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Can be traced back to vascular
and metabolic processes in early life
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Abstract Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally.
In recent years, studies have shown that the origins of CVD may be traced to vascular and
metabolic processes in early life. Retinal vascular imaging is a new technology that allows
detailed non-invasive in vivo assessment and monitoring of the microvasculature. In this
systematic review, we described the application of retinal vascular imaging in children and
adolescents, and we examined the use of retinal vascular imaging in understanding CVD risk
in early life. We reviewed all publications with quantitative retinal vascular assessment in two
databases: PubMed and Scopus. Early life CVD risk factors were classified into four groups: birth
risk factors, environmental risk factors, systemic risk factors and conditions linked to future
CVD development. Retinal vascular changes were associated with lower birth weight, shorter
gestational age, low-fibre and high-sugar diet, lesser physical activity, parental hypertension
history, childhood hypertension, childhood overweight/obesity, childhood depression/anxiety
and childhood type 1 diabetes mellitus. In summary, there is increasing evidence supporting the
view that structural changes in the retinal microvasculature are associated with CVD risk factors
in early life. Thus, the retina is a useful site for pre-clinical assessment of microvascular processes
that may underlie the future development of CVD in adulthood.

(Received 15 May 2015; accepted after revision 28 September 2015; first published online 5 October 2015)
Corresponding author T. Y. Wong: Singapore Eye Research Institute, Singapore National Eye Centre, 11 Third Hospital
Avenue, Singapore 119228. Email: wong.tien.yin@snec.com.sg

Abstract figure legend The origins of CVD may be traced back to vascular and metabolic processes in early life.
Retinal vascular imaging is a new technology that allows detailed non-invasive in vivo assessment and monitoring of
the microcirculation. Our review supports the view that CVD risk factors are associated with structural and functional
changes in the retinal microvasculature in early life. Thus, the microcirculation may be a site for pre-clinical processes
underlying the development of CVD in adulthood.

Abbreviations AVR, arteriole-to-venule ratio; CRP, C-reactive protein; CVD, cardiovascular disease; DVA, dynamic
vessel analyzer; IUGR, intra-uterine growth retardation; NO, nitric oxide; OCT, optical coherence tomography; sFLT-1,
fms-like tyrosine kinase-1; T1DM, type 1 diabetes mellitus.

Introduction

Cardiovascular disease (CVD) is a leading cause of
morbidity and mortality globally. There is increasing
evidence that the origins of CVD may be traced to
vascular, metabolic and other processes that start in early
life. This viewpoint is sometimes referred to as the salt
hypothesis (Backes et al. 2013), the Dorner hypothesis
(Kaess et al. 1975), or the Barker hypothesis (Barker et al.
1989). The effects of early life conditions and diseases
that may influence the development of CVD in later life
have been studied in several longitudinal studies (Barker
et al. 1990, 2009; Napoli et al. 1999; Harding, 2001;
Eriksson et al. 2003). In Barker hypothesis, also known
as the ‘thrifty phenotype hypothesis’ (Ellison, 2005),
intrauterine growth restriction due to fetal adaptation
to metabolic and vascular processes is linked to the
development of major CVD in late-life (Barker, 2004b).

Population-based studies have also suggested that early
life factors may be important determinants of trends
and geographical differences in CVD mortality across
populations (Forsdahl, 1979; Barker & Osmond, 1986;
Ben-Shlomo & Smith, 1991; Elford et al. 1992; Dorling
et al. 2000; Leon & Davey Smith, 2000). Postulated
mechanisms include persistent vascular and metabolic
damage due to the exposure to CVD risk factors (e.g.

high-fat diet, obesity, elevated blood pressure) in early life.
This in turn may trigger other epigenetic modifications
leading to morphological, pathological and metabolic
alterations in major tissues (e.g. fatty tissue), and organs
(e.g. liver, pancreas, brain and kidney) (Fig. 1). Consistent
with epidemiological studies are autopsy studies from
early childhood showing atherosclerosis with fatty streaks
in the aorta, and coronary and carotid arteries (Berenson
et al. 1998; McGill et al. 2000a,b).

While these studies have provided some evidence
for vascular damage in early life, most data are
cross-sectional in nature, making causal inferences from
these studies difficult. Thus, the key question of which
pathophysiological mechanisms explain the development
and progression of CVD from early to later life remains
unanswered. One pathway in the process of vascular
damage involves endothelial dysfunction. Endothelial
dysfunction generally refers to the reduction of nitric
oxide (NO) bioavailability through decreased endothelial
nitric oxide synthase expression (Griendling & FitzGerald,
2003). Animal studies have shown that endothelial damage
leads to inhibition and promotion of the proliferation of
smooth muscle cells. This further activates the aggregation
of platelet and inflammatory cells disrupting the integrity
of the microvasculature (Villar & Belizan, 1982; Nuyt,
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2008). However, this area of research requires systematic
and continuous long-term monitoring of CVD risk factors
and assessment of vascular changes over time.

In the past few decades, novel modalities including
retinal vascular imaging have been developed to examine
the systemic microvasculature in clinical studies (Liew
et al. 2008c; Strain et al. 2012; Struijker-Boudier et al.
2012). Due to the non-invasive nature of retinal imaging,
it has been applied in a wide range of population-
based and clinical studies in persons of different
ages (Strain et al. 2012). The morphology of retinal
microvasculature is represented by a series of vascular
parameters such as calibre of retinal arterioles and
venules, and their tortuosity, branching angle and fractal
dimension (Cheung et al. 2012). These parameters have
been associated with a range of systemic risk factors
(e.g. elevated blood pressure, hyperglycaemia, obesity)
(Nguyen et al. 2008b; Cheung et al. 2009b, 2012; Jensen
et al. 2010; Li et al. 2012, 2013; Gopinath et al. 2013b;
Xiao et al. 2015), and appear to predict the incidence
of CVD, including stroke and heart disease, and are
related to vascular and metabolic conditions (e.g. hyper-
tension, diabetes, metabolic syndrome) (Wong et al.

2002a,b; Ikram et al. 2006a,b; McGeechan et al. 2008;
Kawasaki et al. 2009; Nguyen et al. 2008a). Furthermore,
these morphological changes in the retinal vessels
have been linked to several basic mechanisms involved
in the development of CVD, such as inflammation,
dyslipidaemia and endothelial dysfunction (Klein et al.
2006; Wong et al. 2006; Van Hecke et al. 2008; Gopinath
et al. 2009; Yim-Lui Cheung et al. 2010; Hanssen et al.
2012). In view of these developments, retinal vascular
imaging can also be used as a potential tool to study early
life factors related to CVD.

The use of retinal vascular imaging as a tool to study
early life CVD risk factors was initiated by Hellstrom
et al. and others, who proposed the concept of studying
the retinal microvasculature in children in the 1990s
(Hellstrom et al. 1997,1998). All these studies found a
series of retinal vasculature abnormalities in children
with low birth weight and even intra-uterine growth
retardation (IUGR), including lower branching points,
narrower bifurcation angles, narrower retinal arteriolar
calibre and wider retinal venular calibre (Chapman et al.
1997; Hellstrom et al. 1998, 2004; Minicucci et al.
1999; Kandasamy et al. 2012a,b). These initial studies

Early life cardiovascular risk: Programming of tissues/organs:
Epigenetic mechanism; morphological,
physiological and metabolic alterations

Adult disease:

Muscle/fat:
Reduced glucose uptake
Insulin signalling defects

Pancreas:
Reduced cell mass
Poor vascularization

Liver:
Altered metabolism
Structural changes

Brain:
Hypothalamic alterations

Structural changes

Kidney:
Vascular defects
Disrupted RAS

Cardiovascular:
Vascular remodeling

Cardiac function

Cardiovascular disease

Atherosclerosis

Hypertension

Diabetes

Dyslipidaemia

Renal disease

Overweight/obesity/
central obesity

Childhood hypertension

Over-nutrition
Hyperglycaemia
Hyperlipidaemia

High BMI

Less
physical
activity

Elevated BP

High fat diet

Low fibre diet

High carbonhydrate

Figure 1. Early life risk factors and adult cardiovascular disease
Early-life risk factors shown in the first panel have been suggested to be associated with tissue or organ
programming later in life. Such programming, due to the adaptation to existing environmental conditions, results in
different phenotypes shown in the second panel. All together, they are known risk factors for future development
of systemic disease and cardiovascular disease.
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suggested that such vascular alteration might be associated
with increased circulatory energy costs and suboptimal
vascular architecture leading to an impairment of fetal
development, which subsequently provides a mechanistic
link to an increased risk of CVD in late-life. Since then
an increasing number of studies have used retinal vascular
imaging to elucidate the role of the microvasculature in
early life. Therefore, the aim of this systematic review is to
summarize the results of retinal vascular imaging applied
in studies of children and adolescents, and to determine
the relationship of retinal vascular changes to CVD risk
factors in early life.

Methods

Data source and study selection. We conducted a
systematic review of publications with quantitative
retinal vascular assessment in early life performed
through two major online searching engines – PubMed
database (http://www.ncbi.nlm.nih.gov/pubmed) and
Scopus (http://www.scopus.com). The following key
words were used in the search criteria: retinal arterio-
les, retinal venules, retinal vascular calibre, retinal vessel
diameter, retinal vessels, retinal microcirculation, retinal
microvasculature, retinal vasculature, retinal imaging,
childhood, early life, children and adolescents. Relevant
papers published until 27 February 2015 were screened
by their titles and abstracts. There were nearly 400,000
papers shown on both search engines with keyword
searching. After combining the searching schemes, nearly
9000 papers were eligible (Fig. 2). Inclusion criteria of
our systemic review were: epidemiological and/or clinical
study, studies on children and/or adolescents, written in
English, full text available through National University of
Singapore library portal, quantitative assessment of retinal
vascular parameters, and early life CVD risk factors. Early
life CVD risk factors were classified into four groups:
birth risk factors (e.g. low birth weight, shorter gestational
weeks), environmental risk factors (e.g. parental hyper-
tension, low physical activity, high-fat diet), systemic risk
factors (e.g. elevated blood pressure, overweight, obesity),
and diseases linked to future CVD development (e.g.
diabetes). Finally, 55 papers fitted the criteria and were
included for data extraction.

Data extraction and table summary. A standard
extraction form was used to summarize all the key findings
from 55 papers: information included in the extraction
form was first author’s name, year of publication,
country where data were collected, study design, sample
size, response rate (if applicable), age, and changes in
exposure and outcomes (either quantitative or qualitative
assessment on retinal imaging or CVD risk).

Fundus photography and retinal vessel assessment.
Retinal fundus examination allows for non-invasive

evaluation of retinal microvasculature. Recent
population-based studies have used computer-assisted
programmes to measure individual arterioles and
venules and to combine them according to formulas
developed firstly by Parr & Spears (1974a,b), sub-
sequently modified by Hubbard et al. (1999), and
further improved by Knudtson et al. (2003). The
use of computer-assisted programmes differs in all
population-based epidemiological studies. For example,
Computer Assisted Image Analysis of the Retina program
(CAIAR) and Retinal Image MultiScale Analysis was
used in UK adult studies (Mahal et al. 2009; Owen et al.
2011), retinal Imaging Software Fractal (IRIS-Fractal)
was used in an Australian children study (Gopinath et al.
2012a, 2013a), Non-mydriatic Vessel Analyser (SVA-T)
was used in a German children study (Hanssen et al.
2012), Interactive Vessel Analysis (IVAN) was widely used
in US studies (Wong et al. 2004; Liew et al. 2008a) and
Asian studies (Li et al. 2011b), while Singapore I Vessel
Assessment (SIVA) was newly developed and applied in
recent Singaporean studies (Wong et al. 2002b; Cheung
et al. 2011a).

Retinal imaging analysis has enabled reproducible
assessment of retinal microvascular parameters to quantify
structural vascular morphological changes precisely
(Wong et al. 2004). With the advancement of grading
software such as SIVA (Singapore I Vessel Analysis, version
3.0, Singapore) (Fig. 4), a range of retinal static vascular
parameters have been explored and widely used, such
as retinal vascular calibre, retinal vascular tortuosity,
retinal vascular branching angle and retinal vascular fractal
dimension. A brief description of these parameters is
provided below:

(1) Retinal vascular calibre is represented as central retinal
arteriolar equivalent (CRAE) and central retinal
venular equivalent (CRVE). Pathological changes
in such parameters have been identified as retinal
arteriolar narrowing and retinal venular widening
(Fig. 4) (Ikram et al. 2013).

(2) Retinal vascular tortuosity is defined as the integral
of the curvature square along the path of the vessel
normalized by the total path length; it takes into
account the bowing and points of inflection (Fig. 5)
(Cheung et al. 2011b). Increment of retinal vessel
curvature tortuosity reflects a curvier vessel and has
been identified as part of the pathological changes
(Ikram et al. 2013).

(3) Retinal vascular fractal dimension, which quantifies
the complexity of the branching pattern of the retinal
vascular tree, is defined as the gradient of logarithms
of the number of boxes and the size of the boxes
(Fig. 5) (Liew et al. 2008b). A lower value for the fractal
dimension reflects a sparser vascular network and has
been found in diseases such as stroke and Alzheimer’s

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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disease (Cheung et al. 2014a,b, 2015; Hilal et al. 2014;
Ikram et al. 2013; Ong et al. 2014, 2015).

(4) Retinal vascular branching angle is defined as the
first angle subtended between two daughter vessels
at each bifurcation (Fig. 5) (Cheung et al. 2011a).
Larger vessel branching angle might be indicative
for pathological changes in retinal vascular geometry
(Ikram et al. 2013).

Results

Birth risk factors and retinal microvasculature. A total
of six papers (Cheung et al. 2007a; Tapp et al. 2007;
Mitchell et al. 2008; Sun et al. 2009a; Gopinath et al.
2010b; Kandasamy et al. 2011; Gishti et al. 2015a)
and one letter-to-the-editor (Cheung et al. 2008) were
published on the relationship between birth factors
and retinal microvasculature (Table 1). Subjects ranging

1.
Genetic

determinant
n = 9

2.
Environmental

factors
n = 6

3.
Systemic
factors
n = 19

4.
Anatomical

factors
n = 20

5.
Birth

factors
n = 9

6.
Disease

n = 34

Risk of cardiovascular disease

n = 55

Combined two themes:
n = 8,907

Screened by title:
not relevant n = 8316

591 papers were selected

Screened by abstract:
not relevant n = 37
repeated n = 443
Review n = 8
Not in English n = 6

97 papers were selected

Theme 1:
Retinal arterioles n = 1,317
Retinal venules n = 554
Retinal vascular calibre n = 387
Retinal vessel diameter n = 1,031
Retinal vessels n = 19,214
Retinal microcirculation n = 1,319
Retinal microvasculature n = 11,174
Retinal imaging n = 10,998
Retinal vasculature n = 10,546

Theme 2:
Children n = 1,972,790
Adolescents n = 1,656,146
Early life n = 104,301
Childhood n = 189,700

Figure 2. Flow chart illustrating the selection of research papers

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society



2180 L.-J. Li and others J Physiol 594.8

from newborn babies to adolescents around 16 years
were included; these subjects were mainly of Asian
and European origin. All studies were designed in
a longitudinal and school-based way. Consistent and
significant findings were reported on the association
between smaller birth size indexes and retinal arterio-
lar narrowing and/or retinal venular widening in these
children and adolescents (Cheung et al. 2007a, 2008; Tapp
et al. 2007; Mitchell et al. 2008; Sun et al. 2009a; Gopinath
et al. 2010b). Furthermore, subjects in the UK with
lower birth weight and subjects in Australia with smaller
head circumference had higher tortuosity and optimality
deviance in retinal arterioles (Tapp et al. 2007) and lower
retinal vascular fractal dimension (Gopinath et al. 2010b).
However, a recently published clinical study reported that
infants born with lower birth weight tend to have both
retinal arterioles and venules dilatation (Kandasamy et al.
2011). The difference might be due to the small sample
size (n = 24) of this study.

Environmental risk factors and retinal microvasculature.
Seven papers (Gopinath et al. 2011a,c, 2012b, 2014;
Hanssen et al. 2011; Poon et al. 2013; Islam et al. 2014)
and one letter-to-the-editor (Lim et al. 2009) published
on associations between environmental risks and retinal
microvasculature were part of the analysis (Table 2).
The environmental risks included diet, parental hyper-
tension and physical activity. All associations between
environmental risks and retinal microvasculature were
designed in a population/family-based and cross-sectional
way. Four papers explored the relationship between
unhealthy diet and retinal vasculature; however, the
findings were not consistent. The Sydney Children Eye

Study (SCES) found that children and adolescents with
unhealthy diet including higher intake of sugar and
carbohydrate and lower intake of yoghurt and fibre tend to
have retinal arteriolar narrowing and suboptimal retinal
arteriolar fractal dimension (Gopinath et al. 2012b, 2014).
However, some of findings could not be repeated in
Singaporean children (Lim et al. 2009). Furthermore, a
recent study done on 481 children and adolescents with
type 1 diabetes reported no association between vitamin D
intake and a series of retinal vascular parameters including
calibre, tortuosity, length-to-diameter ratio, branching
angle and fractal dimension; the results were the same
for association with vitamin D deficiency as well (Poon
et al. 2013). Two papers found a consistent relationship
between parental blood pressure/hypertension history
and changes of retinal microvasculature such as higher
optimality deviation and larger arteriole-to-venule ratio
(AVR) in children (Gopinath et al. 2011a; Islam et al.
2014). Interestingly, physical activity and sedative activity
such as TV viewing were also reflected by retinal imaging
differently (Gopinath et al. 2011c; Hanssen et al. 2011).
Children with less outdoor physical activity and more TV
viewing time had narrower retinal arterioles than had their
counterparts.

Systemic risk factors and retinal microvasculature.

Elevated blood pressure. A body of evidence has
confirmed the relationship between elevated blood
pressure, childhood hypertension and retinal micro-
vasculature. Thirteen papers have published consistent
findings from pre-schoolers to adolescents (Table 3)
(Mitchell et al. 2007; Gopinath et al. 2010a, 2013b; Tapp
et al. 2007, 2013; Li et al. 2011b; Owen et al. 2011;

Figure 3. Retinal microvasculature assessment on the grading platform
A screenshot of a computer-assisted programme for measurement of new geometrical retinal vascular parameters
from retinal fundus photograph. Zone C is marked in SIVA software by 0.5 to 2.0 optic disc diameters away from
the margin of the optic disc. All retinal arterioles and venules larger than 25 µm are marked and assessed within
zone C.

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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Hanssen et al. 2012; Kurniawan et al. 2012; Murgan et al.
2013; Sasongko et al. 2010; Zheng et al. 2013; Gishti
et al. 2015b). A wide range of retinal vascular parameters
were studied among all these original articles, such as
retinal vessel width, fractal dimension, tortuosity and
length-to-diameter ratio. Elevated peripheral and central
blood pressure and subsequent childhood hypertension
were associated with narrower retinal arteriolar calibre,
wider retinal venules, more tortuous retinal arterio-
les and lower retinal arteriolar fractal dimension and
length-to-diameter ratio (Mitchell et al. 2007; Gopinath
et al. 2010a, 2013b; Sasongko et al. 2010; Li et al. 2011b;
Owen et al. 2011; Hanssen et al. 2012; Kurniawan et al.
2012; Murgan et al. 2013; Tapp et al. 2013; Zheng et al.
2013). In a group of 166 UK children aged 9 years,
increased heart rate was also found to be associated with
lower simple tortuosity (Tapp et al. 2007).

Anthropometric indexes. As a phenotypic indication
for overweight and obesity, anthropometric indexes and
retinal microvasculature was widely investigated across
all races and ages (Table 4) (Cheung et al. 2007b; Tapp
et al. 2007, 2013; Taylor et al. 2007; Sasongko et al.
2010; Gopinath et al. 2011b, 2013b; Li et al. 2011a;
Owen et al. 2011; Hanssen et al. 2012; Zheng et al. 2013;
Siegrist et al. 2014; Xiao et al. 2015; Gishti et al. 2015d).

Figure 4. Retinal arteriolar narrowing and retinal venular
widening
Retinal arteriolar narrowing is shown in (a). Retinal arteriolar caliber
listed in the image on top has narrower (132 µm) than the image in
the bottom (151 µm). Retinal venular widening is shown in (b).
Retinal venular caliber listed in the image on top has wider (171.8
µm) than the image in the bottom (156.3 µm).

Among children and adolescents, BMI, ponderal index,
waist circumference, skinfold thickness indexes, fat mass
index, body water percentage and trunk fat percentage
parameters were all used to evaluate the body composition.
It was observed that if a child or adolescent had higher
index for body composition or fat deposition, he/she
had retinal venular widening consistently with or without
retinal arteriolar narrowing. Interestingly, retinal venular
calibre seemed to be the most sensitive index to reflect body
composition among all retinal vascular parameters such
as retinal arteriolar calibre, fractal dimension, tortuosity,
length-to-diameter ratio and optimality deviation. Aside
from structural retinal vasculature, functional changes
were also investigated in 77 children and adolescents
with either type 1 diabetes mellitus (T1DM) or over-
weight or obesity. Retinal venular dilatory response under
flicker light examination was found to be associated with
increased BMI (Schiel et al. 2009).

Inflammation, hyperglycaemia, dyslipidaemia and
angiogenesis. Systemic conditions such as inflamm-
ation, hyperglycaemia, dyslipidaemia and angiogenesis
were well recognized to be on the path of developing
atherosclerosis and future CVD. In the last 5 years,
researchers have started to look into the early indication
of such a process in children and adolescents. Five papers
published cross-sectional data and one paper published
longitudinal data on relevant topics (Table 5) (Owen
et al. 2011; Sasongko et al. 2010; Hanssen et al. 2012;
Siegrist et al. 2014; Gishti et al. 2015c,d). Inflammation
biomarkers such as C-reactive protein (CRP), hyper-
glycaemia (indicated by high glucose, HbA1C and insulin
level), dyslipidaemia (indicated by cholesterol and low
density lipoprotein, high density lipoprotein, leptin and
triglyceride) were all associated with retinal venular
widening and more tortuous retinal arterioles (Sasongko
et al. 2010; Owen et al. 2011; Hanssen et al. 2012; Siegrist
et al. 2014). Interestingly, a group of Dutch researchers
also found significant associations between indexes for
maternal angiogenesis (e.g. placental growth factor,

Curvature Tortuosity Branching angle Fractal dimension

Figure 5. Retinal vascular geometry parameters
Retinal vascular tortuosity, retinal vascular branching angle and retinal vascular fractal dimension are shown.
Tortuosity is derived from the integral of the curvature square along the path of the vessel, normalized by the total
path length, which takes into account the bowing and points of inflection. Branching angle is defined as the first
angle subtended between two daughter vessels at each bifurcation. Fractal dimension quantifies the complexity
of the whole branching pattern of the retinal vascular tree and is defined as the gradient of logarithms of the
number of boxes and the size the boxes.

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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soluble fms-like tyrosine kinase-1 (sFLT-1)) and their
ongoing impact on children turning 6 years (Gishti et al.
2015c).

Disease linked to future CVD and retinal micro-
vasculature. There are a series of diseases in adults
that have been identified as being associated with
vascular damage with the possibility of leading to
future cardiovascular disease, such as hypertension,
diabetes, depression and metabolic syndrome. A total
of 14 papers were published on a wide range of early
life diseases including childhood hypertension, T1DM,
metabolic syndrome, carotid plaque, and microvascular
complications (e.g. retinopathy and nephropathy) in
T1DM paediatric patients (Table 6) (Alibrahim et al. 2006;
Kifley et al. 2007; Cheung et al. 2009a; Gopinath et al.
2010a; Sasongko et al. 2010, 2011, 2012; Benitez-Aguirre
et al. 2011, 2012; Li et al. 2011b, 2014; Bronson-Castain
et al. 2012; Hosking et al. 2013; Meier et al. 2014; Yau
et al. 2014; Gishti et al. 2015b). Except for four studies
that were longitudinal (on T1DM young patients) (Kifley
et al. 2007; Benitez-Aguirre et al. 2011, 2012; Cheung
et al. 2009a), the rest of the studies were published
on cross-sectional data (four on T1DM, two on hyper-
tension, one on depression and anxiety, one on metabolic
syndrome, and one on carotid plaque) (Bronson-Castain
et al. 2012; Gopinath et al. 2010a; Hosking et al. 2013;
Li et al. 2011b, 2014; Meier et al. 2014; Sasongko et al.
2010, 2011, 2012; Yau et al. 2014). The majority of
the papers (9 out of 14) had investigated microvascular
changes and complications in T1DM (Kifley et al. 2007;
Cheung et al. 2009a; Sasongko et al. 2010, 2011, 2012;
Benitez-Aguirre et al. 2011, 2012; Bronson-Castain et al.
2012; Hosking et al. 2013). Consistent cross-sectional
findings in five papers suggested that retinal venular
calibre widening was commonly seen in T1DM. Moreover,
longer duration of T1DM was also associated with more
tortuosity of retinal arterioles and higher retinal arterio-
lar and venular optimality deviation (Bronson-Castain
et al. 2012; Hosking et al. 2013; Sasongko et al. 2010,
2011, 2012). Abnormal retinal vascular morphology such
as wider retinal venular calibre, higher retinal arterio-
lar tortuosity and larger length-to-diameter ratio was
related to concurrent and incident microvascular compli-
cations in both nephropathy and retinopathy among
T1DM young patients (Kifley et al. 2007; Cheung
et al. 2009a; Benitez-Aguirre et al. 2011, 2012).
As for childhood-specific hypertension, two studies
on Singaporean pre-schoolers and Sydney adolescent
children reported similar findings on significant
narrowing of retinal arterioles (Gopinath et al. 2010a;
Li et al. 2011b). There were three papers published on
mental health, carotid plaque and metabolic syndrome in
children and adolescents. Narrowing in retinal arteriolar
calibre was suggested to be associated with higher risks in

carotid plaque (Li et al. 2014), smaller white matter volume
(Yau et al. 2014) and presence of metabolic syndrome (Yau
et al. 2014), yet with lower risks in depression and anxiety
(Meier et al. 2014).

Discussion

CVD is the leading cause of mortality, morbidity and
hospitalization worldwide (Visentin et al. 2014). Although
the clinical manifestation is acute, CVD is a chronic
disease that evolves gradually and may interfere with
quality of life, physical disability, and lifelong dependence
on health services and medications (Visentin et al.
2014). Establishing the mechanisms that link these factors
with vascular and metabolic changes could provide
essential insights for the development of preventative and
therapeutic strategies.

Early life CVD risk factors might exert their influence
through a series of complicated mechanisms, including
adverse in utero programming (Barker, 2004a, 2005),
IUGR (Barker, 2004a, 2005), lack of physical activity
(Malina, 1996), unbalanced nutrition (Barclay et al. 2008),
childhood hypertension and obesity (Berenson et al. 1998;
Brion et al. 2007), depression (Glassman & Shapiro, 1998;
Nemeroff & Goldschmidt-Clermont, 2012) and type 1
diabetes (de Ferranti et al. 2014a,b; Nathan et al. 2005).
All CVD risk factors will impose an adverse impact on end-
othelium and subsequently lead to vascular remodelling.
In this systematic review, we summarized 55 papers
published on the topic of retinal imaging and early life
CVD risk factors. Consistent and strong trends were found
in children and adolescents between the presence of early
life CVD risk factors and suboptimal structural changes
in the retinal microvasculature.

Possible mechanisms for retinal vascular changes. In the
general adult population, changes in the retinal micro-
vasculature may reflect different changes in the systemic
microvasculature. A range of morphological changes has
been studied and they may reflect different underlying
physiological and pathological states.

For example, generalized retinal arteriolar narrowing
has been suggested to be related to hypertension. The
pathophysiological changes in retinal arteriolar narrowing
are related to initial vasospasm, followed by chronic
arteriosclerotic changes in relation to elevated blood
pressure (Wong & Mitchell, 2007; Sun et al. 2009b).
As systemic blood pressure remains chronically elevated,
generalized retinal arteriolar narrowing will develop as a
consequence of an auto-regulatory process and result in
intimal thickening, media-wall hyperplasia and hyaline
degeneration (Sun et al. 2009b).

As for retinal venular dilatation, inflammatory-induced
NO-dependent endothelial dysfunction has been mostly
postulated (Sun et al. 2009b). One animal study found that

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society
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administration of lipid hydroperoxide into the vitreous
humour of rats increased the number of leucocytes in
the retinal microvasculature, which led to retinal venular
dilatation (Tamai et al. 2002). In human subjects, low
dosage of an injected Escherichia coli endotoxin will cause
an increase in peripheral white blood cell count and
dilatation in retinal venules (Kolodjaschna et al. 2004).

As described earlier, besides retinal vascular calibre,
retinal vascular geometry represents different parameters
of the retinal blood vessel network. These parameters
include tortuosity, branching angle, fractal dimension and
a series of others. Although the exact pathophysiological
substrates of all these vascular geometric parameters are
not fully understood, the main idea is that they reflect
increased circulatory energy costs and a decreased effic-
ancy in the distribution of blood to the tissue (e.g.
retina).

There are also other ways to assess structural and
functional changes of retinal microcirculation through
different newly developed and advanced retinal imaging
tools, such as ultra-wide field retinal imaging, retinal
oximetry and scanning laser Doppler flowmetry. All
these new techniques can measure and analyse peri-
pheral retinal vasculature, foveal capillary network, retinal
oxygen saturation, retinal blood flow and choroidal
vasculature (Cheung et al. 2012).

Other methods to measure retinal microcirculation.
Optical coherence tomography. In the past few years,
optical coherence tomography (OCT) has made accessible
in-depth high-resolution information on the retina with
its vessels, including quantitative analysis of the vessel
diameter. The retinal vasculature in OCT scans can
be derived from direct recognition of the smooth
musculature of the vessel wall and the vessel lumen. With
advances in software algorithms, there are possibilities
to perform OCT angiography, which provides a better
approach to invasively visualize blood flow in the retina
and the choroid capillary network and to detect the growth
of neovascularization (Spaide et al. 2015). Therefore,
future application of the OCT technique may be quite
promising to image the capillary network around the optic
nerve head either by vascular static parameters (e.g. OCT
scan (Muraoka et al. 2013; Schuster et al. 2015)) or by
vascular dynamic parameters (e.g. fourier-domain OCT
(Wang et al. 2008), Doppler OCT (Konduru et al. 2012;
Tan et al. 2012) and en face OCT angiography (Dansingani
et al. 2015)).

Dynamic vessel analyzer. Dynamic vessel analyzer
(DVA) is a new technology to determine dynamic
retinal vessel responses through a series of stimulation
techniques including flickering light (Nagel & Vilser,
2004), carbogen and oxygen inhalation (Wimpissinger

et al. 2004; Heitmar et al. 2010), and intravenous vaso-
active substance infusions (Jeppesen et al. 2007). After
stimulation with flickering light, DVA analysis software
calculates maximum retinal vessel response to 20 s of
flickering light over three stimulation cycles. The average
response, within a 17–23 s window after the start of
the stimulation, is taken to be the maximum diameter
response. This analysis generates a maximum artery
dilatory response index, as well as similar outputs for
minimum response, peak response and maximum venous
dilatory response to flicker (Heitmar et al. 2010).

Adaptive optics imaging. Adaptive optics imaging is an
opto-electronic technology that improves the resolution
of fundus images (Koch et al. 2014). Current adaptive
optics-based fundus cameras enable visualization of
microstructures such as photoreceptors (Liang et al. 1997),
capillaries (Martin & Roorda, 2005) and vascular wall
(Chui et al. 2012) noninvasively in humans.

However, these imaging techniques may be difficult
to implement in children, since most of them require
full understanding by the subject of the instructions
given by the examiner. In view of these limitations,
thus far retinal fundus imaging is the most feasible and
widely used technique in children and young adults.
Future child-friendly technologies with quantitative
measurements targeting structural (e.g. En Face OCT
(Dansingani et al. 2015; Savastano et al. 2015) and speckle
variance OCT (Chan et al. 2015)) and functional (e.g.
DVA (Lim et al. 2013) and oximetry) aspects of the micro-
vasculature may yield promising results.

The current gap in research and future perspectives.
There is increasing interest in epidemiological studies
of early origins of CVD. In the past three decades,
Barker’s hypothesis has been widely debated and modified.
Early life CVD risks such as IUGR, malnutrition, T1DM,
elevated blood pressure and obesity may lead to damage in
several target organs, subsequently increasing the risk of a
variety of diseases later in life. Microvascular changes have
been implicated as one of the pathways through which
these early life factors may be related to the risk of CVD
in late-life. However, thus far the exploration of various
pathways related to the microvasculature has been limited
due to the inability to employ any invasive examinations in
these young subjects. To some extent the implementation
of retinal imaging has made it now possible to inter-
rogate the role of the microvasculature non-invasively
during early life. In this systematic review, we summarized
55 papers published on the topic of retinal imaging and
early life CVD risks. We found a consistent and strong
trend that children and adolescents exposed to early life
CVD risk factors had suboptimal structural changes in the
retinal microvasculature. Furthermore, all these studies
have shown the feasibility, safety and reliability of retinal

C© 2015 The Authors. The Journal of Physiology C© 2015 The Physiological Society



2198 L.-J. Li and others J Physiol 594.8

imaging in young children. However, there are also a
few major gaps in the current research employing retinal
imaging: first, most studies thus far are cross-sectional,
hence limiting our ability to draw causal inferences and
examine the predictive value of retinal imaging; second,
functional retinal imaging has so far been difficult to
implement due to limited cooperation of study subjects;
and third, retinal imaging has not been implemented in
the very young (< 3 years old).

Despite these limitations, the current literature shows
strong ‘proof of concept’ that retinal imaging can provide
additional information on the status of the micro-
vasculature in children. Besides, the need for longitudinal
studies to assess the additional value of retinal imaging,
there is a need to implement some of the advanced retinal
imaging techniques described earlier, which may allow us
to examine functional aspects of the microvasculature.

Conclusion

In summary, there is now substantial evidence that CVD
risk factors are associated with structural changes in the
retinal microvasculature in early life. The retinal micro-
vasculature may therefore be an indicator of future CVD
risk. These findings emphasize early life predisposition to
microvascular damage due to the presence of CVD risk
factors during that period. Further longitudinal studies
are required to investigate specific pathophysiological
mechanisms, and to examine the additional value of retinal
imaging in early life in the prediction of CVD during
adulthood.
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