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MicroRNAs in cardiovascular ageing
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Abstract MicroRNAs (miRs) have emerged as potent regulators of pathways in physiological and
disease contexts. This review focuses on the role of miRs in ageing of the cardiovascular system.
Several miRs have been described to be regulated during ageing and some of these miRs are
involved in the regulation of ageing-related processes. We discuss the roles of miR-34, miR-217
and miR-29, which are induced during ageing in the vasculature. The roles of miR-34, miR-29
(age-induced) and miR-18/19, which are decreased during ageing in the heart, are discussed
as well. Furthermore, numerous miRs that play a role in diseases associated with ageing, like
diabetes, atherosclerosis, hypertension, cardiac hypertrophy and atrial fibrillation, are also briefly
discussed. miRs also serve as circulating biomarkers for cardiovascular ageing or ageing-associated
diseases. Finally, pharmacological modulation of ageing-related miRs might become a promising
strategy to combat cardiovascular ageing in a clinical setting.
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Introduction

MicroRNAs (miRs) belong to the rapidly growing family of
non-coding RNAs with crucial and substantial regulatory
functions in almost all cellular biological mechanisms.
They act via RNA-mediated gene silencing through RNA
interference-like pathways. The first microRNAs were
described in the early 1990s regulating and timing larval
development in the nematode Caenorhabditis elegans (Lee
et al. 1993; Reinhart et al. 2000; Lee & Ambros, 2001). Since
then, detailed insights have been gained into the biogenesis
and regulation of microRNAs as well as specific roles in

Timon Seeger received his MD from the School of Medicine, University of Heidelberg, Germany and
finished his internal medicine residency at the University Hospital of Frankfurt, Germany. During
this time he pursued his research at Professor Stefanie Dimmeler’s Institute for Cardiovascular
Regeneration, Centre of Molecular Medicine, University of Frankfurt, studying the role of micro-
RNAs in cardiac diseases and ageing as well as cardiac regeneration. In 2014 he started a German
Research Association funded postdoctoral fellowship at Professor Joseph Wu’s Cardiovascular Institute
at Stanford University focusing on molecular dysregulations in cardiac diseases using iPSC derived
cardiomyocytes. Reinier Boon received his Master’s degree in Medical Biology and PhD in vascular biology
from the University of Amsterdam, the Netherlands. After receiving his PhD degree, he moved to the Institute
for Cardiovascular Regeneration in Frankfurt, Germany, where he started postdoctoral work in the laboratory of Professor Dimmeler. Dr Boon has been
a group leader in the Institute for Cardiovascular Regeneration in Frankfurt since 2011 and studies the role of non-coding RNA in cardiovascular ageing.

physiological regulatory mechanisms and dysregulation
in pathophysiological conditions. To date, over 2500 miRs
have been catalogued in humans in the latest release of
the microRNA database miRBase, the majority of them
by deep sequencing approaches and for many of these
annotations, the functional importance has not yet been
evaluated (Kozomara & Griffiths-Jones, 2014).

MicroRNAs are small, �22 nucleotides in length,
single stranded RNA molecules. By binding to their
target mRNAs, miRs induce translational repression,
mRNA deadenylation and mRNA decay (Huntzinger &
Izaurralde, 2011). Predominantly, miR-binding sites are
located in the 3′ untranslated region (UTR) of their
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target mRNAs (Bartel, 2009). Target recognition is mainly
driven by the miR ‘seed sequence’, a domain at the 5′ end
reaching from nucleotide 2 to nucleotide 7 of the mature
miR, and miRs with identical seed sequences belong to
the same ‘miR family’ (Bartel, 2009). In the majority of
target–miR interactions, the seed region binds perfectly
complementarily, while the downstream nucleotides also
contribute to base pairing but with varying numbers
of mismatches (Fig. 1A). The 3′ UTR of mRNAs can
contain binding sites for different miRs and furthermore,
due to the variations in binding of the nucleotides
downstream of the seed region, one miR can target
several hundred mRNAs (Fig. 1A). Through these highly
diversified binding interactions miRs can ‘fine tune’ entire
signalling cascades and gene networks (Bartel, 2009).

MicroRNA biology

MicroRNAs encoded in the genomic DNA are mainly
intergenic being located in the non-coding regions
between genes and transcribed by often unidentified
promoters. However, specific miRs have been found to
be transcribed from intronic regions (Lin et al. 2006; van
Rooij et al. 2007). miRs are transcribed by RNA poly-
merase II (Pol II) and controlled by RNA Pol II-associated
transcription factors and epigenetic regulators as a long
(>1 kb) primary RNA transcript (pri-miR) (Lee et al.
2004). The pri-miR forms a characteristic stem–loop
structure and has the miR embedded in its stem (Fig. 1B)
(Ha & Kim, 2014). Each precursor miR contains two
mature miRs, one in its 5′ and one in its 3′ strand (for
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Figure 1. MicroRNA binding and biogenesis
A, microRNAs (miRs) bind to target mRNAs mainly in a partially complementary fashion. Nucleotides 2–7 of the
miR are referred to as a seed sequence and these nucleotides bind fully complementarily to the target sequence,
whereas the other nucleotides of the miR only show interspersed complementarity as shown for miR-34a and its
target PNUTS (Boon et al. 2013). Different miRs (depicted by various grey tones) bind to a specific set of mRNA
targets and these sets may be overlapping. One mRNA can be bound by multiple different miRs or even multiple
times by the same miR. Each miR targets tens to hundreds of mRNAs, thereby coordinating complex regulatory
networks. B, miRs are transcribed from the genome either from intergenic regions or within introns of genes.
The primary miR transcript (pri-miR) is processed by Drosha in association with DGCR8 (DiGeorge critical region
8), yielding a precursor miR (pre-miR) that is exported by exportin 5 (Exp-5). Pre-miRs are cleaved by Dicer in the
cytoplasm and one of the strands from the resulting miR duplex is incorporated in the RNA-induced silencing
complex (RISC) that binds to target mRNAs, thereby repressing expression levels.
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example miR-34a-3p and miR-34-5p). In most cases, one
is usually biologically more prevalent and is called the
guide strand. The other is called the passenger strand or
miR∗ and is mostly degraded. However, many examples
also exist where the passenger strand is stable and functions
as a miR as well.

In the nucleus, the pri-miR is processed by the
nuclear RNase III Drosha and its essential co-factor
DGCR8 (named by its implication in a genetic
disorder called DiGeorge syndrome) together forming
the microprocessor complex (Lee et al. 2003; Denli
et al. 2004; Gregory et al. 2004). Recently, it has
been shown that methyltransferase-like 3 (METTL3)
methylates pri-miRNAs, marking them for recognition
and processing by DGCR8 (Alarcón et al. 2015).
After binding of the microprocessor to the pri-miR,
the single-stranded 5′ and 3′ arms are cut releasing
the pre-miR, a short hairpin-like RNA with around
65 nucleotides in length. Deficiency of Drosha in the
germline is embryonically lethal (Chong et al. 2010).
Further, cardiac specific deletion of DGCR8 in mice leads
to heart failure and dilated cardiomyopathy (DCM; Rao
et al. 2009), highlighting the importance of miRs in cardio-
vascular homeostasis.

After nuclear processing by Drosha, the pre-miR is
exported from the nucleus for further maturation in the
cytoplasm. In a complex with the protein exportin-5 and
GTP-binding nuclear protein RanGTP the pre-miR passes
the nuclear core complex and is released into the cytoplasm
(Bohnsack et al. 2004; Lund et al. 2004). After export,
the pre-miR is cleaved by Dicer, an RNase III-type end-
onuclease, close to the terminal loop and a small RNA
duplex containing miR/miR∗ is released (Bernstein et al.
2001; Hutvágner et al. 2001). Deletion of Dicer in the
mouse germline is embryonically lethal (Bernstein et al.
2003). The cardiomyocyte specific deletion of Dicer also
rapidly leads to DCM and heart failure (Chen et al. 2008).

Together with Argonaute proteins (human AGO1–4)
the miR duplex forms the RNA-induced silencing complex
(RISC) which mediates all RNA-silencing pathways (Liu
et al. 2004). By removing the passenger strand the
pre-RISC turns into the mature RISC. The determination
of the biologically active guide strand and the passenger
strand, which is degraded quickly after release, is mainly
dependent on the thermostability of the two ends of the
RNA duplex (Schwarz et al. 2003).

Recently it has been shown that miRs may also act in the
nucleus, even though miR-loading into RISC only takes
place in the cytoplasm (Gagnon et al. 2014). In this review
we discuss the importance of miR-mediated regulation of
processes that are relevant for cardiovascular ageing. For
an overview of miRs in cardiovascular biology in general,
we refer to Quiat & Olson (2013), Boon & Dimmeler
(2014), Greco et al. (2015), Schober et al. (2015) and
Wronska et al. (2015).

Vascular ageing

Vascular ageing is characterized by detrimental effects in
most cell types found in the vessel wall. These include
changes in endothelial cells, smooth muscle cells and
inflammatory cells. A few miRs have been described to
regulate ageing-related processes in these cells. One of
the most described ageing-induced miRs, miR-34a, has
been shown to regulate ageing-related processes such
as senescence in most of these cells (as well as in the
heart, mentioned below). miR-34a was first discovered
in the context of cancer (He et al. 2007; Tarasov et al.
2007), where it was found to be induced by p53 and
to regulate apoptosis (Hermeking, 2012). That miR-34a
is also important in vascular biology became clear with
the study by Ito and colleagues (Ito et al. 2010) which
showed that miR-34a regulates the histone deacetylase
silent mating-type information regulation 2 homologue
(SIRT1) in endothelial cells (see also Tabuchi et al. 2012).
As SIRT1 acts as a longevity promoting factor (Haigis &
Guarente, 2006), this mechanism contributes to the end-
othelial senescence-inducing effects of miR-34a. Ageing
also induces miR-34a expression in smooth muscle cells
(Badi et al. 2014), where a reduction in SIRT1 likewise
results in an increase in senescence and secretion of
inflammatory factors. Like all miRs, miR-34a also has
multiple target genes and it is likely that additional target
genes beyond SIRT1 are involved in inducing senescence
and ageing in the vasculature (Fig. 2, Table 1).

Other miRs that are involved in senescence and ageing
of endothelial and smooth muscle cells include miR-217
and miR-29. The former was also shown to regulate
the expression of SIRT1, thereby promoting endothelial
ageing (Menghini et al. 2009). miR-29 was found to
be induced during ageing and play a role in aneurysm
formation (Boon et al. 2011). Ageing is the major risk
factor for the development of aneurysms, the pathological
widening of large arteries, which greatly increases the risk
of rupture of the artery with a very high mortality rate.
miR-29 regulates the expression of extracellular matrix
proteins and thereby reduces the structural integrity of
the vessel wall allowing aneurysm formation to take place
(Boon et al. 2011; Maegdefessel et al. 2012).

Several other miRs have been described to be
involved in disease processes that are associated with
ageing; however, a direct role in ageing has not been
firmly established. Many miRs were shown to affect
atherosclerosis formation, which is reviewed elsewhere
(Kumar et al. 2014; Menghini et al. 2014; Schober et al.
2015). Apoptosis in vascular cells, which is induced during
ageing, is also regulated by miRs (Quintavalle et al. 2011).
Ageing is a strong risk factor for arterial hypertension,
partly via the β-adrenergic system, which is regulated by
miRs as well (reviewed in Bátkai & Thum, 2012; Ling et al.
2013a). Furthermore, single nucleotide polymorphisms
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(SNPs) linked to arterial hypertension have been found
in miR-binding sites of genes of the renin–angiotensin
system (Nossent et al. 2011). Finally, ageing is associated
with an increase in diabetes mellitus and metabolic
syndrome. The role of miRs in these age-associated
diseases is reviewed in Fernández-Hernando et al. (2013),
Paneni et al. (2013) and Beltrami et al. (2014).

One of the cellular mechanisms that causes ageing
is oxidative stress. miR-200 and miR-210 have been
described to regulate mitochondrial function and
oxidative stress in the vasculature (for review, see Magenta
et al. 2013). The oxidative stress response of endothelial
cells includes expression changes in miRs as well, i.e.
the upregulation of miR-92a, which induces endothelial
dysfunction (Chen et al. 2015). Interestingly, one can also
exploit the cell-type enriched expression patterns of miRs
to specifically target certain cell types in the vasculature
by including miR binding sites in the overexpression
construct for miRs that are highly expressed in the tissue
one does not want to target (so-called detargeting). The
endothelial-enriched expression of miR-126 was used to
specifically detarget an adenoviral construct to overexpress
p27 in vascular smooth muscle cells in the context of
restenosis (Santulli et al. 2014b).

Cardiac ageing

Ageing affects cardiac function in multiple manners. The
most common age-induced cardiac disease is diastolic
dysfunction, also termed heart failure with preserved
ejection fraction (Loffredo et al. 2014). This is caused
by increased stiffness and fibrosis of the myocardium

and is associated with endothelial dysfunction (Paulus
& Tschöpe, 2013). Ageing-induced changes in virtually
all cell types in the heart contribute to these processes
and several miRs were described to play a role in cardiac
ageing.

In cardiomyocytes, the main ageing-regulated miR that
has been described is miR-34. The miR-34 family consists
of miR-34a, miR-34b and miR-34c. All these family
members are induced during ageing (Boon et al. 2013).
miR-34a is the most highly expressed miR-34 family
member in cardiomyocytes and the increased miR-34a
expression in the aged heart is probably due to an
increase in p53 signalling, known to be induced in ageing.
miR-34 family members induce apoptosis during ageing,
but also after acute myocardial infarction (Bernardo
et al. 2012; Boon et al. 2013). Next to SIRT1, miR-34a
directly inhibits the expression of several other target
genes, including POFUT1, BCL6, SEMA4b (Bernardo et al.
2012) and PNUTS (Boon et al. 2013), thereby affecting
cardiomyocyte apoptosis and heart function. Interestingly,
miR-34a is also induced in a genetic model for cardiac
ageing (calstabin-2 null mice) (Yuan et al. 2014) and
integrated network analysis also confirmed a central role
for miR-34a in cardiac ageing (Dimitrakopoulou et al.
2015) (Fig. 2, Table 1).

MicroRNAs that are present in cardiac fibroblasts and
are regulated during ageing appear to have a link to
fibrosis, which is known to be induced during ageing.
miR-18 and miR-19, which are expressed from the same
primary cluster, miR-17-92, are reduced in aged mouse
hearts (van Almen et al. 2011). Connective tissue growth
factor (CTGF) and thrombospondin-1 (TSP-1) are the
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Figure 2. Several miRs are involved in cardiac ageing and in vascular ageing
miRs that are involved in cardiac ageing include miR-34, miR-29, miR-18 and miR-19. miR-34 is upregulated during
ageing and induces apoptosis by inhibiting expression of anti-apoptotic genes. miR-29 is also upregulated and
induces apoptosis, but counteracts fibrosis via suppression of extracellular matrix components. miR-18 and miR-19
are down-regulated during ageing and normally inhibit pro-fibrotic genes, thereby facilitating fibrosis. miR-34,
miR-217 and miR-29 are involved in vascular ageing. miR-34 and miR-217 are upregulated in endothelium and
cause senescence via repression of SIRT1. miR-29 is upregulated in smooth muscle cells, where it inhibits synthesis
of extracellular matrix components, which contributes to aneurysm formation.
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Table 1. MicroRNAs that are regulated during ageing and/or ageing-associated diseases

MicroRNA Associated disease References

miR-1 Atrial fibrillation, mitochondrial function (Girmatsion et al. 2009; Zhang et al. 2014)
miR-133 Cardiac hypertrophy (Carè et al. 2007)
miR-144 Mitochondrial function (Csiszar et al. 2014)
miR-15 Cardiac hypertrophy, atrial fibrillation (Nishi et al. 2010; Tijsen et al. 2014)
miR-18 Cardiac fibrosis (van Almen et al. 2011)
miR-181 Mitochondrial function, immunosenescence (Das et al. 2012; Seeger et al. 2013)
miR-19 Cardiac fibrosis (van Almen et al. 2011)
miR-199 Cardiac hypertrophy (da Costa Martins et al. 2010)
miR-208 Cardiac hypertrophy (van Rooij et al. 2007)
miR-21 Cardiac hypertrophy, cardiac fibrosis (Thum et al. 2008; Patrick et al. 2010; Bang et al. 2014)
miR-214 Mitochondrial function (el Azzouzi et al. 2013)
miR-217 Senescence (Menghini et al. 2009)
miR-22 Cardiac fibrosis, senescence, cardiac hypertrophy (Huang et al. 2013; Jazbutyte et al. 2013)
miR-25 Cardiac hypertrophy (Dirkx et al. 2013)
miR-26 Atrial fibrillation (Luo et al. 2013)
miR-29 Cardiac fibrosis, apoptosis, aortic aneurysms,

atrial fibrillation
(van Rooij et al. 2008b; Ye et al. 2010; Boon et al. 2011;

Maegdefessel et al. 2012; Dawson et al. 2013;
Abonnenc et al. 2013)

miR-30 Cardiac hypertrophy (Wijnen et al. 2014)
miR-328 Atrial fibrillation (Lu et al. 2010)
miR-34 Senescence, apoptosis, telomere attrition,

cardiac hypertrophy
(Ito et al. 2010; Bernardo et al. 2012; Tabuchi et al. 2012;

Boon et al. 2013; Yuan et al. 2014; Badi et al. 2014;
Dimitrakopoulou et al. 2015)

miR-378 Cardiac hypertrophy (Ganesan et al. 2013)
miR-451 Cardiac hypertrophy (Kuwabara et al. 2015)
miR-499 Atrial fibrillation, mitochondrial function (Wang et al. 2011; Ling et al. 2013b)
miR-92 Endothelial dysfunction (Chen et al. 2015)

main pro-fibrotic targets of these miRs and a reduction
of miR-18 and miR-19 during ageing contributes to the
increased expression of CTGF and TSP-1, resulting in
increased fibrosis and a decline in heart function. Inter-
estingly, the fibrosis-inhibiting miR-29 is also increased
in the heart during ageing (Boon et al. 2013) and even
though exogenous miR-29 reduces fibrosis (van Rooij et al.
2008b; Abonnenc et al. 2013), the endogenous induction
does not seem to be able to prevent fibrosis during
ageing. A possible mechanism could be the contribution
of miR-29 to apoptosis of cardiomyocytes during ageing,
since inhibition of miR-29 was described as preventing
ischaemia-induced cardiomyocyte apoptosis (Ye et al.
2010). Finally, miR-22 has also been shown to be induced
during ageing in the mouse heart, where it induces
fibroblast migration and senescence that contribute to
fibrosis in ageing (Jazbutyte et al. 2013).

Several other miRs have been described to play a role in
processes related to cardiac ageing or ageing in general. We
will briefly discuss these miRs here. miRs that are involved
in heart failure in general are reviewed in Tritsch et al.
(2013) and Zhuo et al. (2014). Further, the contribution of
miRs to clinical management of heart failure was recently

described (Sardu et al. 2014). Control of cardiac hyper-
trophy and fibrosis, which are also induced during ageing,
by miRs was shown for miR-133 (Carè et al. 2007), miR-21
(Thum et al. 2008; Patrick et al. 2010; Bang et al. 2014),
miR-208 (van Rooij et al. 2007), miR-15 (Tijsen et al.
2014), miR-25 (Dirkx et al. 2013), miR-199 (da Costa
Martins et al. 2010), miR-22 (Huang et al. 2013), miR-451
(Kuwabara et al. 2015), miR-378 (Ganesan et al. 2013)
and miR-30 (Wijnen et al. 2014). Ageing also induces
the prevalence of atrial fibrillation and several miRs
have been described in the context of atrial fibrillation:
miR-1 (Girmatsion et al. 2009), miR-26 (Luo et al. 2013),
miR-29 (Dawson et al. 2013), miR-328 (Lu et al. 2010)
and miR-499 (Ling et al. 2013b), reviewed in Santulli
et al. (2014a). Increased oxidative stress in the heart
and impaired mitochondrial functional are hallmarks
of cardiac ageing. Several miRs have been identified to
control mitochondrial function and oxidative stress in
the heart that may contribute to cardiac ageing: miR-1
(Zhang et al. 2014), miR-144 (Csiszar et al. 2014), miR-199
and miR-214 (el Azzouzi et al. 2013), miR-181 (Das et al.
2012), miR-499 (Wang et al. 2011) and miR-15 (Nishi et al.
2010).

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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Clinical outlook

The development of miRNA therapeutics has gained
considerable momentum over the past years. Inhibition
of miRs with anti-miRs that sterically block the specific
miR seems most promising and has been pioneered by
anti-miRs against miR-122 to treat hepatitis C (Lanford
et al. 2010). Phase II clinical trials using these anti-miRs
(called miravirsen) are very promising (Janssen et al.
2013). There are no clinical trials reported to date with
anti-miRs targeting cardiovascular disease, but inhibition
of many miRs was shown to be therapeutically beneficial
in mouse models (van Rooij et al. 2008a) or even in
large animal models (Hinkel et al. 2013). Several of
the ageing-related miRs discussed in this review may
also prove promising therapeutic targets. For instance,
inhibition of miR-34a in the myocardium may prevent
or even ameliorate age-induced cardiac dysfunction. One
should, however, be very careful in choosing delivery
strategies for the anti-miRs, as many miRs are expressed
in a variety of cell types and may have dissimilar roles
in different cells. The pro-apoptotic miR-34a would be
an interesting target to prevent cardiomyocyte apoptosis,
but inhibition of miR-34a may simultaneously induce
tumorigenesis (Hermeking, 2010). In fact, delivery of
miR-34a mimics is being developed as treatment for liver
cancer (clinical trial number NCT01829971).

Even though anti-miR chemistries appeared to be safe
and well-tolerated in the clinical trials performed so far, a
recent study showed that the phosphorothioate-modified
RNA backbone used in anti-miRs can induce platelet
aggregation via activation of glycoprotein VI on platelets
(Flierl et al. 2015). However, most anti-miRs are only
16 nucleotides long and therefore too small to facilitate
glycoprotein VI dimerization and subsequent platelet
aggregation (Flierl et al. 2015).

Finally, miRs may serve as biomarkers of cardiovascular
ageing. Many miRs have been proposed as biomarkers
for cardiovascular disease (Fichtlscherer et al. 2011;
Zampetaki et al. 2012; Watson et al. 2015), but only a few
circulating miRs reflect cardiovascular ageing. Reduced
expression of miR-181c in the peripheral blood was shown
to be associated with ageing and chronic heart failure as
well as immunosenescence (Seeger et al. 2013), circulating
miR-34a was shown to correlate with age in mice (Li
et al. 2011), and plasma levels of miR-21 are increased
with ageing (Olivieri et al. 2012). Furthermore, several
reports describe differential levels of circulating miRs in
centenarians, compared to young control subjects (Noren
Hooten et al. 2010; Gombar et al. 2012; Serna et al. 2012;
Meder et al. 2014). As these miRs are not cardiovascular
specific, the levels do not necessarily reflect cardiovascular
disease but may help in risk stratification as well as in
monitoring disease progression. For example, miRs found

in blood plasma can function as biomarkers for diabetes
mellitus (Guay & Regazzi, 2013). Circulating miRs that
specifically reflect cardiovascular ageing or might emerge
to be direct therapeutic targets are still elusive.
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