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Abstract

Autism spectrum disorders (ASD) are clinically heterogeneous and biologically complex. In 

general it remains unclear, what biological factors lead to changes in the brains of autistic 

individuals. A considerable number of transcriptome analyses have been performed in attempts to 

address this question, but their findings lack a clear consensus. As a result, each of these individual 

studies has not led to any significant advance in understanding the autistic phenotype as a whole. 

Here we report a meta-analysis of over 1000 microarrays across twelve independent studies on 

expression changes in ASD compared to unaffected individuals, in both blood and brain tissues. 

We identified a number of known and novel genes that are consistently differentially expressed 

across three studies of the brain (71 samples in total). A subset of the highly ranked genes is 

suggestive of effects on mitochondrial function. In blood, consistent changes were more difficult 

to identify, despite individual studies tending to exhibit larger effects than the brain studies. Our 

results are the strongest evidence to date of a common transcriptome signature in the brains of 

individuals with ASD.

Lay Abstract

Research findings reported on the differences between gene expressions of individuals with autism 

spectrum disorders (ASD) and those without lack a clear consensus. Here we present a meta-

analysis across multiple independent studies on expression changes in ASD compared to 

unaffected individuals, in both blood and brain tissues. We identified some molecular 

commonalities across brain studies. In blood, consistent changes were more difficult to identify. 

Our results are the strongest evidence to date of a common expression signature in the brains of 

individuals with ASD.
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 Introduction

Autism spectrum disorder (ASD; MIM 209850) encompasses a range of highly heritable but 

genetically heterogeneous neurodevelopmental diseases (Berg & Geschwind, 2012). ASD is 

characterized as a set of behavioral phenotypes including social communication deficits, 

restrictive and repetitive behaviors (Diagnostic and Statistical Manual of Mental Disorders, 

DSM-5 299.00)(American Psychiatric Association, American Psychiatric Association, & 

DSM-5 Task Force, 2013). Despite this common (though broadly-defined) behavioural 

profile, variations within any single gene accounts for only a small fraction of cases 

(Voineagu, 2012). Thus the mechanistic connection between this genetic diversity and the 

common phenotypic outcomes are poorly understood. Given this complexity, there appear to 

be two models for how ASD arises. One is that many different genetic lesions lead to a 

common set of changes in the brain, which gives rise to a common range of behavioral traits. 

Alternatively, the behavioral manifestations may be due to widely varying underlying 

pathologies. The truth may lie between these two extremes, and there has been much effort 

to identify biomarkers or endophenotypes that unify ASD, or at least provide a scheme for 

biological stratification intermediate between genotype and behaviour. The search has 

spanned many modalities, including neuroanatomy, proteomics and transcriptomics. 

Examples of markers highlighted in imaging studies include facial features (Hammond et al., 

2008) and neural responses to facial expressions (Spencer et al., 2011).

In this paper we take up the idea that commonalities among ASD cases might be discerned 

in the transcriptome, which is an attractive intermediate phenotype for investigation. The 

hypothesis is that molecular commonalities might be revealed across individuals, helping to 

explain the autistic phenotype regardless of their genetic background or specific causal 

variants underlying their autism. In agreement with this, two previous studies reported some 

convergence in the transcriptomes of independent ASD cohorts (Nishimura et al., 2007; 

Voineagu et al., 2011). Nishimura et al. (2007) studied ASD individuals with either 

maternally derived 15q duplications, or fragile–X mutations (FMR1-FM). They reported 

similarities in the molecular pathways affected. Voineagu et al. (2011) found evidence for 

convergent molecular abnormalities between gene expressions in post mortem brain samples 

and an independent cohort from a genome wide association study (GWAS). However, while 

these reports described some agreements within studies, it is not clear how much agreement 

there is across studies. For example, Nishimura et al.’s gene list was most enriched for “cell 

communication”; Voineagu et al. reported enrichment of genes involved in “synaptic 

function”, “vesicular transport” and “neuronal projection”. Other transcriptome studies have 

implicated an even more diverse array of biological functions, ranging from circadian 

rhythms (V. W. Hu, Sarachana, et al., 2009) to metabolism (Ginsberg, Rubin, Falcone, Ting, 

& Natowicz, 2012). But because no detailed comparison or meta-analysis has been 

conducted, it remains unclear whether there might be more subtle similarities among these 

independent studies.

There are many possible reasons why previous studies report different genes and pathways 

as being affected in ASD, even if there are commonalities present. One is the difference in 

tissues or cell types analyzed. Another is clinical heterogeneity (Geschwind & Levitt, 2007; 
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McClellan & King, 2010), which might lead to some differences in the research population 

among studies. Also potentially contributing are methodological differences in the design 

and implementation of analyses. Finally, small sample sizes of individual studies might not 

provide sufficient statistical power to uncover subtle perturbations. These issues may mask 

reproducible aspects of the transcriptome in ASD, which might be revealed by re-examining 

the original data and performing a meta-analysis. A systematic meta-analysis can overcome 

sample size limitations and reduce the effects of methodological differences.

To our knowledge, cross-cohort gene expression analyses have only been done in at most 

two independent ASD cohorts, primarily for cross validation purposes (Kong et al., 2012; 

Voineagu et al., 2011). Other ASD related meta-analyses are geared towards examining 

pathogenic variations in whole exomes of individuals (Ben-David & Shifman, 2012; Liu et 

al., 2013), not transcriptomes. As meta-analysis techniques have been successfully applied 

in neuropsychiatry (Choi et al., 2008; Mistry, Gillis, & Pavlidis, 2012; Rogic & Pavlidis, 

2009) a systematic integration of expression data across multiple independent ASD cohorts 

will add value to the existing data, and may yield novel insights.

Here we report the meta-analysis of data from twelve ASD transcriptome studies. Together, 

they comprise over 1000 human samples, 634 of which are from ASD individuals. Despite 

considerable heterogeneity across cohorts, our analysis reveals genes with consistently 

altered expression levels in ASD, especially in the brain.

 Results

 Systematic review shows technical differences and heterogeneity in independent ASD 
transcriptome studies

We analyzed twelve independent ASD expression-profiling studies and identified differences 

in microarray preprocessing and data quality control. To ensure comparability among data 

sets from different laboratories, we corrected for technical variation where possible (Figure 

1, Materials and Methods). The resulting data after quality control comprise 634 ASD 

microarray samples and 457 controls from blood-derived and brain tissues. The studies 

included are summarized in Table 1.

As summarized in Table S2, there were differences among studies in the criteria used to 

select the pool of ASD individuals. Some individuals were diagnosed based on DSM-IV 

(American Psychiatric Association, American Psychiatric Association, & Task Force on 

DSM-IV, 2000); others were determined using the Autism Diagnostic Interview-Revised 

(ADI-R) (Lord, Rutter, & Le Couteur, 1994) or Autism Diagnostic Observation Schedule 

(ADOS) (Lord et al., 1989). More importantly, the range of autistic phenotypes included in 

each cohort differs, particularly among the blood studies.

While some focused on “classical” autism, others included milder forms like Asperger’s 

syndrome and pervasive developmental disorder not otherwise specified (PDD-NOS). 

Because ASD is generally more prevalent in males than females (V. W. Hu, Nguyen, et al., 

2009; V. W. Hu, Sarachana, et al., 2009), we investigated whether gender imbalance was a 

factor affecting study designs. Indeed, a few studies showed evidence of gender imbalance, 
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such that the subjects tend to be males with ASD (Table S4). There were no striking 

differences in the age, race and post-mortem interval (the latter being relevant to brain 

studies only) between cases and controls of each study (Table S5).

As an initial investigation of similarities across studies, we compared the lists of 

differentially expressed genes reported in each publication. None of the genes reported 

overlapped across all brain data sets or blood data sets (there were some overlaps in smaller 

subsets of studies, Table S13). However, because each publication used different methods for 

selecting genes, a more careful re-analysis is warranted, as described in the next sections.

 Re-analysis for differential expression

The first stage of our meta-analysis was to analyze each data set individually for differential 

expression. The results are summarized in Table 3. Most data sets had low levels of 

differential expression, but a few range up to hundreds of significantly differentially 

expressed genes at a false discovery rate (FDR) of 0.05. We checked if sample size or the 

fixed FDR threshold could explain the variable amount of differential expression. If one 

assumes the effect size of ASD on expression is similar across studies, the amount of 

differential expression (threshold free, estimated from the p-value distribution) should be 

consistent. A comparison between the estimated proportion of differentially expressed genes 

(1-π0, see Materials and Methods) and sample size shows that this is clearly not the case for 

these data (Fig. S3). There are other possible explanations such as phenotype heterogeneity 

or comorbidities for this phenomenon, but we were unable to identify any explanatory 

factors from the information available.

We next compared the result of each analysis to that previously published for the same data 

set, where available. This was done by examining where the differentially expressed genes 

from the original studies rank in our results (using the area under receiver operating 

characteristic curve, AU-ROC; equivalent to the Wilcoxon rank-sum test). Despite the 

extensive additional data cleanup we performed and differences in the statistical analysis 

methods, our re-analyses were generally concordant with the original reports (Table S6).

 Meta-analysis of differential expression

A key observation at this point is that most of the data sets showed clear evidence for 

differential expression (π0 < 1), but were largely underpowered to separate differentially 

expressed genes from the background. Thus, it is perhaps not surprising that there was no 

overlap across any of the studies among the genes (if any) selected at an FDR of 0.05. We 

hypothesized that there might still be similarities among the studies that would emerge in a 

combined or meta-analysis. We therefore applied a p-value combination strategy (Materials 

and Methods), choosing to analyze the blood and brain data sets separately. This approach 

combines the results for all the data sets without applying any statistical threshold, and thus 

provides a p-value for all the genes analyzed. The meta-analysis yields four ranked gene 

lists: one pair each for blood and brain, with separate lists for up- and down-regulation, 

noting that at this stage they contain all the genes considered without applying a threshold.

We then compared the results of individual study re-analyses to the ranked gene lists. If each 

data set contributes some signal in the meta-analysis, their results should individually 
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resemble the ranked gene lists. Generally, the trends we observed concur with the amount of 

differential expression estimated (1-π0) for each data set. Data sets with more differential 

expression displayed stronger associations with the results of the meta-analyses. As shown 

in Figure 2A, there is a clear similarity among the three brain data sets in their contributions 

towards the final gene rankings, as evidenced by the similar trend lines for all three data sets. 

In contrast, the blood data sets were in lower agreement, with a fraction showing a stronger 

relationship to the meta-analysis results while others show weak associations (Figure 2B).

Applying a threshold to these rankings yielded blood and brain “meta-signatures”. At an 

FDR threshold of 0.05, 30 up-regulated genes and 49 down-regulated genes were found in 

the brain. The blood meta-analysis yielded 160 up-regulated and 95 down-regulated hits 

(Tables S7-10). While the studies were balanced for covariates such as age and post-mortem 

interval (for the brain data), we checked the lists for genes previously reported to be 

influenced by these factors (Mistry & Pavlidis, 2010). There were minimal overlaps, 

confirming that our results were not strongly influenced by them. Genes known to be 

affected by sex differences were removed in the results reported here, though they can be 

found in the supplement for reference (Materials and Methods). Finally, we investigated 

whether our results might be influenced by genetic variation within regions assayed by the 

microarray probes. The presence of a variant in an assayed individual could cause 

differences in hybridization efficiency, causing apparent changes in gene expression that 

should instead be interpreted as genetic differences. However, we found no indication that 

common variants were likely to affect our analysis, especially in the brain data (Table S7, 8) 

for which there are very few potential variants affecting probes for genes in the meta-

signature (see supplement for details).

We further characterized the relative contributions of each data set towards the hits we 

obtained, to more directly identify any single study that “drives” genes towards significance 

in the meta-analyses. By assessing the amount of overlap between meta-signatures and 

differentially expressed genes in each data set, we quantified the contribution of each data 

set to the meta-analysis (Table 4). Overall, GSE28521 had the strongest impact on the brain 

meta-analysis; GSE18123.1 and GSE7329 were studies that had a relatively strong influence 

on the blood meta-analysis. As described in the next section we implemented procedures to 

find genes robust to the selection of data sets.

To see if the meta-signatures in blood and brain are similar, we quantified the reciprocal 

predictive value of meta-signatures from both tissue types using AU-ROC. There was no 

indication of a common signature between the blood and brain, supporting our choice in 

conducting separate analyses.

 Robust molecular commonalities in brain data

To focus our attention on the genes that show the strongest concordance across studies, we 

employed a jackknife procedure (Materials and Methods). Jackknifing yields multiple lists 

of gene ranks, one for each data set in the meta-analysis, where each list is the result with 

that data set left out. We initially performed this at the same stringency as the initial meta-

analysis, applying an FDR threshold of 0.05 for every jackknife result. With this 

conservative approach, we identified 10 genes from the blood data for which significant 
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values are not dominated by any single data set, but none from the brain. Because removing 

data sets reduces power, to establish a less stringent criterion for identifying robust patterns, 

we define our “core signatures” as the intersection of the top 200 (arbitrary cut off) genes 

retrieved from each leave-one-out iteration (Mistry et al., 2012). From this analysis, the core 

blood signature consists of 15 up-regulated genes and 7 down-regulated genes (net estimated 

corresponding FDRup< 0.12, FDRdown < 0.15). 15 up-regulated genes and 10 down-

regulated genes were observed in the core brain signature (net estimated corresponding 

FDRup < 0.29, FDRdown < 0.24). We visualized these core signature genes using heat maps 

of the gene expression levels for each sample in the twelve data sets meta-analyzed. The heat 

maps for the core brain signature showed good concordance across all three brain data sets 

(Figure 3). In contrast, few genes from the blood analysis exhibited robust concordance 

when visualized (Fig. S6 and S7).

Two of the brain studies included samples from cerebellum (including some from the same 

individuals for the neocortex samples), which we treated separately. Since there were only 

two data sets, a meta-analysis was not feasible. Thus to compare patterns in cerebellum to 

those in the neocortex, we conducted differential expression analysis on each cerebellum 

data set (Table S18). An analysis of the rankings of the neocortex core signature genes in the 

differential expression results from the cerebellum indicated very little if any concordance 

between cerebellum and neocortex (Fig. S12).

One of the sources of heterogeneity in the blood analysis is the cell types used: five of the 

studies used Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) while four 

used primary cells. We investigated potential differences between these two groups by 

conducting the meta-analysis on the LCL subgroup and the non-LCL subgroup, separately 

(see Supplement and Fig. S13-16 for details). Five genes identified in the full analyses were 

recovered in the analysis of the LCL data. Several additional signature genes were detected 

in the LCL data, suggesting some degree of higher homogeneity among these studies, albeit 

not as strikingly as in brain. In the non-LCL data, the main pattern is driven by two studies 

from the same laboratory (GSE18123.1 and GSE18123.2) and this was not convincingly 

observed across other studies (Fig. S13b and S15b).

 Functional analyses suggests perturbations in metabolic processes

To explore gene functional themes in our data, we conducted a threshold-free GO term 

enrichment analysis. None of the functions tested for were significantly enriched in the 

blood. The brain results were enriched for genes involved in “cellular respiration” (GO:

0045333, FDR = 0.11). An analysis using the three jackknifed gene lists from the brain data 

(that is, meta-analysis of each pair of data sets) showed that this result is robust. 

Dysregulated genes in this functional group are shown in Table 8. Other top enriched 

functions were also related to respiration, including GO:0022904 (“respiratory electron 

transport chain”) and GO:0022900 (“electron transport chain”).

In a complementary approach, we conducted enrichment analysis on our differential 

expression results of the individual data sets, which we then combined in a meta-analysis at 

the gene set level, again using a jackknife to test robustness. The results for the brain data 

were in agreement with our analysis of the gene-level meta-signature, with the top meta-
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analysis term being “cellular respiration”, though this was not significant after multiple test 

correction. There was no clear trend in blood, with no statistically significant terms and no 

significant agreement in the results of individual studies. These results reinforced our 

conclusion based on the gene-level analysis that the blood data sets are more heterogeneous 

than the brain studies.

 Comparison to known candidate genes in neurodevelopment disorders

A natural question is whether any of the signature genes are known ASD candidates reported 

in previous genetics or functional studies. We first checked for overall patterns of 

enrichment based on the ranked gene lists from the blood and brain. We observed 

enrichment of genes in the Simons Foundation Autism Research Initiative (SFARI) 

“syndromic” category (FDR = 0.15; see Table 7 for details) in blood. Inspection revealed 

this was primarily due to the influence of the 15q duplication cohort (GSE7329). We can 

directly observe the skew in the top two syndromic genes: UBE3A (FDR = 0.004), CDKL5 

(FDR = 0.14) (Fig. S9). While UBE3A resides on the 15q11-13 region, CDKL5 (Xp22) 

does not. The link between 15q duplication and CDKL5 dysregulation is unclear.

We repeated this analysis using a list of 798 ASD candidates from Phenocarta (previously 

known as Neurocarta (Portales-Casamar et al., 2013)), including candidates from several 

GWAS and other genetics studies, but there was no significant enrichment. This was not 

unexpected, because we hypothesized any link between gene expression in this diverse 

cohort and the genetics of ASD is not direct. Among the few Phenocarta ASD candidate 

genes identified in our meta-signatures are 13 genes in the blood signature (CAMSAP2, 

UBE3A, CYFIP1, JARID2, PAFAH1B1, FAN1, BRAF, CXCR3, PRDX4, GAP43, 

GABRA4, CHRM3, BCL2) and one gene in the brain signature (GAS2). We also looked for 

known candidates in the brain using a relaxed FDR threshold of 0.1. Additional genes found 

in the brain include ADM, CADM1, STAT3, CD44, CYP19A1, PTCHD1, SLC30A5, 

SLC25A12, APBA2 and DLX1. None of the existing candidates are common to the meta-

signatures of both tissue types.

 Meta-signature genes in rare structural variants associated with ASD

The candidate gene lists used in the last section do not, for the most part, include genes 

covered by rare structural variants associated with ASD, because the precise gene or genes 

involved are often not known and are thus not documented by SFARI or Phenocarta. To 

explore the potential links between gene expression and rare structural variations, we 

assembled ASD-associated copy number variations (CNV) from several sources (Materials 

and Methods). We first observed that genes in the meta-signatures are distributed widely 

across the genome. There were no obvious hot spots, and none of the CNVs analyzed were 

significantly enriched for dysregulated genes (corrected p-value >> 0.05).

Globally, 6.3% of the brain meta-signature genes and 9.8% in blood are located in known 

CNV regions, which is not a significant enrichment (Table S14). This computation was 

constrained to genes showing positive associations between expression levels and copy 

number changes (up-regulated genes within a duplicated region and down-regulated genes 

within a deleted region). All dysregulated CNV genes are shown in Table 5 and Table 6.
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Because 15q11-13 duplication is one of the most common CNV aberration in ASD (Miles, 

2011), it was unsurprising that we detected dysregulated genes in this region. A closer look 

at these genes (UBE3A, CYFIP1; Fig. S9) again reveals their sensitivity towards the data set 

that comprises only autistic subjects with 15q duplications (GSE7329). In other ASD-

associated CNVs, we detected genes from the core signatures that are dysregulated in the 

same direction as the change in copy number: ZNF721 (4p16) in blood; SCIN (7p21.1), 

SNRNP25 and ABCG2 (4q21) in the brain. However, we conclude that while some of the 

genes in our signatures are ASD candidate genes or fall in known rare CNV regions, there is 

no striking overall relationship between the expression patterns and the current state of 

knowledge of ASD genetics. Again, because the genetic etiologies in our data are 

presumably diverse overall, transcriptome changes common across cohorts are not 

necessarily expected to be attributable directly to genes which are mutated in ASD

 Discussion

We presented a meta-analysis of autism gene expression profiling studies providing the most 

comprehensive survey on gene expression in autism available to date. Our main finding is 

that there are molecular commonalities across multiple independent groups of individuals 

with ASD. These similarities have, to our knowledge, gone overlooked in individual gene 

expression studies. Genes we identified as most robustly changed across cohorts were not 

previously underscored in ASD literature. Here we discuss our findings in the context of 

other autism research, noting some limitations of the current study and avenues for future 

work.

The question of whether one should expect some common molecular changes across 

individuals with ASD is an open one. The studies included in our analysis used a range of 

criteria to select subjects, but are largely made up of idiopathic cases (the exception being 

GSE7329). Each study was apparently predicated on the hypothesis that there would be 

group differences; that is, that there would be a common ASD signature in the data. Thus it 

is reasonable to hypothesize that there might be similarities across studies, but any lack of 

similarity could be attributed to cohort or technical differences. Given these challenges, it is 

striking that we do find some genes showing differences that are relatively consistent across 

cohorts.

The full biological significance of the genes we identified is currently unclear. However 

several of the concordant genes (core-signature genes) we found are linked to genetic 

disorders with neurological implications. Among the genes in the core brain signature are 

PDYN (prodynorphin) and ABCA1 (ATP-binding cassette, sub-family A). Mutations in 

PDYN, a gene that codes for an opioid, has causal links to spinocerebellar ataxia (MIM 

610245) (Bakalkin et al., 2010). Mutations in ABCA1 are an established cause for Tangier 

disease (MIM 205400), a disorder which features include neuropathies (Oram, 2000). There 

were fewer clear hits in the blood data, but several genes stand out (Figure 4). A known ASD 

candidate BRAF (v-raf murine sarcoma viral oncogene homolog B1) showed consistent 

dysregulation in at least three cohorts. Other novel candidates in blood are PRKCH (protein 

kinase C eta, a member of the protein kinase C family) and APBB1 (amyloid beta (A4) 
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precursor protein-binding, family B, member 1 (Fe65)), which have been studied in cellular 

signaling and Alzheimer’s disease (Q. Hu et al., 1998) respectively.

As discussed, results from previously published transcriptome analyses have, at the surface, 

shown little agreement. We have also described some reasons why this might occur, 

including differences in clinical properties or technical aspects of the expression analysis. 

However, we note that some of our candidates were hits reported in the original studies, as 

well as in other transcriptome studies not included for analysis (Table S13). In fact, two 

genes were validated with a second independent cohort in the original studies – ZNF322 

(zinc finger protein 322) in Kong et al (2013) and PDYN in Voineagu et al (2011), further 

suggesting bona fide associations with ASD. However these genes were not discussed in 

these previous publications, perhaps because of their relatively low rankings in the results or 

the lack of known functional implications. In addition, most existing studies have not 

dwelled upon the findings of other related studies, either choosing to ignore them or attribute 

differences to experimental procedures. Our results suggest that in fact many of the 

molecular or functional differences observed in individual studies are likely to be specific to 

that study and thus of questionable interpretation when the entire autism spectrum is 

considered. While inferences made based on our findings are preliminary, the fact that some 

changes show a tendency to be reproducible opens promising avenues for further research.

Taken as a whole, the expression patterns we observe in brain point to the possibility of 

effects relating to cellular respiration. Within the cellular respiration group, SLC25A12 (not 

a hit at an FDR of 0.05 but falls within a relaxed FDR threshold of 0.1), a mitochondrial 

aspartate/glutamate carrier, was previously reported as a susceptibility gene as it harbors 

SNPs (single nucleotide polymorphisms) strongly associated with autism (Ramoz et al., 

2004). In addition to the genes that were directly annotated with this function, a further 

examination reveals other highly ranked genes in our data which are known to play 

regulatory roles in cellular metabolism or mitochondrial related functions. Some of the 

genes are not directly annotated in the GO functional groups. For instance, P2RX7 

(purinergic receptor P2X, ligand-gated ion channel, 7 CNV gene) is involved in purinergic 

signaling, a pathway that might play a role in mitochondrial dysfunction-associated ASD 

(Abbracchio, Burnstock, Verkhratsky, & Zimmermann, 2009). Mitochondrial dysfunction 

(MD) has been a topic of study in some neuropsychiatric disorders (notably bipolar disorder 

(Andreazza, Shao, Wang, & Young, 2010; Sun, Wang, Tseng, & Young, 2006)). Some have 

conjectured a 4-5% prevalence of MD in individuals on the autism spectrum (Miles, 2011; 

Rossignol & Frye, 2012), but there is little direct evidence in the literature. Investigations on 

mitochondrial DNA mutations in ASD yielded mixed conclusions (Álvarez-Iglesias et al., 

2011; Piryaei, Houshmand, Aryani, Dadgar, & Soheili, 2012). In part supported by the 

enrichment of “cellular respiration” (comprising only nuclear encoded genes), current 

research seems to indicate a role for nuclear genes in the co-occurrence of MD and ASD 

(Anitha et al., 2012; Dhillon, Hellings, & Butler, 2011), the genetics of which might not be 

as simple as other monogenic metabolic disorders with high prevalence of ASD, like Smith-

Lemli-Optiz syndrome (MIM 270400). However our analysis of brain transcriptomes 

showed converging functional consequences of what could be heterogeneous genetic or 

genomic aberrations underlying the disorders.
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Potentially causative rare CNVs are found in up to 20% of ASD cases (Miles, 2011). While 

several genes we identified are within regions implicated in CNV studies of ASD, there was 

no overall significant enrichment. It is still possible that the changes in RNA levels we 

observed are linked indirectly to CNVs or other types of rare genetic variants, which we are 

not able to determine because the genomic backgrounds for most of the cases in our data set 

were unknown. Genes suggestive of direct correlations include PANX2, RFC2 and 15q 

genes, which reside in regions that have recurrent (previously reported in several ASD cases) 

rare CNVs. RFC2 lies in the 7q11.23 region, deletions of which are associated with 

Williams-Beuren syndrome (MIM 194050). Duplications of this region, concordant with an 

up-regulated RFC2 we found, has been strongly linked to autism (Sanders et al., 2011).

An important caveat for our interpretation is the difficulty of attributing any causal role to 

the changes we observe. They could be sequelae of ASD, or due to comorbid conditions. 

Most of the studies we used did not provide any details about comorbidities, making this 

difficult to address in our analysis. Future studies should endeavor to provide such details to 

allow further dissection of real effects from potential confounds.

In conclusion, our re-analysis reveals subtle but consistent changes in expression in the 

brains of individuals with ASD. Because the sample size for publicly available brain studies 

are small, future work could explore whether these changes are replicable in additional 

cohorts. In blood, the signals were weaker and more heterogeneous than in brain, perhaps in 

part due to the varying inclusion criteria used among individual studies. Additional work 

may be needed to clarify the reproducible expression differences in blood. Finally, as more 

RNA-seq data becomes available, we can also further explore commonalities in ASD 

transcriptomes at a higher resolution than possible with the technologies used in the present 

study.

 Materials and Methods

 Data retrieval, pre-processing and quality control

We retrieved gene expression data sets matching the keywords “autism” or “autistic” from 

the Gene Expression Omnibus (GEO) (Barrett et al., 2007) on September 10, 2012. There 

were no additional data sets found in ArrayExpress (Parkinson et al., 2009). Shortlisted data 

sets include human blood and brain expression profiling studies with case-control 

experiment designs only. Two studies in the initial pool, GSE4187 and GSE26415 were 

disqualified for analysis (see supplement for details). The final set of twelve studies (Table 

1) consist of data collected on a variety of platforms, including one channel intensity data 

from Affymetrix and Illumina platforms, and two channel intensity data from Agilent and 

TIGR platforms (Table 2). To help ensure comparability and consistency in pre-processing 

methods across studies, we pre-processed the raw expression data using Robust Multi-array 

Average (RMA) or quantile normalization and log2 transformation implemented in the 

“affy” (Gautier, Cope, Bolstad, & Irizarry, 2004) or “lumi” (Du, Kibbe, & Lin, 2008) R 

packages where appropriate.

The processed data were then subjected to an additional set of quality controls. We first 

removed samples that are duplicated across datasets (n = 17, see supplement for details). 
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Additionally, we removed eight samples from subjects with syndromic disorders of known 

genetic etiology, non-ASD cases (e.g., mental retardation - nine samples in GSE6575), 

samples which were prepared differently than the rest of the samples (e.g., formalin fixed – 

36 samples in GSE28475; propanol/PPA treated – 15 samples in GSE32136) and 34 samples 

in which batch effects were confounded with the case grouping. Two studies included 

samples from cerebellum (GSE38322 and GSE28521), but some of these samples came 

from the same individuals as the neocortex samples. This fact together with the dramatic 

difference in expression pattern (Fig. S1b) led us to consider the cerebellum samples 

separately.

Two of the studies included technical replicates for some specimens, in which case we 

computed the mean of the expression values to get a single expression profile for each 

subject. Outlying samples were identified as those with correlation more than two standard 

deviations from the mean sample-to-sample expression profile correlation, and removed 

iteratively until no samples met the threshold for removal. This resulted in the removal of 54 

samples, affecting seven studies. Finally, we used ComBat (Johnson, Li, & Rabinovic, 2007) 

to correct for batch effects (Fig. S2). More details on the quality control and preprocessing 

procedures are available in the supplement.

 Differential expression analysis

We conducted an analysis of variance (ANOVA) for each data set using “limma” in R 

(Smyth, 2005), using a case-control model. Phenotypic subgroups (savant, mild, etc.) were 

pooled into one disease group. To consider the direction of expression change in the meta-

analyses, we computed one-tailed p-values for probes in each data set. Probes are annotated 

with platform specific annotations in Gemma (Zoubarev et al., 2012), where gene 

assignments are made based on current genome annotations obtained via sequence analysis. 

Each data set is then collapsed to the gene level to allow cross-platform integration. Probes 

that map to multiple genes or do not map to a gene at all are excluded from the analysis. The 

proportion of differentially expressed genes (π1 = 1 - π0) was estimated using the qvalue 

package in R (Storey & Tibshirani, 2003).

 Meta-analysis of differentially expressed genes

Fisher’s combined probability test (Fisher, 1948) was applied independently to the blood and 

brain data sets. Genes were only analyzed if they were represented in at least three data sets 

in each of the meta-analysis. 19006 and 16591 genes were included in the blood and brain 

meta-analyses respectively. The resulting p-values were corrected for multiple testing using 

Benjamini Hochberg’s false discovery rate (FDR) approach (Benjamini & Hochberg, 1995). 

A second meta-analysis method, ‘Meta-Rank analysis’ gave similar meta-analysis results 

(see supplement for details of this analysis).

Because of the gender imbalance in some of the data sets, we excluded from downstream 

analysis genes which were known or strongly suspected to show changes in expression 

between genders (brain = 202; blood = 116; details in supplement). We note that some of the 

filtered genes (e.g. USP9Y and KDM5C) have been previously associated with ASD, but we 
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were unconfident we could discriminate gender from disease effects for them in our 

analysis.

The combined probability method is sensitive to outliers; that is, a single study with a very 

low p-value can result in statistical significance even when the other studies provide little 

evidence for rejection of the null. To control for this, we used a jackknife approach to further 

select for genes that are robust to statistical outliers (a similar approach was used in Mistry 

et al. (2013)). The jackknife procedure involves repeating the meta-analysis k times, where k 
is the number of data sets, For each trial k, one data set i is left out, where i ε {1…k}. The 

agreement among these k jackknife meta-analyses was used as a basis for identifying a 

“core” signature that excludes genes appearing due to the influence of a single data set (see 

supplement for details).

 Functional enrichment analysis

Gene set enrichment analysis was conducted using ErmineJ 3.0 (http://erminej.chibi.ubc.ca) 

(Lee, Braynen, Keshav, & Pavlidis, 2005). ErmineJ accounts for the “multifunctionality” 

bias of gene sets (http://erminej.chibi.ubc.ca/help/tutorials/multifunctionality/,(Gillis & 

Pavlidis, 2011)). It prioritizes gene sets that are less affected by this bias. The enrichment 

analysis input for each gene is the better of the two one-tailed test scores (up-regulated and 

down-regulated p-values). Further specifications of enrichment runs are provided in the 

supplement. We also tested for enrichment of candidate gene categories from the Simons 

Foundation Autism Research Initiative (SFARI) database (www.sfari.org, retrieved in 

December 2012). Only five out of seven SFARI gene categories were included in the 

analysis. The “High Confidence” category had no genes; the “Not Supported” category is 

irrelevant because these genes show no association with ASD.

 Literature-derived candidate genes

Known ASD candidate genes were downloaded from Phenocarta (phenocarta.chibi.ubc.ca, 

February, 2013), a knowledge base of gene and phenotype associations aggregated from 

various sources, such as SFARI Gene (AutDB), OMIM (Online Mendelian Inheritance in 

Man) and RGD (Rat Genome Database) (Portales-Casamar et al., 2013). We obtained 798 

unique genes, including candidate genes from model organisms which were mapped to their 

human homologs using HomoloGene (ftp://ftp.ncbi.nih.gov/pub/HomoloGene, build 67)

(Wheeler et al., 2007). Additional analysis and details are provided in the supplement.

 CNV enrichment analysis

We collated copy number variation data from the Autism Chromosomal Rearrangement 

Database (ACRD) (Marshall et al., 2008), Sanders et al (Sanders et al., 2011) (Table S4 in 

original study) as well as Pinto et al (Pinto et al., 2010) (Table S8 in original study), 

obtaining 1023 CNVs. We then merged similar CNVs to obtain a total of 732 (Gain=391, 

Loss=340, Unknown=1) regions used in our analysis (details provided in the supplement).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of analysis pipeline.
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Figure 2. 
Profiles of meta-analyses gene ranks from the blood and brain: raw p-values for each 

individual data set are plotted against corrected p-values (FDR) from the meta-analyses. 

Local Polynomial Regression (LOESS) is used to obtain a smooth fit. The shaded areas 

represent 95% confidence intervals of the prediction using the t-based approximation (see 

“stat_smooth” in the ggplot2 R package).
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Figure 3. 
Heat map visualizations of core-signatures expression values in each of the brain data sets. 

Batch corrected expression values were scaled across samples within each data set. Relative 

expression levels: yellow – high; blue – low.
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Figure 4. 
Examples of robust genes in the blood core-signature. A) Raw p-values of genes in each 

individual re-analysis, marked with a triangle if it meets an FDR threshold of 0.05 in that 

data set; B) log2-transformed expression values of SORL1 for every sample in each data set. 

Similar plots for other genes are available in the supplement. NS: not significant.
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Table 1

Data sets used for meta-analysis.

Data sets Platform Reference Tissue Type
Number of

Samples
ASD:Control

Brain

 GSE28475 GPL6883 (Chow et al., 2012) Cortex 13 : 21

 GSE28521 GPL6883 (Voineagu et al., 2011) Frontal/ temporal cortex 12 : 15

 GSE38322 GPL10558 (Ginsberg et al., 2012) Occipital cortex 4 : 6

29 : 42 = 71

Blood

 GSE6575 GPL570 (Gregg et al., 2008) Whole blood 33 : 11

 GSE7329 GPL1708 (Nishimura et al., 2007) Lymphoblastoid cell lines 7 : 5

 GSE15402 GPL3427 (V. W. Hu, Sarachana, et al., 2009) Lymphoblastoid cell lines 77 : 29

 GSE15451 GPL3427 (V. W. Hu, Nguyen, et al., 2009) Lymphoblastoid cell lines 15 : 12

 GSE18123.1 GPL570 (Kong et al., 2012) Whole blood 64 : 28

 GSE18123.2 GPL6244 (Kong et al., 2012) Whole blood 93 : 63

 GSE25507 GPL570 (Alter et al., 2011) Peripheral blood lymphocytes 80 : 63

 GSE32136 GPL3427 Unpublished Lymphoblastoid cell lines 4 : 4

 GSE37772 GPL6883 (Luo et al., 2012) Lymphoblastoid cell lines 232 : 199

605 : 415 = 1020
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Table 2

Summary of platform annotations from Gemma (Zoubarev et al., 2012). The total number of probes and 

unique genes were obtained from the Gemma platform database.

Platforms Platform Name Gemma Probes Unique Genes

GPL10558 Illumina HumanHT-12 V4.0 expression
beadchip 47323 21348

GPL1708 Agilent-012391 Whole Human Genome Oligo
Microarray G4112A 44347 19326

GPL3427 TIGR 40k Human Array 41472 14753

GPL570 Affymetrix Human Genome U133 Plus 2.0
Array 54681 19763

GPL6244 Affymetrix Human Gene 1.0 ST Array 33297 20353

GPL6883 Illumina HumanRef-8 v3.0 expression
beadchip 24526 17979
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Table 3

Differentially expressed genes in each data set after reanalysis (based on two sided p-values). Only genes with 

unique mappings and p-values were included in the gene counts. 1 − π0: Estimated proportion of differentially 

expressed genes.

Data sets FDR
<0.05

Up-
regulated

Down-
regulated

1 - π0

Total
number

of
genes

Samples

Brain

 GSE28475 0 0 0 0.20 16598 34

 GSE28521 4 1 3 0.25 16598 27

 GSE38322 0 0 0 0.15 19558 10

Blood

 GSE6575 0 0 0 0.00 18305 44

 GSE7329 314 160 154 0.41 17159 13

 GSE15402 5 1 4 0.11 9821 106

 GSE15451 0 0 0 0.04 12066 27

 GSE18123.1 333 103 230 0.27 18305 92

 GSE18123.2 57 35 22 0.47 18617 156

 GSE25507 2 2 0 0.28 18305 143

 GSE32136 2 0 2 0.33 9076 8

 GSE37772 0 0 0 0.00 16598 431
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Table 4

Overlap (overlap/total up or down-regulated in data set) between meta-signature (FDR<0.05) and significantly 

differentially expressed genes per data set (FDR<0.05), as well as enrichment of meta-signatures in the results 

of individual differential expression analysis. One sided p-values were used to compute FDR here. AU-ROC: 

area under receiver operating characteristic curve; AP: average precision.

Up-regulated AU-ROC AP(%) Down-regulated AU-ROC AP(%)

Brain

 GSE28475 2/3 0.92 10.77 0/0 0.90 5.60

 GSE28521 0/0 0.96 15.33 5/5 0.94 29.47

 GSE38322 0/0 0.90 5.70 0/0 0.84 10.80

Blood

 GSE15402 0/1 0.78 3.31 0/29 0.71 1.35

 GSE15451 0/0 0.54 0.80 0/0 0.55 1.22

 GSE18123.1 16/92 0.82 8.36 28/235 0.84 15.01

 GSE18123.2 13/38 0.86 10.73 2/9 0.74 5.41

 GSE25507 0/3 0.67 2.83 0/0 0.59 2.03

 GSE32136 0/0 0.76 8.06 0/2 0.70 2.14

 GSE37772 0/2 0.65 0.97 0/0 0.57 0.80

 GSE6575 0/0 0.67 3.05 0/0 0.67 1.69

 GSE7329 25/183 0.84 13.21 20/234 0.78 5.84
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Table 5

Brain candidate genes within known ASD associated CNVs. CNVs that span the same gene or set of genes are 

grouped together. Genomic coordinates are from hg18. Overlapped genomic coordinates are lifted over from 

hg18 to hg19 with UCSC’s LiftOver tool. Lift over failed for coordinates marked with an asterisk.

Genes Gain/Loss Chromosome CNV Start CNV End Reference

SCIN Gain 7 12219860 17560760 AGP Consortium (2007)

ABCG2 Loss 4 86288694 101407914 Jaquemont et al. (2006)

GRK6 Loss 5 175559839 177426530 Sanders et al (2011)

PANX2 Loss 22 47898736
47956881
46823508
46765363

51162234
51218956
51175739
51119017

Sanders et al (2011)
Marshall et al. (2008)
Sebat et al. (2007)
Sanders et al (2011)

SNRNP25 Loss 16 60835 1313637 Sanders et al (2011)
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Table 6

Blood candidate genes within known ASD associated CNVs. CNVs that span the same gene or set of genes 

are grouped together. Genomic coordinates are lifted over from hg18 to hg19 with UCSC’s LiftOver tool. Lift 

over failed for coordinates marked with an asterisk.

Genes Gain/Loss Chromosome CNV Start CNV End Reference

ARL16 Gain 17 76914079*
76953064*
76953064*

77771141*
77782267*
77782267*

Marshall et al (2008)
Pinto et al (2010)

Sanders et al (2011)

CSTF2T Gain 10 53029510
52002204
50892143

54738810
61820631
61808505

Sanders et al (2011)
Sanders et al (2011)
Sebat et al (2007)

CYFIP1 Gain 15 22684249
22751742

20090262*

23255910
23249123

21038099*

Pinto et al (2010)
Pinto et al (2010)
Pinto et al (2010)

FAN1 Gain 15 30936285
30936285

32444196
32451488

Sanders et al (2011)
Sanders et al (2011)

FUT8-AS1 Gain 14 62827347 66005847 AGP Consortium (2007)

HCK,
C20orf112

Gain 20 28251057* 35143867* Sanders et al (2011)

IRF2BPL Gain 14 76938089 77854647 Marshall et al. (2008)

P2RX7,
GPR133,
KDM2B,
MED13L

Gain 12 115707280
115685617

133777650
133779461

Marshall et al. (2008)
Sanders et al (2011)

RFC2 Gain 7 72773570
72662415
72706490
72717647

74173250
74144177
74144177
74144177

Sanders et al (2011)
Sanders et al (2011)
Sanders et al (2011)
Sanders et al (2011)

SH2D1B Gain 1 162169342 162867342 AGP Consortium (2007)

SMARCA2 Gain 9 185632 3383495 Sanders et al (2011)

TCF7 Gain 5 132566101 134838101 AGP Consortium (2007)

TXLNA Gain 1 31125281 36307897 Sanders et al (2011)

UBE3A Gain 15 25184941
23939207
23639183
23639183
23688944

28016015
28024805
28530359
28530359
28422026

Jaquemont et al. (2006)
AGP Consortium (2007)
Pinto et al (2010)
Sanders et al (2011)
Sanders et al (2011)

UBE3A,
CYFIP1

Gain 15 22877142
22424462
22646319
22265649

28396011
28396011
28396011
28460519

Christian et al. (2008)
Christian et al. (2008)
Christian et al. (2008)
Sanders et al (2011)

UBE3A,
CYFIP1,
FAN1

Gain 15 18376200*
18427100*
18376200*
18427100*
18526971*

30298800*
30298847*
30298800*
30298847*
30756771*

Marshall et al. (2008)
Marshall et al. (2008)
Sanders et al (2011)
Sanders et al (2011)
Sebat et al. (2007)
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Genes Gain/Loss Chromosome CNV Start CNV End Reference

18526971* 30756771* Sanders et al (2011)

ZNF611, ZNF702P Gain 19 53144788 53554388 Marshall et al. (2008)

ZNF721 Gain 4 338851 552862 Marshall et al. (2008)

ZNF721,
SPON2

Gain 4 45410
408952

3541587
6671958

Sanders et al (2011)
AGP Consortium (2007)

CCDC50 Loss 3 185812357 192380293 Jaquemont et al. (2006)

SLC17A9 Loss 20 61586179 61606318 Sanders et al (2011)

TSPAN12 Loss 7 113547764
113741049

129034485
12922770

Sanders et al (2011)
Marshall et al. (2008)
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Table 7

All genes and respective p-values in the SFARI syndromic category.

Gene Symbol Gene Name Meta p-value

UBE3A ubiquitin protein ligase E3A 4.72E-06

CDKL5 cyclin-dependent kinase-like 5 1.43E-03

DMD dystrophin 2.36E-03

SHANK3 SH3 and multiple ankyrin repeat domains 3 6.58E-03

HOXA1 homeobox A1 1.45E-02

PTEN phosphatase and tensin homolog 2.34E-02

TSC1 tuberous sclerosis 1 3.09E-02

DHCR5 7-dehydrocholesterol reductase 3.99E-02

SCN1A sodium channel, voltage-gated, type I, alpha
subunit

7.29E-02

AHI1 Abelson helper integration site 1 9.63E-02

NF1 neurofibromin 1 9.67E-02

CACNA1C calcium channel, voltage-dependent, L type,
alpha 1C subunit

0.10

RAI1 retinoic acid induced 1 0.15

ALDH5A1 aldehyde dehydrogenase 5 family, member A1 0.17

MECP2 methyl CpG binding protein 2 (Rett syndrome) 0.21

ARX aristaless related homeobox 0.22

SLC9A6 solute carrier family 9, subfamily A (NHE6,
cation proton antiporter 6), member 6

0.29

ADSL adenylosuccinate lyase 0.33

DMPK dystrophia myotonica-protein kinase 0.35
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Table 8

Top genes in the “cellular respiration” GO category at a meta-analysis raw p-value threshold of 0.0001. There 

is a total of 116 genes in this functional group.

Gene Symbol Gene Name Meta p-value

ATP5O ATP synthase, H+ transporting, mitochondrial F1
complex, O subunit

1.83E-05

UQCRQ ubiquinol-cytochrome c reductase, complex III
subunit VII, 9.5kDa

5.45E-05

UQCRC1 ubiquinol-cytochrome c reductase core protein I 1.84E-04

CYC1 cytochrome c-1 2.90E-04

COX5B cytochrome c oxidase subunit Vb 2.98E-04

NDUFA11 NADH dehydrogenase (ubiquinone) 1 alpha
subcomplex, 11, 14.7kDa

4.38E-04

ATP5L ATP synthase, H+ transporting, mitochondrial Fo
complex, subunit G

4.53E-04

UQCR10 ubiquinol-cytochrome c reductase, complex III
subunit X

4.53E-04

UQCRC2 ubiquinol-cytochrome c reductase core protein II 5.25E-04

NDUFA13 NADH dehydrogenase (ubiquinone) 1 alpha
subcomplex, 13

5.35E-04

SLC25A12 solute carrier family 25 (aspartate/glutamate
carrier), member 12

5.37E-04

FH fumarase hydratase 7.55E-04

UQCR11 ubiquinol-cytochrome c reductase, complex III
subunit XI

7.74E04

NDUFS4 NADH dehydrogenase (ubiquinone) Fe-S protein
4, 18kDa
(NADH-coenzyme Q reductase)

8.29E-04

IDH3A isocitrate dehydrogenase 3 (NAD+) alpha 9.06E-04
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