Data
Bank of Japan (GIB-DDBJ) database, www.ddbj.nig.ac.jp/]. We
calculated the ratio between the expected number of occur-
rences (Nex) and actual number (Nr) for all possible amino
acid triplets (Fig. 1). Almost all triplets have a ratio of about 1

(mean = 1.08 ± 0.32 SD), indicating that most sequences occur
nearly the expected number of times. Four triplets were identified
as significant URSs (Nex/Nr > 4), one of which, CMY, occurs
sevenfold less often than expected (18.5 SD above the mean). The
other permutations of these three residues (YMC, MYC, etc.)
occur at about the expected frequency, indicating that the under-
representation of CMY is not a result of the reduced use of cys-
teine and/or methionine. By similar analysis, we could identify
more than 5,000 quadruplet URSs that do not appear even once in
the database. For example, extension of the CMY sequence to
CMYW resulted in complete absence from the proteome. Analysis
of the proteomes of 25 microorganism genera revealed different
patterns of URSs (Fig. S1), whereas no tripeptide URSs exist in the
human proteome (Fig. S2).

URSs Inhibit Protein Expression
The occurrence of a URS could reflect an inhibitory effect upon
protein production (3–6) or simply a lack of utility of the par-
ticular sequence in protein folding and function. To investigate
the possibility of an inhibitory effect, we embedded the CMY
sequence at three sites in themntA (manganese ABC transporter
protein A) gene (Table S1) and determined the effect on MntA
expression in vivo. We chose this cyanobacterial gene because
we had previously found that it was expressed at very high
levels in E. coli and hoped that this level of translation would
make identification of translation inhibition more significant.
Depending on the site of insertion, the level of MntA protein
was reduced 2.5- to 10-fold (Fig. 2 A–C). Insertion of the
CMYW sequence at the same locations reduced expression to
levels barely or completely undetectable, whereas insertion of
the scrambled sequence WCMY at the same locations allowed
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almost full expression. The inhibitory effect of the presence of
URSs was such that internal controls were not possible, because
total protein expression was affected (Fig. S3A). All SDS/
PAGE-based analysis was thus carefully performed on the basis
of initiating expression with equal cell concentrations, and
loading was performed on the basis of equal reaction volume.
Similar inhibition of MntA expression with embedded URSs
was also observed in an in vitro transcription/translation assay
(Fig. 2D), showing that inhibition occurs at the level of tran-
scription or translation. The same pattern of inhibition was
obtained when the URSs were embedded in GFP (Fig. 2E
and Fig. S3). Moreover, when the MntA protein containing an
embedded URS was coexpressed with normal GFP, the fluo-
rescence obtained from GFP was also diminished, even though
no URS was present (Fig. 2F). This result indicates that the
expression of the URS-embedded MntA protein significantly
lowers the amount of available ribosomes for GFP expression,
suggesting that ribosome recovery is also inhibited. The in-
hibitory effect of a URS was evidently strong enough to influ-
ence global gene expression. As a consequence, preliminary
measurements show that total E. coli cell growth was diminished
when URS-embedded MntA was expressed as well (Fig. S3D).
The in vivo experiments are difficult to quantitate because ex-
pression was performed overnight and the bacteria may lose
the plasmid, and thus regain viability. However, expression of
GFP in HeLa cells and cell survival were unaffected by an E. coli
URS embedded in GFP (Fig. S4 and Tables S2 and S3), show-
ing that URSs are species-specific, consistent with our bioinformatic
analysis.

URSs Induce Ribosomal Stalling
To determine whether inhibition of gene expression by URSs
is due to an effect upon translation, we used single-molecule
fluorescence methods for measuring translation rates. Continu-
ous observation of fluorescence resonance energy transfer (FRET)
between a Cy3B (donor dye)-labeled E. coli 30S and Black Hole
Quencher 2 (a FRET quencher)-labeled 50S subunits (7, 8) in
zero-mode waveguides (ZMWs) (9, 10) tracks the conforma-
tional dynamics of a single translating ribosome (8, 11–13).
During each cycle of elongation, the ribosome undergoes two
global conformational changes: a 30S body rotation relative to
the 50S subunit that follows peptide bond formation and a re-
verse rotation upon elongation factor G–catalyzed translocation.
The initial nonrotated state is characterized by a higher FRET
value, which corresponds to a lower Cy3B donor signal intensity.
The rotated state has a lower FRET value, and thus higher
signal intensity. The number of high-low-high FRET cycles
within an observation window (5 min in the experiments re-
ported here) corresponds to the number of codons translated,

whereas the lifetimes of the FRET states reflect the time
required to translate each codon. In all experiments, a mix-
ture of total, aminoacylated E. coli tRNAs was used to pro-
vide full coverage for all possible codon uses. We have used
this approach previously to characterize stalling of trans-
lation induced by SecM and ErmCL peptides, as well as
frame-shifting signals (14–16).
Effects of URS sequences on translation were assessed by

insertion of the corresponding codons at codon 10 of bacte-
riophage T4 gp32 mRNA, whose translation rates and survival
times were previously measured by observation of FRET in
ZMWs (14). Translation in the presence of a codon for CMY,
the most underrepresented triplet URS, began at rates of 4–6 s
per codon (1.9–3.4 s in the nonrotated state and 1.8–3.7 s in the
rotated state), comparable to translation rates observed for
unaltered gp32 mRNA (14). Upon entry of codon 15 in the A
site of the ribosome, with CMY residues incorporated in the
nascent peptide two amino acids beyond the entrance to the
peptide exit tunnel, there was a two- to threefold increase in
rotated state lifetimes, and a gradual 1.3-fold increase in non-
rotated state lifetimes (Fig. 3B). As translation continued, ro-
tated state lifetimes increased, peaking at about 10 s over codon
17 and returning to normal by codon 21. Nonrotated state life-
times remained constant at about 4 s per codon. Rotated and
nonrotated state lifetimes were constant, and all were less than
3.7 s through 28 codons during translation of the WT gp32
mRNA (14).
The two- to threefold increase in rotated state lifetimes, and

thus the decrease in translation rates, resulted in significant
translational arrest, but with a two-codon lag. The number of
translating ribosomes remained constant through codon 16,
with, at most, 2% of ribosomes ceasing translation upon each
amino acid incorporation event; from codons 17–21, there was
an increase in “attrition,” with 10–14% of ribosomes ceasing
translation upon each incorporation event. The “attrition rate”
then dropped to 4% per codon, and by codon 25, it returned
to values observed in the absence of CMY. Due to attrition,
only 4% of ribosomes were still translating in the presence of
CMY by codon 30 (Fig. S5A). By contrast, in the absence of
CMY, over 30% of ribosomes were still active beyond codon
30 (14).
Translation in the presence of a codon for GPP, the second

most underrepresented triplet URS, began at a rate of ∼6–8 s
per codon (3.3–4.7 s in the nonrotated state and 2.2–3.8 s in
the rotated state) (Fig. 3A). Immediately upon entry of the
full GPP sequence in the exit tunnel, with codon 13 in the
A-site, there was a threefold increase in rotated state life-
times (to about 11 s) and a 2.5-fold increase in nonrotated
state lifetimes (to about 13 s). There was a further increase in
lifetimes at codon 14 (to about 14 s for both rotated and
nonrotated states) and concomitant decrease in translation
rate (28 s per codon). After the GPP sequence had advanced
by two amino acids into the exit tunnel (codon 15 and be-
yond), rotated and nonrotated state lifetimes decreased (to
about 10 s for both states between codons 15–17 and to 3–6 s
by codon 21). The decrease in the translation rate resulted in
immediate translational arrest: 12% of ribosomes were unable to
translate past codon 13, and by codon 29, translation ceased al-
together (Fig. S5B).
Translation in the presence of a codon for CMYW, a qua-

druplet completely absent from the E. coli proteome, exhibited
more pronounced stalling than either CMY or GPP. The
translation rate decreased at codon 15 (with the CMYW se-
quence advanced by one amino acid into the peptide exit tun-
nel; Fig. 3C), as in the case of the CMY triplet, but was soon
followed by complete translational arrest; no ribosome trans-
lating the CMYW sequence progressed past codon 24 (Fig.
4A). When the CMYW sequence was shifted by 10 codons

Fig. 1. Identification of E. coli triplet URSs. The ratio of expected number to
actual number (Nex/Nr) of all 8.33 × 107 triplets in the 29 redundant pro-
teomes of E. coli used in this study identifies significant URSs as sequences
whose expected use is at least fourfold greater than their actual use in the
proteomes. Details on the method used for URS calculation are provided in
Methods.
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downstream, the decrease in translation rate and the region of
translational arrest were shifted by 10 codons as well (Fig. 4B
and Fig. S6). When the CMYW sequence was placed immedi-
ately after the initiator methionine, the translation rate de-
creased at codon 6 (with the CMYW sequence advanced by
two amino acids into the exit tunnel; Fig. 5), with 16–23% of
ribosomes stalling at each codon thereafter, and all ribo-
somes stalled by codon 16 (Fig. 4C). The profound inhibition by
CMYW was due to the sequence and not the amino acid com-
position, because the reverse sequence, WYMC, had no effect
on translation (Fig. S7).

Discussion
Short-sequence use has been analyzed previously (17–20), and
different reasons for a lack of some sequences have been sug-
gested. Our bioinformatics results identify triplet and quadru-
plet sequences that slow translation and lead to stalling almost
immediately upon entry into the exit tunnel. These sequences
evidently interact with the wall of the tunnel. Although other
nascent peptides have been shown to induce arrest (21), these
sequences have not been previously identified, most likely

because they could not be identified in screens of existing se-
quences (21–25). The hypothesis that the URSs are omitted
from the bacterial proteome to avoid translation inhibition
could only be proven experimentally, which we show here in
vivo, in vitro, and in single-molecule measurements. We sug-
gest that there may exist other URSs, in bacteria or else-
where, that may have other effects, such as inducing
promiscuous interactions between critical cellular compo-
nents. These additional effects will have to be explored by other
experiments.
The three URSs studied here likely interact with the wall of

the exit tunnel in different ways. Translation slows immedi-
ately upon entry of the GPP sequence into the exit tunnel,
whereas the CMY triplet must be advanced by a full two amino
acids into the tunnel before any effect is observed. Stalling
caused by GPP may include a component of polyproline-
induced stalling, with slow peptidyl transfer causing a decrease in
nonrotated state lifetimes after two prolines have been in-
corporated. In the case of CMY, the effect is mostly seen in
increased rotated state lifetimes, suggesting an increased energy
barrier to translocation. The addition of Trp in CMYW, results

Fig. 2. Embedded URSs inhibit translation in vivo and in vitro. (A) SDS/PAGE analysis of MntA proteins expressed in BL-21(DE3)pLysS cells for 4 h and
purified by chelation chromatography. Lane 1 shows WT-MntA, and lanes 2 and 3 show expression of MntA with the CMY URS embedded at sites 1 and 2
(Table S1). (B) Immunoblot analysis of a similar experiment, without protein isolation (by chelation chromatography), was performed using anti-His6
antibodies. The blot is representative of at least four independent experiments for each mutant. Lane 1 shows WT-MntA. Lanes 2–4 are the MntA with
embedded CMY, WCMY, and CMYW at site 1. Lanes 5–7 are the MntA with embedded CMY, WCMY, and CMYW at site 2. (C ) Quantification of MntA
mutant protein expression compared with WT (100%). Three different URSs were embedded in the MntA protein: CMY (bars 1, 4, and 7), WCMY (bars 2,
5, and 8), and CMYW (bars 3, 6, and 9) at the three positions in the MntA protein (Table S1). Expression of the CMYW at sites 2 and 3 (bars 6 and 9) was
below the level of detection. Results are the mean ± SD for two to four independent experiments. (D) Immunoblot of WT-MntA (lane 1) or MntA URS
mutants (lanes 2–5) produced using an in vitro transcription/translation system. Lanes 2–4 are the CMY URSs embedded at the three sites (Table S1),
whereas lane 5 is the CMYW URS at position 2. Parentheses indicate the amount of translated protein compared with MntA-WT as obtained by digital
densitometry. (E ) Fluorescence analysis of expression of GFP and GFP-URS proteins in vitro. Equal amounts of plasmids expressing WT-GFP (black solid
line), mutated GFP with the CMY URS (black dashed line), mutated GFP with the MYC non-URS (black dotted line), or no plasmid (gray dotted line) were
added to a transcription/translation mixture. After 30 min, a plasmid expressing the WT-GFP protein was added to the mixture, and the reaction was
continued for 4.5 h. (F ) Fluorescent analysis of the effect of coexpression of MntA-URS mutants on GFP expression in vitro. Equal amounts of plasmids
expressing WT-MntA (black dotted line) or CMY URS containing mutants at site 1 (black dashed line), site 2 (gray dashed line), or site 3 (solid gray line)
were added to a transcription/translation mixture. The negative control without any plasmid is shown by the gray dotted line. After 30 min, a plasmid
expressing the WT-GFP protein was added to the mixture (black solid line for comparison without additional plasmids), and the reaction was continued
for 4.5 h. If the presence of the URS in the target protein only inhibited its own expression, we would expect the same GFP fluorescence as in
the absence of a URS-embedded protein. In E and F, following reaction termination, the expressed GFP was matured for 24 h and the level of GFP
production was then assessed by fluorescence measurements of the reaction mixtures. The results are representative of four independent experiments.
AU, arbitrary units.
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in an almost twofold increase in nonrotated state lifetimes, and
although the effects on rotated state lifetimes are similar to
the values measured for CMY, they begin earlier, when the
CMYW sequence has moved by translation of only a single codon
into the exit tunnel.
The point at which CMY and CMYW exert their effects

suggests interaction with the region of the exit tunnel near ri-
bosomal residues A2062 and U2585 (26), a region that has been
implicated by mutagenesis and by structural and single-mole-
cule studies in interaction with SecM, a sequence shown to
perform a regulatory role by stalling translation (14, 15). The
last two amino acids of SecM, Gly-Pro, suggest a similarity in
mechanism also with GPP. There are, however, fundamen-
tal differences between URS- and SecM-induced stalling. The
SecM stalling sequence is 17 amino acids long and must interact
with both the entrance and the L4-L22 constriction point of the
tunnel for stalling, whereas the URSs studied here interact only

with the entrance. Other regulatory sequences, such as ErmCL
or TnaC, differ by the requirement for a tunnel-bound cofactor
to induce stalling (27).
It is noteworthy that no URSs were detected by bioinformatic

analysis of the human proteome. Perhaps the human ribosome
lacks features of the exit tunnel entrance involved in URS-
induced stalling or translation in higher organisms involves ad-
ditional factors that can compensate for sequence-induced
stalling. The occurrence of these features in bacteria may rep-
resent a compromise between avoiding URSs and enabling
regulation by natural stall sequences.

Methods
URSs were identified using an in-house script that analyzed multiple pro-
teome datasets for the number of unique triplet (or larger) sequences in
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comparison to the calculated expected number of the same sequence. The
expected number of a certain sequence was obtained based on the

products of the representative frequencies of each amino acid in the same
databases. URSs were embedded by PCR-directed mutagenesis into two
cloned target genes at different positions (Figs. S8 and S9). These vectors
were then transformed into the BL-21(DE3)pLysS E. coli expression strain.
Levels of protein expression were assessed in vivo and in vitro by SDS/PAGE,
immunoblotting, or fluorescence. SDS/PAGE and immunoblot bands were
digitally quantified using GelAnalyzer software (www.gelanalyzer.com/).
Coexpression in the presence of GFP was assessed by fluorescence using
standard methods at 508 nm. All labeled ribosomes, factors, and tRNAs were
prepared and purified as described (12). Unless noted otherwise, all exper-
iments were performed under buffer conditions described in SI Methods.
Data collection from ZMW chips was conducted using instrumentations and
techniques described previously (9, 28). Statistical analysis on those traces
was also conducted as described before (9, 12), using custom software
written in MATLAB (MathWorks).
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Fig. 5. Translation rate of the CMYW 1–4 sequence begins to decrease at
codon 7. Ribosomes translating the C1M2Y3W4 sequence proceed at a nor-
mal rate until codon 7 enters the A site, by which point the CMYW sequence
has been pushed by two amino acids into the exit tunnel. This sequence is
the shortest bacterial stall sequence found to date and, due to its length, can
be interacting solely with the lower region of the exit tunnel.
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