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Mitochondrial function in ageing: coordination with
signalling and transcriptional pathways
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Abstract Mitochondrial dysfunction entailing decreased energy-transducing capacity and
perturbed redox homeostasis is an early and sometimes initiating event in ageing and age-related
disorders involving tissues with high metabolic rate such as brain, liver and heart. In the
central nervous system (CNS), recent findings from our and other groups suggest that the
mitochondrion-centred hypometabolism is a key feature of ageing brains and Alzheimer’s disease.
This hypometabolic state is manifested by lowered neuronal glucose uptake, metabolic shift in
the astrocytes, and alternations in mitochondrial tricarboxylic acid cycle function. Similarly, in
liver and adipose tissue, mitochondrial capacity around glucose and fatty acid metabolism and
thermogenesis is found to decline with age and is implicated in age-related metabolic disorders
such as obesity and type 2 diabetes mellitus. These mitochondrion-related disorders in peri-
pheral tissues can impact on brain functions through metabolic, hormonal and inflammatory
signals. At the cellular level, studies in CNS and non-CNS tissues support the notion that instead
of being viewed as autonomous organelles, mitochondria are part of a dynamic network with
close interactions with other cellular components through energy- or redox-sensitive cytosolic
kinase signalling and transcriptional pathways. Hence, it would be critical to further understand
the molecular mechanisms involved in the communication between mitochondria and the rest
of the cell. Therapeutic strategies that effectively preserves or improve mitochondrial function
by targeting key component of these signalling cascades could represent a novel direction for
numerous mitochondrion-implicated, age-related disorders.
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Energy metabolism in brain ageing and Alzheimer’s
disease

Brain ageing. Brain utilizes 25% of the total body glucose
to meet its energy demands; hence, maintenance of
glucose homeostasis is critical for brain function, for
glucose is the primary fuel meeting the energy demands
of neurons and glial cells. Ketone bodies constitute
a secondary fuel, especially during long fasting peri-
ods and starvation. Pronounced energy deficits are a
feature of the ageing brain that are accompanied by
neuronal loss, impaired cognition and memory, and
an increased risk for neurodegenerative disorders. The
gradual decline in energy metabolism during brain
ageing and some neurodegenerative disorders results in
a hypometabolic state, which is a function of deficits
in (a) substrate supply, (b) mitochondrial catalysis and
energy transduction, and (c) cytosolic metabolic and
signalling pathways. Mitochondria play a central role for
they integrate several signalling pathways and generate
molecules that coordinate cytosolic signalling and trans-
criptional pathways (Fig. 1).

Dynamic micro-positron emission tomography (PET)
scanning using 18F-labelled fluorodeoxyglucose (FDG) as
a tracer showed a significant decline in glucose uptake
during brain ageing in several rodent models. The decrease
in glucose uptake (Fig. 2) is paralleled by a decrease
in expression and translocation to the membrane of
the insulin-sensitive glucose transporters, GLUT4 and
GLUT3, as well as the vascular endothelium glucose trans-
porter GLUT1 (55 kDa); the expression of the glial glucose
transporter GLUT1 (45 kDa) did not change or was
increased as a function of age in Fischer 344 rats (Jiang
et al. 2013). The increase in astrocytic GLUT1 (45 kDa)
may account for the age-dependent astrocytic metabolic
shift (Jiang & Cadenas, 2014). Anaerobic glycolysis in
astrocytes yields lactate from pyruvate reduction, and
lactate released from astrocytes is utilized by neurons
as an energy source (Bolaños et al. 2010; Bélanger
et al. 2011). The age-dependent astrocytic metabolic shift
consists of an increase in their mitochondrial oxidative
metabolism (Jiang & Cadenas, 2014) thereby depriving
neurons of energy substrates (lactate) and exacerbating
the inherent hypometabolic state in brain. Astrocytes
are generally considered neurotrophic inasmuch as they
provide neurons with energy substrates and recycle neuro-
transmitters (Jiang & Cadenas, 2014). Of note, the decline
in glucose transport and metabolism was preceded by a
shift to a ketogenic system in the female mouse brain
during ageing as well as in a triple transgenic mouse model
of Alzheimer’s disease (Ding et al. 2013a,b).

A decline in the mitochondrial catalytic machinery, in
terms of deficits in expression and activity of respiratory
chain complexes I and IV and an increase in mtDNA
mutations, contributes further to the hypometabolic

state (Drew & Leeuwenburgh, 2004; Navarro & Boveris,
2007; Boveris & Navarro, 2008). The age-dependent
phosphorylation of the E1α subunit of the pyruvate
dehydrogenase complex results in its inactivation and,
consequently, a decrease of acetyl-CoA delivery to the
tricarboxylic acid (TCA) cycle, increase reduction of
pyruvate to lactate, and decrease in ATP production
(Zhou et al. 2008, 2009). In addition, post-translational
modifications can impair mitochondrial function: the
age-dependent increase in neuronal nitric oxide synthase
expression leads to nitration of mitochondrial proteins,
such as succinyl-CoA transferase (SCOT) and F1-ATPase,
thus resulting in a moderately impaired mitochondrial
function (Lam et al. 2009). Mitochondria are highly
dynamic organelles and undergo fusion and fission
continuously, which regulates not only mitochondrial
morphology, but also their biogenesis, trafficking and
localization, quality control and degradation (Twig &
Shirihai, 2011; Chan, 2012). Mitochondrial fusion and
fission is found to be diminished or imbalanced in tissue
ageing and neurodegenerative diseases such as Alzheimer’s
disease, Parkinson’s disease and Huntington’s disease
(Seo et al. 2010). Mitochondrial dynamics has some
undefined role in organelle turnover, supposedly affecting
the degradation pathways; in this regard, lysosomal auto-
phagy declines in several tissues with age (Seo et al. 2010).

Alzheimer’s disease. Alzheimer’s disease is a progressive
neurodegenerative disease involving biochemical
(Gottfries et al. 1983), metabolic (Mosconi, 2005) and
physiological (Farkas & Luiten, 2001) changes that result
in impairments of memory, thinking and behaviour.
Alzheimer’s disease is associated with β-amyloid (Aβ)
plaques and neurofibrillary tangles (hyperphosphorylated
tau), the detection of which in post-mortem tissue
validates a definite diagnosis (Dubois et al. 2007). The
aetiology of Alzheimer’s disease has been hypothesized by
several theories such as the β-amyloid hypothesis (Tanzi
& Bertram, 2005), cholinergic hypothesis (Francis et al.
1999), tau hypothesis (Maccioni et al. 2010), oxidative
stress hypothesis (Markesbery, 1997), and mitochondrial
cascade hypothesis (Swerdlow & Khan, 2009).

There is growing evidence for an early mitochondrial
dysfunction preceding the classical Alzheimer’s disease
pathological hallmarks, i.e. Aβ plaques and neuro-
fibrillary tangles (Brinton, 2008; Mosconi et al. 2011;
Swerdlow, 2011). Post-mortem tissues of individuals
with Alzheimer’s disease have been identified to have
disruptions of mitochondrial functions in terms of
altered morphology, compromised electron transfer chain
complexes, and tricarboxylic acid cycle deficiencies (Perry
et al. 1980; Blass et al. 2000). The mitochondrial
cascade hypothesis proposes a late-onset, sporadic
Alzheimer’s disease that reconciles the histopathological
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and pathophysiological features. This hypothesis proposes
that the genetic makeup of an individual’s electron trans-
port train sets the basal rates for production of reactive
oxygen species and thus sets the tone for oxidative damage.
The cells respond to this oxidative stress by generating

pathological features like β-amyloid; this sets a cycle that
results in aneuploidy, tau phosphorylation, and neuro-
fibrillary tangle formation. The intrinsic need of brain
for high energy dictates its dependence on functional
mitochondria and also renders it sensitive to changes in
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Figure 1. Coordination of insulin/IGF1 signalling and JNK signalling with substrate availability and
mitochondrial catalytic machinery in brain
Pyruvate, generated from glucose by glycolysis in cytosol, undergoes oxidative decarboxylation by pyruvate
dehydrogenase (PDH) to yield acetyl-CoA. Ketone body metabolism is regulated by succinyl-CoA transferase
(SCOT) to yield acetyl-CoA. Acetyl-CoA generated by these pathways enters the TCA cycle to produce primarily
NADH, which provides electrons to the electron transport chain to build up the proton motive force for ATP
synthesis by complex V. Binding of insulin and IGF1 to their receptors activates the insulin receptor substrate (IRS)
and the downstream phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, which (1) facilitate the
translocation of glucose transporters (GLUT3/4 in brain) to plasma membrane, (2) promote glycolytic reactions, and
(3) enhance mitochondrial function through the translocation of Akt to mitochondria and the inhibition of glycogen
synthase kinase-3β (GSK3β, an inhibitor of PDH). O2.− generated by the electron transport chain at complex I
and III is reduced to H2O2, which is released to the cytosol where it modulates the redox-sensitive insulin/IGF1
signalling (IIS) and c-Jun N-terminal kinase (JNK) signalling. JNK can negatively regulate IIS by phosphorylating IRS
at Ser307/312.
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mitochondrial function (Kann & Kovács, 2007). Because
mitochondria also play an important role in cell signalling,
changes in mitochondria are relayed to the entire cell and
beyond. Several early pieces of evidence demonstrated the
role of oxidative damage in Alzheimer’s disease (Christen,
2000).

While oxidative stress and pathological manifestations
clearly exist in Alzheimer’s disease, there is growing
research pointing towards the disturbances in energy
metabolism being closely associated with this disease.
Perturbations of glucose metabolism and mitochondrial
bioenergetics apparently precede the development of
Alzheimer’s disease pathology (Gibson et al. 1998;
Hauptmann et al. 2009; Yao et al. 2009; Galindo et al.
2010). Multiple clinical studies have demonstrated that
decreased brain glucose uptake is a common condition
in Alzheimer’s disease and mild cognitive impairment
(Mosconi, 2005; Mosconi et al. 2008, 2009). However,
these disturbances also extend to the glycolytic pathway
and intermediates of the tricarboxylic acid cycle and
the several neurotransmitters derived from it, such as
glutamate, glutamine, γ-aminobutyric acid (GABA), and
N-acetylaspartate (NAA) (Moats et al. 1994; Lin et al. 2003;
Sancheti et al. 2014a).

Ninety per cent of glucose entering the brain is
oxidized to CO2, primarily by mitochondrial metabolism
(Mangialasche et al. 2010). The majority of this energy
is utilized in maintaining neurotransmission and neuro-
nal potential, and preventing excitotoxicity (Magistretti
& Allaman, 2013). Thus, any disturbances in glucose
uptake or metabolism would affect neurotransmission and
neuronal function, and ultimately impinge on cognition,
learning and memory. Long-term potentiation is widely
believed to be the cellular biochemical mechanism under-
lying synaptic plasticity (Bliss & Collingridge, 1993).
Decreased brain glucose uptake has been demonstrated
to be associated with substantially decreased long-term
potentiation in the 3xTg-AD mouse model of Alzheimer’s
disease (Sancheti et al. 2013) and in a rat model
of female perimenopausal ageing (Yin et al. 2015).

The decline in glucose metabolism in 12-month-old
3xTg-AD mice was also reflected by an approximately
50% decrease of glucose supported TCA cycle-related
metabolites including glutamate, glutamine, GABA and
NAA (Sancheti et al. 2014a). This led to a decrease
in the flux of glucose being converted into TCA cycle
metabolites, a process critical to generating neuro-
transmitters and maintaining synaptic plasticity. In fact,
metabolic alterations in these mitochondrial TCA cycle
metabolites have been demonstrated in different rodent
models of Alzheimer’s disease (Dedeoglu et al. 2004;
Marjanska et al. 2005; Salek et al. 2010; Esteras et al. 2012;
Tiwari & Patel, 2012; Haris et al. 2013; Nilsen et al. 2013;
van Duijn et al. 2013; Doert et al. 2015) and clinical cases
(Lin et al. 2003). These studies suggest that both lowered
brain glucose uptake and alternations in mitochondrial
TCA cycle function contribute to the hypometabolic state
observed in ageing and Alzheimer’s disease.

Although a hypometabolic state of mitochondrial TCA
cycle metabolites is well studied in older rodent models
of Alzheimer’s disease, a relatively unexplored area is
the presence of a hypermetabolic state that perhaps pre-
cedes this hypometabolic state of the mitochondrial TCA
cycle metabolites. A hypermetabolic state was observed in
the 7-month-old 3xTg-AD rodent model of Alzheimer’s
disease at variance with the hypometabolic state that was
reported in the 13-month-old 3xTg-AD mice (Sancheti
et al. 2014b). This hypermetabolic state was hypothesized
to be linked with the presence of Aβ plaques at 7 months
of age in the 3xTg-AD mouse model. Other Aβ-based
rodent models of Alzheimer’s disease have also shown
signs of hypermetabolism (Busche et al. 2008; Puzzo
et al. 2008; Luo et al. 2012; Poisnel et al. 2012; Nilsen
et al. 2013; Rojas et al. 2013); these studies provide
several pieces of evidence that link hypermetabolism
with Aβ plaques. This raises a question about the
possible presence of a hypermetabolic state (encompassing
mitochondrial hypermetabolism) in very early stages of
Alzheimer’s disease that have not been studied thoroughly.
Overall, the mitochondrial perturbations in metabolism
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Figure 2. Brain glucose uptake decreases as a function of
age
Dynamic microPET scanning using 18F-labelled
fluorodeoxyglucose (FDG)-PET as a tracer in Fischer 344 rats
demonstrated a significant decline in glucose uptake and
metabolism in 24-month-old rats as compared to 6-month-old
rats. Calculation of selective uptake values (SUV), which measures
the kinetics of glucose uptake, demonstrates that the SUV for the
24-month rat is lower than the 6-month rat (at end of scan, 2.72
as compared to 3.34).
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of glycolytic substrates (into the TCA cycle related
metabolites) highlight the importance of metabolism
in the coordination of pathology and cognitive decline
associated with Alzheimer’s disease.

Energy metabolism in adipose tissue ageing

Adipose tissue stores energy in the form of triglycerides
and supplies energy in the process of fatty acid β-oxidation
under conditions of fasting or lowered liver glycogen levels
(Girard & Lafontan, 2008). Mammals have two types of
adipose tissue, the white and the brown adipose tissue
(WAT and BAT, respectively), which can be distinguished
by their morphology, metabolic activities, and cellular
density of mitochondria (Saely et al. 2012). The WAT, with
lower density of mitochondria, represents about 10% of
body weight in lean humans as visceral and subcutaneous
fat. WAT participates in the regulation of energy storage,
insulin sensitivity and glucose metabolism in liver and
muscle. BAT, with a higher numbers of mitochondria,
dissipates energy as heat through adaptive thermogenesis
(Virtanen et al. 2009).

Mitochondria in WAT ageing. Although their abundance
is lower, mitochondria play essential roles in WAT
function. Firstly, mitochondria in WAT provide sub-
strates for fatty acids synthesis and fatty acid esterification,
in the forms of acetyl-CoA and glycerol-3-phosphate,
respectively (Nye et al. 2008). Secondly, WAT
mitochondria generate ATP to support lipogenic
processes in differentiating pre-adipocytes and adipocyte
maturation (Lu et al. 2010). Moreover, mitochondrial
H2O2 and enhanced biogenesis are causal factors that
promote adipocyte differentiation in a mammalian target
of rapamycin complex 1 (mTORc-1)-dependent manner
(Tormos et al. 2011). Thirdly, mitochondria are involved
in the synthesis of WAT-generated adipokines (Trayhurn
& Wood, 2004). For instance, mitochondrial dysfunction
decreases adiponectin synthesis via the activation of a
series of pathways that involve endoplasmic reticulum
(ER) stress, c-Jun N-terminal kinase (JNK) and activating
transcription factor 3 (ATF3) (Koh et al. 2007).

Mitochondrial dysfunction is associated with adipose
tissue ageing. In parallel with the decline in lipolysis
(Dax et al. 1981; Klein et al. 1986), both mtDNA content
and mitochondrial oxidative phosphorylation (OXPHOS)
proteins in WAT decrease with ageing and age-related
disorders, such as obesity and type 2 diabetes (Patti &
Corvera, 2010; Donato et al. 2014). Calorie restriction
is the only known reproducible experimental paradigm
that extends maximal lifespan and delays the onset of
many age-related diseases (Masoro, 2005). Long-term
calorie restriction shifts WAT toward the activation
of energy metabolism by upregulating genes required

for glycolysis, lipogenesis, amino acid metabolism
and mitochondrial energy metabolism including those
involved in the TCA cycle, β-oxidation, electron trans-
port and OXPHOS (Higami et al. 2004). It is proposed
that upon calorie restriction, WAT functions as an
energy transducer that converts glucose to the high
energy-dense lipids (Okita et al. 2012). Long-term calorie
restriction also downregulates the expression of more than
50 pro-inflammatory genes in mouse epididymal WAT
(Higami et al. 2004; Higami et al. 2006). Fat-specific
insulin receptor knock-out (FIRKO) mice exhibit reduced
body weight and increased lifespan, despite normal
or increased food intake and their WAT has higher
expression of genes involved in glycolysis, the TCA cycle,
β-oxidation and OXPHOS, which are correlated with
increased mitochondrial biogenesis (Katic et al. 2007).
Data on caloric restriction and FIRKO mouse models
suggest a close relationship between WAT ageing and
mitochondrial function.

Mitochondria in BAT ageing. BAT was considered to
wane fast after birth in humans; however, recent studies
using positron emission tomography demonstrated that
BAT remains present during adulthood (Zingaretti et al.
2009). In mammals, BAT plays an important role in
thermogenesis with mitochondria at the centre stage
burning fatty acids to generate heat to maintain body
temperature in cold environments, a process driven by
uncoupling protein 1 (UCP1) by stimulating H+ leak
across the mitochondrial inner membrane without ATP
production (Rousset et al. 2004). UCP1 is regulated
by mitochondrion-associated histone deacetylase SIRT3
through peroxisome-proliferator-activated receptor γ

coactivator-1α (PGC1α) and transcription factor CREB
(Shi et al. 2005). During cold exposure, mitochondrial
dynamin-related protein 1 is activated, promoting fission
and sensitizing the mitochondria to free fatty acids
(Wikstrom et al. 2014). In addition to heat generation,
BAT thermogenesis is capable of protecting against
diet-induced obesity (Hamann et al. 1998; Kontani et al.
2005)

The mass and thermogenesis capability of BAT declines
with age in humans (Saito et al. 2009; Pfannenberg et al.
2010). Ageing reduces mitochondrial biogenesis, which,
in turn, impairs the formation of thermogenic brown
adipocytes (Graja & Schulz, 2014). As seen in WAT, caloric
restriction is also effective in preventing BAT activity
loss during ageing by preserving mitochondrial function.
Long-term caloric restriction delays the age-related decline
in mitochondrial mass, complex IV activity, uncoupling
levels and mitochondrial transcription factor A (Tfam)
in BAT of rats (Valle et al. 2008). Caloric restriction also
increased fatty acid biosynthesis but not mitochondrial
respiratory capacity (Okita et al. 2012). Exercise is
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another potent inducer of BAT mass and adrenergic
brown recruitment of adipocytes in aged animals, without
changing the mRNA or protein levels of mitochondrial
UCPs (Scarpace et al. 1994; Oh-ishi et al. 1996; De Matteis
et al. 2013).

Liver energy metabolism and metabolic diseases

These age-related changes in liver modulate digestion,
metabolism, immunity, storage of nutrients and clearance
of drugs (Le Couteur & McLean, 1998). Ageing exhibits a
significant negative correlation with liver volume, ascribed
to the age-dependent decrease in hepatic blood flow
(Wynne et al. 1989). The gross appearance of liver from
elderly subjects is similar to younger individuals with
malnutrition and cachexia. It has a brown colour due to
the accumulation of lipofuscin within hepatocytes. There
is also the presence of macrohepatocytes and polyploidy
along with an increase in nuclei and nucleoli (Schmucker,
1998; Anantharaju et al. 2002). Liver triglycerides and
cholesterol levels increase with age and are correlated
with declining metabolism of low-density lipoprotein
and decrease in their receptors (Aaronson & Woo, 1981).

During ageing, liver mitochondria show increased
size (Sastre et al. 1996), decreased matrical density and
decreased number (Schmucker, 1998). Additionally, there
is a decrease in membrane potential (Sastre et al. 1996)
and respiratory chain enzymes (Muller-Hocker et al.
1997). Around 87% of those above 50 years of age were
found to have defects in the respiratory chain caused by
a loss of enzyme proteins involving both nuclear and
mitochondrial coded subunits. The majority of these
subjects (94%) had a defect in the complex IV sub-
unit, whereas 4% had defects in the complex III subunit
(Muller-Hocker et al. 1997). Additionally, the content of
cytochrome oxidase also declined with age along with
age-related decline in the mtRNA synthesis in heart,
lungs, brain, liver and skeletal muscle (Anantharaju et al.
2002). These decreases in respiratory chain enzymes are
correlated with a decrease in mitochondrial respiratory
capacity. A significant negative correlation between age
and respiratory control ratio was observed in Chinese
populations of various ages (Yen et al. 1989).

Ageing liver mitochondria are also accompanied
by increased oxidative modifications that negatively
impact their function (Richter, 1995; Sastre et al. 2000;
Navarro & Boveris, 2004; Castro et al. 2012). Multiple
mitochondrial proteins also undergo oxidative damage
in an age-related manner (Kolosova et al. 2003). Inter-
estingly, Lon protease, a key enzyme in the degradation
of oxidized proteins within the mitochondrial matrix
and typically highly induced under stress, declines with
age. Thus, Lon protease has been suggested to be a
significant factor in age and age-related diseases (Ngo et al.

2013). Mice expressing proofreading-deficient version
of the mitochondrial DNA polymerase γ accumulated
mtDNA mutations that resulted in accelerated ageing
and correlated with the induction and increase of
apoptotic markers in an age-related manner (Kujoth et al.
2005). There is also an age-related decline of mtRNA
synthesis in brain, liver, heart, lungs and skeletal muscle
(Anantharaju et al. 2002). Additionally, rat liver Kupffer
cells show decreased function (Brouwer et al. 1985)
and efficiency to phagocytose and degrade radiolabelled
mitochondria (Martin et al. 1994). This perhaps leads
to more severely damaged mitochondria that accumulate
with age. Thus, the age-related macro changes in liver
are accompanied by several subcellular micro changes in
the liver mitochondria.

The liver–brain axis. The liver senses blood glucose
levels adequately to control utilization of glucose by
regulating glycogenesis and glycogenolysis; when the liver
glycogen reserves are running low, hepatocytes maintain
an adequate supply of glucose to the brain by activating
gluconeogenesis from non-carbohydrate carbon sources.
Importantly, mitochondria take centre-stage in this
liver-centric energy homeostasis and a multi-level
regulation ensures a constant supply of energy to the
brain, thus forming the core of a metabolic ‘liver–brain
axis’.

The neurotoxic role of liver-generated ceramides is an
example of an impaired ‘liver–brain axis’ with implications
for Alzheimer’s disease (de la Monte et al. 2009a,
2010; de la Monte, 2012). On the one hand, ceramides
contribute to cell membrane structure and have roles in
growth, proliferation, motility, apoptosis, differentiation,
senescence (Zheng et al. 2006; de la Monte, 2012) and
maintenance of the skin barrier (Wartewig & Neubert,
2007). On the other hand, ceramides function as a lipid
signals that can cause insulin resistance (Teruel et al. 2001;
Chavez et al. 2005; Summers, 2006; Delarue & Magnan,
2007), cytotoxicity and inflammation (de Mello et al. 2009;
Gill & Sattar, 2009). These effects of ceramides have been
hypothesized to cause a ‘triangulated mal-signalling in
Alzheimer’s disease’ (de la Monte, 2012): toxic ceramides
generated from extra-CNS tissues (e.g. liver) are released
into the blood, bypass the blood–brain barrier, and
cause brain insulin resistance, inflammation and cell
death, all of which impair synaptic plasticity. In support
of this hypothesis, Long–Evans rat pups administered
ceramide analogues by intraperitoneal injection developed
hyperglycaemia, hyperlipidaemia, mild steatohepatitis,
reduced brain lipid content, increased ceramide levels
in liver, brain and serum, and significant abnormalities
in spatial learning and memory (de la Monte et al.
2010). Impairment of the phosphatidylinositide 3-kinase
(PI3K)/protein kinase B (Akt) signalling cascade by
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ceramides led to cognitive and motor dysfunctions (de la
Monte et al. 2012). A similar pattern is also observed with
alcohol-associated neurodegeneration: chronic alcohol
consumption produced steatohepatitis, promoting insulin
resistance and pro-inflammatory cytokines that lead to
an increased release of toxic lipids such as ceramides
(de la Monte et al. 2009a). Other compounds directly
affecting the liver, i.e. nitrosamines (commonly found in
fried fast foods), induced insulin resistance, type 2 diabetes
(in liver and brain), non-alcoholic steatohepatitis, deficits
in spatial learning and neurodegeneration (de la Monte
et al. 2009b).

Several studies have examined the role of insulin
resistance in Alzheimer’s disease; however, the
mechanistic/pathological aspects of the disease can
be modulated by agents that combat insulin resistance
(McClean et al. 2011; Businaro et al. 2012; Sancheti
et al. 2014a). Thus, the signalling pathways involved in
the liver–brain axis form an intricate communication
network that ensures adequate supply of energy substrates
to maintain a healthy brain; pathological or chemical
intrusions to the liver seem to play an important role in
initiation and progression of neurodegeneration.

What is the role of mitochondria in the liver–brain
axis? It is well known that the mitochondrial function
is impaired during insulin resistance (Petersen et al. 2004;
Lowell & Shulman, 2005; Parish & Petersen, 2005; Højlund
et al. 2008). Insulin resistance is mainly characterized by
the inability of insulin to stimulate glucose uptake by peri-
pheral tissues and/or control the synthesis of glucose by
liver, the actions of which manifest as hyperglycaemia,
hyperinsulinaemia and dyslipidaemia. This dysregulation
leads to obesity, type 2 diabetes, cardiovascular disease,
and neurodegeneration (Saltiel & Kahn, 2001; White,
2003; Cheng et al. 2010). From the point-of-view of the
liver–brain axis, mitochondrial functions connected with
maintenance of energy metabolism and redox control
seem to be of the outmost importance.

Owing to these pivotal roles of mitochondria, it is not
surprising that perturbation of mitochondrial function is
involved in metabolic disorders like type 2 diabetes, insulin
resistance, cardiovascular complications and obesity. Sub-
jects with obesity or type 2 diabetes have mitochondria
with an impaired bioenergetic capacity (Kelley et al.
2002). The linkage between mitochondrial dysfunction
and type 2 diabetes has been reviewed earlier (Lowell
& Shulman, 2005). Nuclear magnetic resonance (NMR)
studies showed that elderly subjects had a 40% decrease
in mitochondrial oxidative phosphorylation capacity
(Petersen et al. 2003) and insulin-resistant subjects had
a 60% decrease in insulin-stimulated rate of glucose
uptake and a 30% reduction in mitochondrial oxidative
phosphorylation (Petersen et al. 2004). Another major link
between these metabolic conditions is their association
with dysfunctional liver mitochondria and/or increased

fat accumulation in the liver tissue (Petersen et al. 2003).
In fact, liver mitochondrial dysfunction has been shown
to precede hepatic steatosis and insulin resistance (Rector
et al. 2010). Transgenic mice with liver-specific over-
expression of lipoprotein lipase were insulin resistant with
twofold increased liver triglyceride content. They were also
associated with an impaired ability of insulin to suppress
endogenous glucose production due to inactivated insulin
receptor substrate-2 and PI3K activity (Kim et al. 2001b).
Interestingly, chronic leptin treatment reversed insulin
resistance and hepatic steatosis in patients with severe
lipodystrophy. Thus, modulation of energy homeostasis
presents an interesting target against metabolic condi-
tions like insulin resistance, obesity and type 2 diabetes
(Petersen et al. 2002). Overall, mitochondrial activity is
a prime modulator of the liver–brain axis in maintaining
adequate substrate supply for the brain and its dysfunction
is associated with the pathologies that impinge on the
liver–brain axis.

Metformin, widely used for the treatment of
type 2 diabetes, reduces hepatic gluconeogenesis and
enhances peripheral insulin sensitivity; its mechanism
of action entails inhibition of complex I of the
mitochondrial respiratory chain (Owen et al. 2000) and
this may account partly for activation of 5’-adenosine
monophosphate-activated protein kinase (AMPK) (Zhou
et al. 2001). Inhibition of complex I results in decreased
ATP levels and increased AMP, which binds to the γ sub-
unit of AMPK, thereby activating it. However, inhibition
of the mitochondrial glycerol-P dehydrogenase activity
(a component of the glycerol-P shuttle) by metformin
is another mechanism to augment the cytosol reducing
environment leading to the overproduction of lactate and
inhibition of gluconeogenesis; this together with other
metformin-sensitive processes, such as suppression of
glucagon signalling, activation of autophagy and lessening
of inflammasome-dependent cytokine production, may
suggest new target pathways for the treatment of type 2
diabetes (Hur & Lee, 2015).

Mitochondrial signalling molecules and
redox-sensitive kinase signalling

Mitochondrial H2O2 as a signalling molecule. The
redox-regulating capacity of the mitochondria generates
second messengers such as H2O2 that regulate multiple
cell signalling pathways and a range of cell functions
(Fig. 3) (Ghafourifar & Cadenas 2005; Yin et al.
2012a, 2014). H2O2 acts as an efficient redox molecule
since it can easily pass the mitochondrial membranes.
Additionally, H2O2 produced by one mitochondrion
can diffuse to other mitochondria, thus relaying signals
among mitochondria (Murphy, 2009). Mitochondrial
O2.– (more likely a long-lived species) was proposed
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as the critical response of cells to hyperglycaemia
(Brownlee, 2005) leading to the activation of the four
major pathways of hyperglycaemic damage: inhibition of
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) by
the O2.–-mediated activation of poly ADP ribose poly-
merase (PARP) seems to be the triggering event. It was
emphasized that the cells damaged by hyperglycaemia are
those that cannot decrease the transport of glucose inside
the cell when exposed to a hyperglycaemic environment
(i.e. the cell types involved in diabetic complications).
However, the mitochondrial formation of ROS seems
to be of importance in the pathogenesis of diabetes
mellitus and its complications through modification
of various cellular events in many tissues, including
vessels, kidney, pancreatic β cells and liver (Piconi et al.

Inflammatory and
antioxidant response Apoptosis

IIS

Energy metabolism

AMPKNFκB

Nrf2

Energy - Redox axis

ADP/ATP

Dynamics

NAD+

Biogenesis

ΔΨ
m

UPRmt

JNK

Sirt1AMPK

H
2
O

2

Figure 3. Mitochondrion-derived energy and redox signals
regulate multiple cytosolic and nuclear pathways
Redox signals, primarily H2O2, modulate cellular energetic pathways
through IIS and AMPK signalling; high levels of H2O2 activate
apoptotic pathways through JNK. H2O2 also induces multiple
inflammatory and antioxidants pathways in the nucleus via
transcription factors such as nuclear factor κ-light-chain-enhancer of
activated B cells (NFκB) and nuclear factor (erythroid-derived 2)-like 2
(Nrf2). On the other hand, energy signals transduced from ADP/ATP
and NAD+ to AMPK and sirtuin 1 (Sirt1) control the biogenesis and
dynamic remodelling of mitochondria. The mitochondrial unfolded
protein response (UPRmt) represents another mechanism through
which mitochondria communicate with the nucleus monitoring the
organelles’ protein import efficiency, a process dependent on
mitochondrial inner membrane potential (��m).

2006; Nishikawa & Araki, 2007; Palmeira et al. 2007).
There is some correlative evidence that certain cell types
that depend on dehydroascorbate uptake through GLUT
have their ability to counteract oxidative stress impaired
(Root-Bernstein et al. 2002). This decrease in cellular
transport of dehydroascorbate is implicated in worsening
the hyperglycaemia-induced oxidative stress. Of course,
this would be applicable to those cell types that rely on
dehydroascorbate uptake through GLUT.

Insulin/IGF1 signalling. Insulin/IGF1 signalling (IIS)
is responsive to H2O2 owing to the presence of
several redox-sensitive cysteine residues on the insulin
receptor and IGF-1 receptor (Fig. 1). Oxidation of
these cysteine residues to cystine by H2O2 promotes
their tyrosine autophosphorylation and activates down-
stream signalling cascades that promote metabolic
pathways (Loh et al. 2009). Additionally, H2O2 inhibits
tyrosine phosphatase (e.g. PTP1B) and lipid phosphatase
(PTEN), which are both negative regulators of IIS
through the dephosphorylation of insulin/IGF1 receptors
and phosphatidylinositol-3,4,5-trisphosphate (PIP3),
respectively (Elchebly et al. 1999). In cerebellar granule
neurons, the mitochondrial respiratory chain-generated
H2O2 was responsible for insulin receptor activation
(Storozhevykh et al. 2007); similarly, in hepatocytes, H2O2

activates insulin signalling, demonstrated by increased
phosphorylation of insulin receptor (on tyrosine), Akt and
glycogen synthase kinase-3β (GSK-3β). It is noteworthy
that while lower doses of H2O2 (5–10 μm) led to activation
of insulin signalling, higher doses of H2O2 (25–50 μm)
led to its inactivation (Iwakami et al. 2011). This is likely
to be due to the activation of JNK by higher H2O2

concentration, considering JNK as a negative regulator
of the IIS (Karpac & Jasper, 2009; Yin et al. 2013).

JNK. Another signalling pathway critically regulated
by H2O2 is the stress-activated JNK signalling. JNKs
are multifunctional kinases involved in a variety of
pathological conditions due to their role of inducing
apoptosis (Cui et al. 2007). H2O2 was shown to activate
JNK and decrease cell viability in primary neurons
(Zhou et al. 2008) and in hepatocytes (Iwakami et al.
2011). Importantly, we have shown that JNK can
be specifically activated by mitochondrially originated
H2O2 in nicotinamide nucleotide transhydrogenase
(NNT)-silenced PC12 cells (Yin et al. 2012b).

AMPK. Interestingly, H2O2 also seems to have a role in
the activation of the energy sensor and regulator AMPK,
which is typically activated by increased AMP/ATP ratio.
The AMPK pathway was activated by increased H2O2

concentrations in HEK cells and in mice (Zmijewski
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et al. 2010). Under hypoxic conditions, an increase in
mitochondrial H2O2 also leads to AMPK activation that
is not dependent on the AMP/ATP ratio (Emerling
et al. 2009). In early diabetic nephropathy, a decrease
in mitochondrial ROS resulted in decreased AMPK
activity with downstream consequences such as decrease
in PGC1α and mitochondrial biogenesis (Dugan et al.
2013); an alternative explanation (Nishikawa et al. 2015)
that considers the substantial increase of ROS in diabetes
suggests that a decrease in AMPK activity can account for
the increase in mitochondrial ROS.

Regulation of mitochondrial function by cytosolic
signalling. Mitochondria modulate cytosolic compo-
nents through redox-sensitive signalling; on the other
hand, mitochondria are also recipients of cytosolic
signalling that in turn regulates mitochondrial metabolic
and redox functions.

IIS. The cytosolic modulation of mitochondrial bio-
energetic functions is primarily carried out by components
of the IIS. It is well known that the mitochondrial
function is impaired during insulin resistance, an indicator
of compromised insulin signalling (Lowell & Shulman,
2005). In addition to its role in regulating glucose
metabolism, in the central nervous system, IIS has also
been shown to influence neuronal survival and synaptic
plasticity (van der Heide et al. 2006). Recent studies in
our laboratory have shown that α-lipoic acid, an insulin
mimetic nutriceutical, is able to rescue the brain metabolic
deficits and mitochondrial dysfunction that occur in brain
ageing (Jiang et al. 2013) and in a mouse model of
Alzheimer’s disease (Sancheti et al. 2013).

An important downstream component of the IIS that
facilitates energy metabolism is Akt; Akt has been shown
to directly translocate to mitochondria and enhance
mitochondrial function in hepatocytes (Li et al. 2013).
In neuroblastoma cells, insulin stimulates the trans-
location of phosphorylated Akt to the mitochondria
within minutes. Two mitochondrial proteins, GSK-3β and
the β-subunit of ATP synthase, are phosphorylated as a
result of Akt translocation (Bijur & Jope, 2003). Activated
GSK-3β also phosphorylates pyruvate dehydrogenase
(PDH) and inhibits its activity (Hoshi et al. 1996).
Another prominent feature of IIS is its promotion
of survival by directly inactivating components of the
mitochondrial dependent intrinsic apoptosis. This entails
phosphorylation and inactivation of the pro-apoptotic
members of the Bcl-2 family (Linseman et al. 2002).
The prevention of neuronal death could thus have
implications for brain ageing and neurodegeneration
which are characterized by significant neuronal loss
(Kanazawa, 2001).

JNK. JNK is a negative regulator of both mitochondrial
metabolic function and the IIS pathway. Anisomycin-
or H2O2-activated JNK translocates to mitochondria in
primary cortical neurons; JNK associated with the outer
mitochondrial membrane initiates a cascade that leads
to the inhibitory phosphorylation of the E1α subunit
of the PDH complex, which results in a decrease in
cellular ATP levels and a metabolic shift toward anaerobic
glycolysis (Zhou et al. 2008). The inactivation of IIS by
JNK is due to the inhibitory phosphorylation of the IRS
at Ser307 (Ser312 in human IRS) by JNK, which prevents
the insulin/IGF1 mediated tyrosine phosphorylation of
IRS (Karpac & Jasper, 2009). Intriguingly, the IIS also
inhibits JNK activation through multiple mechanisms
including the phosphorylation of MLK3 (Barthwal et al.
2003) and the suppression of ASK1 (Kim et al. 2001a).
This is consistent with our findings that aged rats fed with
α-lipoic acid to enhance IIS also exhibit decreased JNK
activation compared to age-matched controls (Jiang et al.
2013).

Coordination of the energy-redox axis with nuclear
transcription.

Energy charge and mitochondrial biogenesis. Mitocho-
ndrial energy charge is linked to the nuclear transcription
pathways and modulates mitochondrial biogenesis (Fig. 3)
(Yin & Cadenas, 2015). Mitochondrial biogenesis entails
the replication of mtDNA, as well as the synthesis, trans-
port and integration of proteins and lipids to the existing
mitochondrial population (Attardi & Schatz, 1988). Most
of the 1500 mitochondrial proteins are encoded by the
nuclear genome (Calvo et al. 2006). Transcription factors
such as nuclear respiratory factor-1 and -2 (NRF-1 and
NRF-2) and oestrogen-related receptors (ERR) (Scarpulla,
2002) regulate the transcription of these genes, directly or
indirectly. These transcriptional pathways are coordinated
by members of the peroxisome-proliferator-activated
receptor γ coactivator-1 (PGC-1) family, primarily
PGC-1α (Handschin & Spiegelman, 2006). As the master
regulator of mitochondrial biogenesis, PGC1-α activity
is regulated by its transcription, post-translational
modification, and degradation (Puigserver & Spiegelman,
2003). PGC1α activity is highly regulated by energy
charge-related signals from mitochondria. These
regulations involve energy messengers such as NAD+
and AMP/ADP, and energy sensors including sirtuin 1
(Sirt1) and AMPK (Fig. 3) (Fernandez-Marcos & Auwerx,
2011).

NAD+–Sirt1. PGC1α is inactivated by acetylation
and activated by Sirt1-mediated deacetylation. The
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deacetylation is required for sequestering PGC1α to
the nucleus and for activating the above-mentioned
transcription factors (NRF-1, NRF2, ERRα) (Gerhart-
Hines et al. 2007). Sirt1 removes the acetyl group on
lysine residues using NAD+ as a substrate and generates
O-acetyl-ADP-ribose, and nicotinamide (Houtkooper
et al. 2010). As the major domain of NAD+/NADH
metabolism, the mitochondrial energy component is
thus capable of regulating the NAD+-dependent sirtuin
pathways and the activity of PGC1α.

AMP-AMPK. PGC1α expression and activity are also
regulated by AMPK. AMPK, an energy sensor in cells, is
activated when the cellular AMP/ATP or ADP/ATP ratio
is high (Oakhill et al. 2011; Xiao et al. 2011). The cytosolic
ADP/ATP ratio is determined by the consumption of ATP
and the synthesis of ATP as a function of mitochondrial
bioenergetic status. It is known that activation of AMPK
leads to an increase in PGC1α transcription. More
importantly, AMPK enhances mitochondrial biogenesis
by activating PGC1α through the phosphorylation of
threonine177 and serine538, which impacts the ability of
PGC1α to dock on certain transcription factors and affects
the binding or function of other cofactors in the PGC1α

coactivator complex (Jäger et al. 2007). Whereas AMPK
directly enhances PGC-1α expression and activation,
another indirect way that AMPK modulates PGC-1α

is to increases NAD+ levels by upregulating fatty acid
oxidation, thereby enhancing Sirt1 activity and PGC1α

deacetylation (Cantó et al. 2009).

Redox-sensitive transcription factors. In addition to the
energy charge-sensitive transcriptional pathways that
induce mitochondrial biogenesis, a variety of trans-
criptional pathways are redox sensitive and can be
activated upon intracellular redox changes (Fig. 4).

Nrf2. Transcriptional regulation of antioxidant or deto-
xifying genes is predominantly mediated by a redox-
sensitive transcription factor nuclear factor-erythroid
derived 2 (NF-E2) related factor-2 (Nrf2) (Kensler et al.
2007). Oxidants released from mitochondria induce
activation of Nrf2, and this process can be inhibited by
the mitochondrion-specific redox enzyme Trx2) (Imhoff
& Hansen, 2009). Under basal conditions, Nrf2 inter-
acts with Kelch-like ECH-associated protein 1 (Keap1)
in the cytosol where it undergoes ubiquitin-mediated
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Figure 4. Mitochondrial regulation of redox-sensitive transcription factors
Redox-sensitive transcription factors such as NFκB, AP-1 and Nrf2 can be activated by H2O2 generated from
mitochondria. H2O2 also inhibits p53 DNA binding activity. These transcription factors, in turn, master the synthesis
of glutathione (GSH), NAD(P)H, glutathione peroxidase (GPx), peroxiredoxin (Prx), and mitochondrial complex sub-
units, and thus regulate the cellular redox status. These factors also manage inflammatory response by controlling
the transcription of iNOS and a wide-range of cytokines.
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degradation. Upon oxidative modification of its cysteine
residues, Keap1 dissociates from Nrf2, allowing the
translocation of Nrf2 into the nucleus. By binding to
the antioxidant response elements (AREs) of a range
of phase II antioxidant defense genes, Nrf2 induces
their expression such as peroxiredoxins, thioredoxins,
glutathione S-transferase (GST), NAD(P)H: quinone
oxidoreductase (NQO1), haem oxygenase-1 (HO-1),
glutathione peroxidase (GPX), and glutamate-cysteine
ligase (GCL) (Fig. 4). These genes play major roles in the
removal of cytotoxic oxidants or electrophiles (Kensler
et al. 2007). The Nrf–ARE pathway has also been found to
be involved in the attenuation of inflammation-associated
conditions, such as rheumatoid arthritis, asthma,
emphysema, gastritis, colitis, autoimmune diseases and
atherosclerosis (Kim et al. 2010). There is also a cross-
talk between nuclear factor κ-light-chain-enhancer of
activated B cells (NFκB)-mediated inflammatory- and
Nrf2-driven antioxidant response pathways. For instance,
Nrf2 deficiency leads to disrupted cellular redox balance
and increased susceptibility to NFκB activation when the
cells are challenged with inflammatory stimuli (Kensler
et al. 2007). In endothelial cells, it was also reported
that overexpression of Nrf2 abolished TNF-α mediated
p38 MAPK activation and the downstream VCAM-1
expression (Chen et al. 2006).

NFκB. The transcription factor NFκB family comprises
five well-characterized proteins, namely p50 (NFκB1),
p52 (NFκB2), p65 (RelA), c-Rel and RelB, which form a
variety of homo- and heterodimeric combinations under
different circumstances (Baeuerle & Baltimore, 1996).
NFκB plays a central role in immune and inflammatory
responses, through the transcriptional regulation of a
large number of cytokines and other immune response
genes (Fig. 4) (Janssen-Heininger et al. 2000). NFκB
is redox-sensitive. Oxidants including O2

·−, H2O2 and
the hydroxyl radical (OH·) can positively or negatively
modulate NFκB activation. Mitochondria-derived H2O2

plays a critical role in the activation of NFκB (Csiszar
et al. 2008). Under basal conditions, NFκB is localized
in the cytoplasm in an inactive form binding with the
inhibitor of NFκB (IκB); in response to stimuli, NFκB
disassociates from the complex and translocates into the
nucleus where it induces the transcription of its target
genes (Kabe et al. 2005). In the cytosol, oxidative stress
can stimulate phosphorylation (serine or tyrosine) of IκB
and MAPKs, which in-turn induce NFκB activation.

AP-1. Activator protein-1 (AP-1) is another redox-
sensitive transcription factor. AP-1 can be formed by the
dimeric combinations of basic leucine zipper proteins
that belong the Jun or Fos families (Gius et al. 1999).

AP-1 protein binds to the tetradecanoyl phorbol acetate
response elements (TREs), which are within the regulatory
sequence of target genes and control their basal and
inducible expression (Fig. 4) (Rahman et al. 1999). AP-1 is
activated in response to oxidative and pro-inflammatory
stimuli, via the MAPK signalling pathways. Mitochondrial
oxidant-mediated JNK activation mediates the activation
of the c-Jun component of AP-1, which then combines
with the c-Fos subunit. The resulting AP-1 heterodimer
induces the production of various inflammatory
mediators (Sandireddy et al. 2014). Interestingly, while
some studies show that AP-1 is activated by oxidants, other
work also showed that antioxidants such as pyrrolidine
dithiocarbamate and N-acetyl-cysteine stimulate the
activation of AP-1 (Meyer et al. 1993; Janssen et al. 1995).

p53. p53 is the key factor that maintains genomic
stability by regulating the cell cycle and DNA repair
process. p53 promotes aerobic metabolism by targeting
mitochondria. It has been found that p53 directly
regulates mitochondrial oxygen consumption through
transcriptional regulation of an assembly factor for the
cytochrome c oxidase complex (Complex IV), synthesis of
cytochrome c oxidase 2 (SCO2) (Zhuang et al. 2012). p53
activity is redox sensitive, due to the 10 cysteine residues
(human) existing exclusively in its DNA-binding domain.
Oxidation of these cysteine residues to disulfide bonds
suppresses tetramerization and its DNA binding activity
of p53. Mitochondrial function thus regulates p53 activity
by modulating cellular redox status (Sun et al. 2003). p53
also regulates the expression of inducible nitric oxide
synthase (iNOS), which produces �NO and promotes
inflammation in tissues including hepatocytes (Ambs et al.
1998).
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