
J Physiol 594.8 (2016) pp 1979–1988 1979

Th
e

Jo
u

rn
al

o
f

Ph
ys

io
lo

g
y

TOP ICAL REV IEW

Role of reactive oxygen species in age-related
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Abstract Although it is now clear that reactive oxygen species (ROS) are not the key determinants
of longevity, a number of studies have highlighted the key role that these species play in age-related
diseases and more generally in determining individual health span. Age-related loss of skeletal
muscle mass and function is a key contributor to physical frailty in older individuals and our
current understanding of the key areas in which ROS contribute to age-related deficits in muscle is
through defective redox signalling and key roles in maintenance of neuromuscular integrity. This
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topical review will describe how ROS stimulate adaptations to contractile activity in muscle that
include up-regulation of short-term stress responses, an increase in mitochondrial biogenesis
and an increase in some catabolic processes. These adaptations occur through stimulation of
redox-regulated processes that lead to the activation of transcription factors such as NF-κB, AP-1
and HSF1 which mediate changes in gene expression. They are attenuated during ageing and this
appears to occur through an age-related increase in mitochondrial hydrogen peroxide production.
The potential for redox-mediated cross-talk between motor neurons and muscle is also described
to illustrate how ROS released from muscle fibres during exercise may help maintain the integrity
of axons and how the degenerative changes in neuromuscular structure that occur with ageing
may contribute to mitochondrial ROS generation in skeletal muscle fibres.
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Abstract figure legend Schematic illustration of the process of redox signalling of responses to contractile activity
and their modification during ageing. In muscle from young and adult subjects, contractile activity leads to activation
of muscle NADPH oxidase(s) with generation of superoxide that is rapidly converted to hydrogen peroxide with
local oxidation of redox-active thiols and activation of specific redox-sensitive transcriptional pathways. This mediates
multiple adaptations to the contractile activity including stress responses and mitochondrial biogenesis. In old subjects,
this process is attenuated by over-production of hydrogen peroxide by mitochondria which at the level of individual
fibres may be related to the partially or full fibre denervation.

Introduction

The free radical theory of ageing was originally formulated
in the 1950s (Harman, 1956) and has been one of the
most resilient and examined of the many subsequent
theories that have been proposed. It is now recognised that
the free radical theory and its various derivatives cannot
exclusively explain the ageing process (Romano et al. 2010;
Pulliam et al. 2013) and in particular there is no invariable
direct relationship between the extent of free radical, or
reactive oxygen-induced damage (i.e. oxidative damage)
and the onset or rate of ageing in tissues (Muller et al.
2007a). Nevertheless data indicate that some aspects of
the ageing phenotype and age-related disorders appear to
be mediated by reactive oxygen species (ROS) (Muller et al.
2007a; Salmon et al. 2010). In this topical review we will
address two key areas relating to how ROS influence ageing
of the neuromuscular system and play a role in age-related
deficits in skeletal muscle. These are the disruption of
redox signalling in muscle that occurs during ageing and
the role of ROS in nerve–muscle interactions that maintain
muscle mass and function. The aim is to highlight current
developments in these topics and to identify areas where
further research is required.

Age-related loss of skeletal muscle mass and function
(sarcopenia)

The term ‘sarcopenia’ was coined over 20 years ago (Evans
& Campbell, 1993), and the definition was recently revised
as a ‘progressive age-related loss of muscle mass and
associated muscle weakness’ (Lynch, 2011). Between the
ages of 50 and 80 years a 30–50% loss of muscle mass and

decrease in strength occur that are major contributors to
physical frailty which has a major negative effect on the
quality of life of older people and contributes to loss of
independence in older people (Young & Skelton, 1994).
Despite the importance of this area limited progress has
been made in understanding the mechanisms responsible
for age-associated muscle atrophy and weakness.

Analysis of post-mortem human vastus lateralis muscles
have shown a 40% reduction in total muscle area
accompanied by �50% loss of muscle fibres between
50 and 80 years of age (Lexell et al. 1988). Old rodents
also show reductions in muscle fibre number with ageing
(Larkin et al. 2011). The fibre loss is associated with a loss
of motor units (Campbell et al. 1973; Larson & Ansved,
1995) and the number of motor axons innervating skeletal
muscles are decreased in old rodents (Larson & Ansved,
1995) and old humans (Krantic et al. 2005). Despite the
strong associations between the losses of muscle fibres and
motor axons, a cause–effect relationship between the loss
of these two tissues has not yet been established.

The surviving motor neurons show axonal sprouting
that has been proposed to rescue muscle fibres that
have become temporarily denervated, resulting in an
increase in average motor unit size (Brown et al. 1988).
It has been proposed that the ability of motor units
to increase their size is limited, and muscle fibres
and motor units are eventually lost (Delbono, 2003).
Ageing is associated with numerous pre- and postsynaptic
structural abnormalities in peripheral nerve endings,
including segmental demyelination (Adinolfi et al. 1991),
demyelinated and remyelinated axons, and denervated
Schwann cell columns (Grover-Johnson & Spencer, 1981),
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synaptic detachment, partial or complete withdrawal of
axons from postsynaptic sites, and fragmentation of post-
synaptic motor endplates (Jang et al. 2010; Chai et al.
2011). Recent data from rodents also indicate that changes
in the peripheral regions of motor units are observed prior
to any loss in number of motor neuron cell bodies in
the lumbar spinal cord (Chai et al. 2011), suggesting that
degenerative processes in the peripheral regions of motor
nerves may play an important role.

Role of oxidative damage in ageing

The effect of ageing on levels of oxidative damage in
tissues of many species has been studied extensively and
it is apparent that all tissues, including skeletal muscle,
of old organisms contain greater oxidative damage to
lipids, DNA and proteins in comparison with younger
organisms (e.g. Vasilaki et al. 2006b). In non-mammalian
models, initial interventions to reduce the ROS activities
throughout life extended lifespan (Orr & Sohal, 2003),
but work from Richardson and colleagues (Perez et al.
2009) and Gemms and Doonan (2009) has demonstrated
a lack of any true correlation between the level of oxidative
damage and lifespan in different models and argues
strongly against a primary role for oxidative damage in
ageing (Gems & Doonan, 2009). In mammals, few genetic
manipulations to reduce ROS activities have resulted in
increased lifespan (e.g. Schriner et al. 2005). It therefore
seems clear that levels of ROS generation and oxidative
damage are not the fundamental determinants of lifespan.

Although ROS may not be the fundamental deter-
minant of lifespan many studies have indicated that
mitochondrial ROS generation is increased in tissues,
including skeletal muscle, during ageing and that this
is associated with impaired mitochondrial function and
oxidative damage (e.g. Vasilaki et al. 2006b). Furthermore
authors have argued that this increased ROS generation
with age is important in contributing to age-related
diseases (Muller et al. 2007a) and more generally to
individual health span (Salmon et al. 2010).

Redox signalling in skeletal muscle
and its dysregulation during ageing

Contractile activity increases the generation of super-
oxide and nitric oxide (NO) by skeletal muscle fibres
with the formation of secondary reactive oxygen species
(ROS) and reactive nitrogen species (Powers & Jackson,
2008). NO generation is regulated by the nitric oxide
synthases, but the sites that generate superoxide during
exercise have remained relatively unclear. Initial data
suggested that the mitochondrial electron transport chain
was the predominant source of superoxide although
a number of studies have identified NADPH oxidase
enzymes in the plasma membrane, T-tubules and

mitochondria (Sakellariou et al. 2014b). Recent studies
have directly compared the generation of superoxide from
mitochondrial and cytosolic sources in contracting skeletal
muscle (Sakellariou et al. 2013; Pearson et al. 2014) and
these data indicate that NAD(P)H oxidases are the major
source during a short period of contractions (Sakellariou
et al. 2013; Pearson et al. 2014). This has significant
implications for understanding the role of localised ROS
generation in contracting muscle since the only function
of NAD(P)H oxidases is to generate superoxide (or hydro-
gen peroxide) and hence these species are not produced
by chance, or as a by-product of metabolism.

In normal physiology ROS mediate some adaptive
processes to physiological stresses through changes in
gene expression (Droge, 2002). Signalling by these
reactive molecules appears to be mainly achieved by
targeted modifications of specific residues in proteins
(Janssen-Heininger et al. 2008). In skeletal muscle the
ROS and NO generated during contractile activity appear
to mediate the activation of a number of redox-regulated
transcription factors, including Nuclear Factor-kappa B
(NF-κB), Activator Protein-1 (AP-1), Heat Shock Factor-1
(HSF-1) and nuclear factor erythroid 2 -related factor 2
(Nrf2) (Ji et al. 2004; Vasilaki et al. 2006b; Ristow et al.
2009) with a subsequent increased expression of regulatory
enzymes and cytoprotective proteins (McArdle et al. 2001).
The full extent of the adaptive processes in muscle that
are regulated through redox-dependent systems is unclear,
but appears to also include some catabolic processes and
mitochondrial biogenesis (Powers & Jackson, 2008).

The finding that ROS mediate adaptations to contra-
ctile activity and other adaptive responses in tissues is
based on three lines of evidence: (i) demonstration of an
association of increased ROS generation with the response;
(ii) the inhibitory effect of suppression or scavenging of
ROS on the response; and (iii) data demonstrating that
specific ROS can activate the relevant pathway. Hydro-
gen peroxide (H2O2) is widely viewed as the only ROS
likely to play a major role in signalling and H2O2 has been
shown to activate NF-κB (Zhang et al. 2001), AP-1 (Aggeli
et al. 2006) and many other transcription factors (Marinho
et al. 2014). Thus the concept has arisen that H2O2, which
is generated at specific sites within muscle but is readily
diffusible, can interact with activation pathways for these
specific transcription factors leading to their activation.
These studies have utilised H2O2 concentrations typically
in the range 10−4–10−3 M and it is relevant to consider
whether these concentrations have any in vivo relevance.
The intracellular H2O2 concentration is in the order of
10−9–10−8 M (Sies, 2014) and we have calculated that the
increase in muscle during contractions appears to be to a
maximum of 10−7 M (Jackson, 2011). This is therefore
a factor of 1000 below the concentrations reported to
activate most transcription factors in vitro. Thus, the
generally held concept of H2O2 generated from a specific
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enzyme system that is localised at specific sub-cellular
sites, then diffusing through the cell and encountering
redox-regulated proteins with which it reacts may be
relatively naive.

An alternative explanation for the process of redox
signalling has evolved to account for this recognition
that most so-called redox-sensitive proteins are unlikely
to be oxidised by H2O2 at physiological concentrations
and the possibility of redox signalling through thiol
oxidation by H2O2 has evolved. This potential mechanism
involves the transfer of oxidative equivalents directly
from a sensitive thiol peroxidase to a specific target
protein through direct protein–protein contact allowing
conversion of the oxidising equivalent from H2O2 into a
disulphide bond that can be subsequently transmitted to
other substrates through the formation of intermolecular
disulphides. Thus thiol peroxidases transmit oxidising
equivalents to a specific target protein to facilitate H2O2

signalling (Sobatta et al. 2015). This mechanism has
been well documented in yeast (Delaunay et al. 2002;
Gutscher et al. 2009), but has only recently been shown to
account for activation of a transcription factor by H2O2

in animal cells (Sobatta et al. 2015). Key components
of such signalling pathways are peroxiredoxins (Prx) and
thioredoxins (Trx). Prx are a family of antioxidant enzymes
which reduce hydroperoxides to water in the presence
of electron donors. Prx are classified by the number
of cysteine (Cys) residues involved in the peroxidase
activity: 2-Cys Prx and 1-Cys Prx. The 2-Cys Prxs form
a disulphide bond by reacting with peroxides and the
disulphide is reduced by thioredoxin (Trx) which is then
reduced by Trx reductase and NAD(P)H (Park et al.
2014). Prx are generally considered to be important
antioxidant enzymes in the cytosol (Prx1, Prx2, Prx5),
mitochondria (Prx3, Prx5) and endoplasmic reticulum
(Prx4). Importantly and in contrast to the relatively poor
reactivity of the so-called redox-sensitive proteins involved
in activating transcription factors discussed previously,
Prx are several orders of magnitude more reactive with
H2O2 (Sobatta et al. 2015) and act to scavenge H2O2 at the
low concentrations found in muscle fibres.

This latter potential signalling system does not appear
to have been studied in skeletal muscle, but recent studies
in other cell types indicate that Prxs can function as a
signal peroxidase to activate specific pathways. Prx1 has
been shown to activate the transcription factor ASK1
(Jarvis et al. 2012), and Prx2 forms a redox relay with the
transcription factor STAT3 such that oxidative equivalents
flow from Prx2 to STAT3 generating disulphide-linked
STAT3 oligomers with modified transcriptional activity
(Sobatta et al. 2015). Figure 1 shows examples of how
the two potential mechanisms for redox signalling might
account for the activation of a transcription factor (TF)
such as NF-κB by contraction-induced ROS in skeletal
muscle.

It will be important to define which (if either) of
these potential redox signalling systems plays a role
in adaptations of muscle to contractions since they
may provide alternative mechanisms by which aberrant
ROS influence the age-related loss of muscle mass and
function. Thus for instance, ROS mediate increased
expression of heat shock proteins (HSPs) and other cyto-
protective proteins in muscle following contractions in
adult mice (Vasilaki et al. 2006a; Jackson & McArdle,
2011) and this response is attenuated in old mice (Vasilaki
et al. 2006a). Furthermore this attenuated response
contributes to age-related loss of muscle mass and
function (Jackson & McArdle, 2011). Thus transgenic
mouse studies have demonstrated that aberrant activation
of adaptive responses plays a key role in age-related
muscle dysfunction since lifelong overexpression of cyto-
solic HSP70 or mitochondrial HSP10 normalised NF-κB
activation at rest and reduced functional deficits in muscle
of old mice (Kayani et al. 2010).

We have previously proposed that aberrant hydro-
gen peroxide generation from mitochondria that occurs
during ageing could explain this attenuation of adaptive
responses leading to a failure to induce important cyto-
protective and other responses (Jackson & McArdle 2011),
but this has not been examined experimentally. Under-
standing of the processes by which the redox-mediated
adaptations to contractions occur is therefore a pre-
requisite to defining how they are modified by ageing.

Effect of modification of ROS on neuromuscular
ageing

There are a small number of studies that indicate that
a very specific manipulation of ROS activities can pre-
serve muscle function during ageing (e.g. Schriner et al.
2005) and in collaboration with colleagues in the USA
our group have undertaken studies to examine the effects
of deletion of regulatory enzymes for ROS on neuro-
muscular ageing in mice. Despite frequent observation
of increased oxidative damage in these models, no clear
relationship with neuromuscular ageing was generally
seen. The exception to this pattern was in mice with
a whole body deletion of Cu,Zn superoxide dismutase
(Sod1) which show neuromuscular changes with ageing
that have been claimed to reflect an accelerated skeletal
muscle ageing process (Muller et al. 2006). Adult Sod1
knockout (KO) mice show a decline in skeletal muscle
mass, loss of muscle fibres and a decline in the number
of motor units, loss of motor function and contractility,
partial denervation and mitochondrial dysfunction by
8 months of age (Larkin et al. 2011). These are all changes
that are also seen in old wild-type (WT) mice, but not
until after 22–24 months of age.

Sod1 is present in both the cytosol of cells and within
the mitochondrial inter-membrane space (Kawamata &
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Manfredi, 2010) and hence lack of Sod1 may influence
redox homeostasis in the mitochondria and cytosol. Jang
et al. (2010) showed that this model was associated with
a large increase in mitochondrial H2O2 production and
in our studies we examined the nature of other ROS that
are generated in the cytosol of muscle from mice lacking
Sod1. We concluded that increased peroxynitrite in muscle
may play an important role in the phenotype of Sod1KO
mice since muscle fibres from adult Sod1KO mice did not
show an increase in cytosolic superoxide availability at
rest, but muscles demonstrated evidence for an increase
in peroxynitrite. In Sod1KO mice, this was indicated by
an increased 3-nitrotyrosine (3-NT) content of muscle
proteins and increased expression of the peroxynitrite
reductase, peroxiredoxin V (Sakellariou et al. 2011).

We also showed that, in common with old WT mice,
muscles of Sod1KO mice demonstrated a constitutive
activation of NF-κB with increased production of
pro-inflammatory cytokines and a constitutive increase

in the content of a number of HSPs in muscle at rest
and also failed to further activate cytoprotective adaptive
responses to contractile activity. This results in diminished
acute additional expression of HSPs and other cyto-
protective proteins following contractile activity. This
failed activation in response to contractile activity could
potentially occur through a lack of induction of additional
superoxide and/or hydrogen peroxide during contractile
activity (Sakellariou et al. 2011). Other data suggest that
this lack of a contraction-induced generation of ROS in
the Sod1KO mice may be due to a failure of activation of
muscle NADPH oxidase activity (Sakellariou et al. 2013).
Thus, a further effect of the lack of Sod1 that mimics
that seen in old WT mice is a failure of redox-mediated
signalling of adaptive responses to contractile activity.

In subsequent work our group of investigators has
examined whether the muscle atrophy in this model
is initiated by changes within muscle fibres or motor
neurons. Surprisingly, mice with skeletal muscle-specific
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Figure 1. Schematic representation of the two potential pathways of redox signalling to account for
activation of key transcription factors following contractile activity in skeletal muscle
Contractions initially lead to activation of NADPH oxidase (probably Nox2) within muscle. This occurs through rapid
translocation of the regulatory sub-units of NADPH oxidase to a muscle membrane and assembly of the catalytic
enzyme. It is currently unknown how contractile activity leads to activation of this enzyme. The NADPH oxidase
generates superoxide that is rapidly converted to H2O2. Some evidence suggests that the major NADPH oxidases
predominantly generate superoxide on the outside of the muscle fibre with some H2O2 generated rapidly diffusing
into the fibre although this is not firmly established. The process by which the increased H2O2 leads to activation
of transcriptional responses is the subject of debate, but the conventional view is that local concentrations of
H2O2 are sufficiently high for it to diffuse through the cytoplasm and interact with redox-sensitive components of
pathways activating various transcription factors (shown as a dashed line in the scheme). Note that the cytoplasm
contains various enzymes that can degrade H2O2 and compounds (e.g. glutathione) with which it can react. The
alternative pathway involves the reaction of low levels of H2O2 with a highly reactive protein (e.g. Prx or Trx) that
is closely associated with the NADPH oxidase with subsequent formation of disulphides and disulphide exchange
with partner proteins thus transferring oxidising equivalents from H2O2 to proteins with which it would not react at
low concentrations. Subsequent activation of the TF occurring through disulphide exchange with a key signalling
protein. This pathway has not yet been shown to occur in skeletal muscle. Ageing appears to influence the overall
scheme leading to an inability of contractile activity to further activate these transcription factors, but it is currently
unknown how this occurs. GPx, glutathione peroxidase; CAT, catalase; Prx, peroxiredoxin; IKK, I kappa B kinase;
TF, transcription factor.
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deletion of Sod1 (mSod1KO mice) show no evidence of
neuromuscular junction degeneration (NMJ) or loss of
muscle fibres and indeed showed some muscle hyper-
trophy (Zhang et al. 2013). Our group also examined
whether the changes in ROS generation observed in
Sod1KO mice were also seen in mSod1KO mice. The
multiple changes seen in Sod1KO mice were not observed
in the muscles of mSod1KO mice, including the increases
in 3-NT, catalase and peroxiredoxin V previously reported
in muscles of Sod1KO mice (Zhang et al. 2013). To
determine the role of motor neurons in the loss of
muscle mass and function in Sod1KO mice, we sub-
sequently established a transgenic Sod1KO mouse in
which human SOD1 is expressed in neurons under the
control of a synapsin 1 promoter (nSOD1-Tg-Sod1KO
mice). These ‘nerve rescue’ mice expressed SOD1 in
central and peripheral neurons but not other tissues.
Sciatic nerve CuZnSOD content in nSOD1-Tg-Sod1KO
mice was �20% of WT control mice, but they showed
no loss of muscle mass or maximum isometric specific
force production at 8–12 months of age, when significant
reductions were seen in Sod1KO mice (Sakellariou et al.
2014a). Thus these data implicate a lack of Sod1 specifically
in motor neurons in the pathogenesis of the accelerated
muscle ageing phenotype seen in the Sod1KO mice. We
have also recently examined the effect of neuron-specific
Sod1 knockout in nSod1KO mice, but this model also
does not recapitulate the full sarcopenia phenotype seen
in Sod1KO mice and shows only minor changes in muscle
mass and function (Sataranatarajan et al. 2015). The
implication of this work appears to be that both neurons
and muscle contribute to maintenance of neuromuscular
function in this model and that deletion of Sod1 in
both tissues is necessary to generate the full sarcopenic
phenotype.

Thus studies of the Sod1KO model have demonstrated
the importance of nerve–muscle interactions in the
maintenance of neuromuscular function where ROS
homeostasis is compromised during ageing. Since adult
mice lacking Sod1 replicate many of the features seen in
old WT mice they may indicate key mechanisms that lead
to loss of muscle fibres and function that are relevant
to the ageing of WT mice. Nevertheless we stress that
Sod1KO mice provide a model to identify fundamental
mechanisms that are highly relevant to understanding
muscle ageing, but do not believe that a simple lack of
Sod1 contributes to sarcopenia in WT mice or humans.

Redox cross-talk between neurons and muscle

The situation cited above for the nerve rescue Sod1KO
mice provides an example of how restoration of neuro-
nal ROS homeostasis can restore defective function in
muscle mitochondria that is associated with increased
ROS generation. An analogous situation appears to

occur in experimental denervation or nerve crush which
has been found to lead to activation of a number of
degenerative pathways in the denervated muscle, including
an increased mitochondrial generation of reactive oxygen
species (Muller et al. 2006) and increased generation of
pro-inflammatory cytokines (Cea et al. 2013). Muller et al.
(2007b) reported a remarkably large increase in muscle
mitochondrial H2O2 generation following denervation
and subsequent studies in our laboratory have shown
that this increased mitochondrial H2O2 release is already
apparent within 3 days of nerve transection. The reason
for this rapid activation of specific degradatory pathways
is unclear. It is possible that initially this may reflect an
attempt to restore innervation, since products such as
cytokines are released from the muscle fibre and some
cytokines have been claimed to stimulate axonal sprouting,
but if prolonged must inevitably lead to degradation of the
denervated muscle fibres. Further work from this group
also showed that other peroxides in addition to H2O2

were released from mitochondria from denervated muscle
(Bhattacharya et al. 2009) and that inhibition of 12/15
lipoxygenase could ameliorate some of the muscle atrophy
induced by denervation (Bhattacharya et al. 2014) . Thus
together these data suggest that muscle mitochondrial ROS
generation plays a role in the muscle degeneration seen
following denervation.

Motor nerves and muscles are well known to play
a symbiotic role in maintenance of the neuromuscular
system and in particular the viability of motor neurons is
recognised to be dependent upon continued exposure to
neurotrophic factors generated by skeletal muscle fibres
in addition to Schwann cells and neurons (Luff, 1998).
Regular exercise is recognised to induce structural and
functional changes in motor neurons (Gardiner et al.
2006), but in contrast to the situation with skeletal
muscle there appear to be no data indicating that contra-
ctile activity or exercise training up-regulate endogenous
regulatory proteins for ROS and other cytoprotective
proteins in motor neurons. Motor neurons do have
the capacity to up-regulate these cytoprotective proteins
in response to exogenous reactive oxygen and nitrogen
species (Bishop et al. 1999) and neurotrophic factors (e.g.
Glial cell-derived neurotrophic factor and brain-derived
neurotrophic factor) have been reported to promote
neuronal survival by increasing defences against oxidative
damage (Gabaizadeh et al. 1997).

In order to explain this paradox we are currently
examining whether, because of proximity to their target
muscle fibres, the peripheral axons of motor nerves are
exposed to increased extracellular activities of ROS derived
from the muscle fibres during contractile activity (Vasilaki
et al. 2006b). This must inevitably occur and preliminary
data support this hypothesis. Previous studies of ROS
derived from contracting skeletal muscle indicate that they
cause transient oxidation in other non-contracting tissues
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(Close et al. 2007) and we hypothesise that this level
of oxidation is unlikely to produce substantial oxidative
damage, but acts as a stimulus for the up-regulation of
cytoprotective systems.

We therefore postulate that redox cross-talk between
muscle and neurons through release of H2O2 (and
potentially other ROS) plays differing roles depending
on the innervation state of the muscle. In normal
innervated muscle fibres contractile activity leads to
generation of NADPH oxidase-derived H2O2 in the
extracellular space that interacts with adjacent neurons

inducing up-regulation of cytoprotective proteins in the
axons. During ageing, studies have shown that skeletal
muscle does not release equivalent amounts of ROS to
the extracellular space (Vasilaki et al. 2006b) and hence
this cytoprotective cross-talk will not occur, potentially
reducing the capacity of the nerve to prevent oxidative
damage. In contrast if the fibre becomes denervated
(as also occurs to some extent in ageing) the fibre
mitochondria release very large amounts of H2O2 (and
other ROS) that can diffuse out of the fibre to neurons
and other adjacent tissues. The effect of this very large and
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Figure 2. Schematic representation of putative redox
cross-talk from muscle to neurons
A shows the situation in innervated muscle fibres from
young/adult where contractile activity leads to generation of
NADPH oxidase-derived H2O2 in the extracellular space that
interacts with adjacent neurons inducing up-regulation of
cytoprotective proteins in the axons. During ageing, this
process is likely to be modified since skeletal muscle from old
mice does not release equivalent amounts of ROS to the
extracellular space (Vasilaki et al. 2006b) and hence this
cytoprotective cross-talk will not occur. B shows the effect of
denervation in young/adult organisms and may also reflect
the situation in some fibres from old organisms. Denervation
of a fibre induces the fibre mitochondria to release very large
amounts of H2O2 (and other ROS) that can diffuse out of the
fibre to interact with neurons and other adjacent fibres or
tissues. These changes may initially represent an initial attempt
to stimulate adaptations/axonal sprouting, but if sustained
must inevitably lead to degeneration of the muscle fibre and
potentially other local tissues. NTF, neurotrophic factors.
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prolonged increase is unclear. It may initially represent
an attempt to stimulate adaptations/axonal sprouting, but
if sustained must inevitably lead to degeneration of the
muscle fibre and potentially other local tissues. Figure 2
illustrates some aspects of this redox cross-talk between
muscle fibres and motor neurons that may influence
neuromuscular ageing.

Conclusions

Understanding how we age and ways of ameliorating the
negative physical, mental and social effects of ageing is a
major global challenge. Physical frailty is driven by loss
of muscle mass and function and hence preventing this
is key to reduction in frailty. Our current understanding
of the key areas in which ROS contribute to age-related
deficits in muscle is through defective redox signalling
and maintenance of neuromuscular integrity. Both are
areas that still require further work to fully understand
the mechanisms involved, but also appear amenable to
targeted interventions that have the potential to help pre-
vent age-related neuromuscular decline with a consequent
improvement in quality of life for older people.
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