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Abstract
Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical

composition of decomposing crop residues may change the forms and availability of soil

nutrients, such as N and P. However, to date, differences in the chemical composition of

crop straw residues after incorporation into soil and during its decomposition under anaero-

bic vs. aerobic conditions have not been well documented. The objective of the present

study was to assess changes in the C-containing functional groups of wheat straw residue

during its decomposition in anaerobic and aerobic environments. A 12-month incubation

experiment was carried out to investigate the temporal variations of mass, carbon, and nitro-

gen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L)

straw residues under anaerobic and aerobic conditions by measuring C-containing func-

tional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The resid-

ual mass, carbon content, and nitrogen content of the straw residue sharply declined during

the initial 3 months, and then slowly decreased during the last incubation period from 3 to

12 months. The decomposition rate constant (k) for mass loss under aerobic conditions

(0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass

percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas

that of lignin gradually increased during the entire 12-month incubation period. The NMR

spectra of C-containing functional groups in the decomposing straw under both aerobic and

anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6

months, and 12 months. The main alterations in C-containing functional groups during the

decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and

an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional

groups. The NMR signals of alkyl C and aromatic C in decomposing wheat straw residues

under anaerobic condition were higher than those under aerobic conditions. The higher

mass percentages of lignin and the higher signals of aromatic C and alkyl C functional
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groups in decomposing wheat residues under anaerobic conditions than under aerobic con-

ditions were due to the slower decomposition rates of aryl C and alkyl C in wheat straw resi-

dues under anaerobic conditions.

Introduction
Approximately 3.8 billion tons of crop residues are produced annually in the world [1]. Crop
residues can be returned to the soil for nutrient recycling, and they are an important source of
organic matter to improve soil physical, chemical and biological properties [2, 3]. In addition
to organic carbon, crop residues contain around 3.0 to 8.2 kg of nitrogen, 0.2 to 0.6 kg of phos-
phorous, and 7.2 to 23.3 kg of potassium per ton dry matter [4]. Returning crop residues to the
soil is widely recognized as a useful approach to recycle nutrients, increase soil fertility, and
prevent impoverishment of organic carbon in the soil [4]. Crop residues contain significant
quantities of organically bound nutrients, such as N and P, which may not be readily available
for subsequent crop use because they must first undergo decomposition processes [5, 6]. The
decomposition of crop residue is governed by both quantity and quality of the residue [7–10],
climatic conditions such as temperature and moisture [11], and soil properties [12]. Crop resi-
due quality, particularly nitrogen, lignin, and polyphenol concentrations, may alter decomposi-
tion dynamics [8, 13–15]. Low-quality plant residues with high carbon/nitrogen ratios, lignin,
and other aromatic compounds decompose more slowly than high-quality plant litters [16].
Soil water content is also an important factor that affects the decomposition of plant litter [17],
first because soil water potential must be low enough to provide water for microbial activity. In
addition, significant differences in the oxidation-reduction potential and soluble oxygen con-
centration between anaerobic and aerobic conditions lead to differences in the activity of soil
microbial communities [18–20]. Some studies have indicated that the decomposition of rice
straw proceeded more slowly under anaerobic conditions than under aerobic conditions [21].
In anaerobic environments, due to a lack of free oxygen that is required for its de-polymeriza-
tion, lignin exhibits a greater resistance to degradation than other plant constituents [20]. The
accumulation of partially degraded lignin residues in soil organic matter (SOM) of an anaero-
bic soil has been shown to be greater than that of a comparable aerobic soil [22]. Humification
of SOM was also influenced by soil aerobic and anaerobic conditions, soil aeration appeared to
promote SOM humification due to the accumulation of unsubstituted and alkyl-substituted
aromatic C [22]. The immobilization of soil N by SOM and mineralization of N from SOM are
also impacted by soil aeration conditions [23]. However, to date, many details about plant litter
decomposition in anaerobic and aerobic environments remain unclear.

The wheat-rice rotation is a very popular agricultural practice in the Yangtze and Huai
River region, China. Rice is generally grown as a wetland crop, so the soil is usually flooded
during the cropping season and drained after harvesting. Wheat is generally grown as a dryland
crop, and soil is usually aerated during the cropping season. Therefore, during the rice-wheat
rotation, soils cycle through aerobic and anaerobic conditions throughout the year. In these
regions, rice is planted quickly after wheat is harvested in May or June, and wheat is planted
quickly after rice is harvested in September or October. Thus decomposition of wheat or rice
straw in a rice-wheat rotation field occurs after it has been incorporated into soil and may
occur under either aerated or flooded conditions [24].

Our previous studies found that the incorporation of wheat residues led to an initial period
of N deficiency and a decline of rice yields compared with the treatments with the same dose of
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chemical fertilizer application alone [24]. Some reasons for this phenomenon include (1)
microbes may consume crop residues as an energy source and compete with crop plants for
available N [25], (2) incorporation of crop residues may increase the losses of N through vola-
tilization of NH3, N denitrification, or leaching [4, 24], and (3) decomposed crop residues may
contain chemical compounds or functional groups that can make soil N less plant-available
[25]. The increased N loss and competition of available N between microbes and crop plants
after returning crop residue to soil have been well documented [25, 4], but the impacts of
chemical composition of crop residues on N forms and availability are still not clear. We postu-
lated that aeration conditions play a dominant role in the decomposition of wheat straw and
therefore the chemical structure of decomposed wheat straw residues. If so, the concentrations
of C-containing functional groups in decomposing wheat residues may alter depending on the
anaerobic and aerobic conditions, and thus change the forms and availability of soil nutrients,
such as N and P. However, differences in the chemical composition of wheat straw residues
after incorporation into soil and during its decomposition under anaerobic vs. aerobic condi-
tions have not been well documented.

The objective of the present study was to assess changes in the chemical composition of
wheat straw during its decomposition in anaerobic and aerobic environments. The temporal
variations of mass, carbon, and nitrogen in wheat straw were also investigated during a
12-month incubation. We also documented changes in the contents of cellulose, hemicelluloses
and lignin as well as relative abundance of C-containing functional groups during wheat straw
decomposition.

Materials and Methods

Study Site
Wheat (Triticum aestivum L) straw decomposition trials were conducted at the agriculture
experimental station of Anhui Agricultural University (AAU) in Hefei, China (E116°41;
N31°30). This area experiences a typical central-subtropical climate. The average annual pre-
cipitation is 985 mm, and the annual average temperature is 15.5°C. The annual frost free days
are 227, and the annual sunshine duration is 2100 hours.

Experimental design
Soil and wheat straw sampling and preparation. The soil at the research site is classified

as a Hapli-Udic Cambisol in the Chinese Soil Taxonomy (corresponding to an Inceptisol in the
US Soil Taxonomy) [26], with pH of 6.2, organic matter concentration of 11.4 g kg-1, and total
nitrogen concentration of 0.52 g kg-1. Soil alkali-hydrolyzable (1.0 mol L-1 NaOH) nitrogen con-
centration is 41.5 mg kg-1, Bray 1 (mixed solution of 0.03 mol L-1 NH4F and 0.025 mol L-1HCl)
extractable phosphorous concentration is 6.4 mg kg-1, and 1.0 mol L-1 ammonium acetate-
extractable potassium concentration is 121.8 mg kg-1. The contents of clay, silt and sand were
452, 383 and 165 g kg-1, respectively [27].

Wheat straw was collected after grain harvest, cut into 1 cm pieces, and dried at 50°C to a
constant weight prior to further analysis. Concentrations of carbon and nitrogen in the wheat
straw were determined by an Elementar Vario EL cube elemental analyzer through dry combus-
tion at 900°C [28]. Concentrations of phosphorous and potassium in wheat straw were analyzed
by Mo-Sb colorimetry and flame photometry after acidic digestion by concentrated H2SO4

(98%) and H2O2 (30%) [27]. Organic carbon, total nitrogen, total phosphorus, and total potas-
sium concentrations in the wheat straw before experiment were 479.8 mg kg-1, 8.8 mg kg-1,
2.2 mg kg-1, and 9.8 mg kg-1, respectively.
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Decomposition trial. Six grams of wheat (Triticum aestivum L) straw samples were put
into a double-layer nylon mesh bag that was 20 cm long and 20 cm wide. The mesh size of the
litter bags was 0.15 mm, which could separate the wheat straw from soil aggregates and meso-
fauna outside the bag yet allow soil water and microorganisms access to the wheat straw in the
litter bag. The plots (in triplicate) simulating anaerobic and aerobic conditions were established
according to a completely random design in the field. Six plots (3 m long × 4 m wide) con-
structed with 1-cm thick waterproof polyvinyl fluoride panels were placed in the wheat-corn
rotation field by vertical insertion into soil, 50 cm of the panel was buried in the soil and 10 cm
of the panel was left above ground. Within each plot, bags were inserted into the soil at about
20-cm depth and equidistantly distributed. To ensure adequate soil contact, all the sides of lit-
ter bags were filled in soil and completely packed, a 3-5-cm layer of soil was also placed over
the bags. Soil in three plots was flooded and kept with a 1-cm water layer above soil surface
during the entire incubation period, simulating anaerobic condition. Soil in the other frames
was kept at 75%~80% of the maximum water-holding capacity by irrigation in the entire incu-
bation period, simulating aerobic conditions. In situ soil moisture was detected by Time
domain Reflectometry with Intelligent MicroElements (TRIME-PICO 32 TDR, Germany). The
oxidation-reduction (redox) potentials were measured every five days by insertion of an oxida-
tion-reduction potential sensor into the soil. Normally, the soil redox potential was determined
at 4 PM, except during bad weather such as rain or snow. The measured oxidation-reduction
potentials remained at about -100 ± -50 mv and 200 ± 50 mv in the anaerobic and aerobic
treatments, respectively. There were no wheat or rice plants growing in the plots during the
entire 12-month incubation period.

The mass of each litter bag and wheat straw was separately weighed before incubation. The
wheat straw sample was then placed in each bag and incubated under the simulated anaerobic
and aerobic conditions for 0, 0.5, 1, 3, 6 and 12 months. At the end of each incubation period,
three bags of wheat straw residues were sampled from each anaerobic and aerobic treatment
plot, respectively. The mass of each litter bag and wheat straw residue was recorded, and the
dry mass of the residue was determined after removal from the nylon bags and drying at 50°C.
The dried samples were ground to pass through a 0.15-mmmesh for chemical property analy-
sis and then further ground into a powder for NMR analysis.

Chemical analysis. The contents of cellulose, hemicellulose and lignin in wheat straw
were determined using a modification of the method proposed by Van Soest and his collabora-
tor [29, 30]. Briefly, the first step of the sequential extraction was the removal of the neutral
detergent extractable fraction (NDF) at 100°C for 60 min, which left the cell wall fraction com-
posed of primarily of hemicellulose, cellulose, and lignin. The second step was an acid deter-
gent extraction using 2 M HCl, which removed hemicellulose. This was followed by a strong
acid (H2SO4, 72%) extraction, which removed cellulose. The non-extractable residue was
assumed to be mainly composed of lignin and insoluble proteins. All solid fractions obtained
after each extraction were oven dried at 80°C, and the residual organic matter was estimated by
loss on ignition at 550°C for 4 h. The results were calculated as percentages of the volatile sol-
ids. The mass percentages of cellulose, hemicellulose and lignin in wheat straw before the trial
were 38.1%, 25.4%, and 10.1%, respectively.

Nuclear magnetic resonance (NMR) spectroscopy analysis. 13C NMR spectroscopy anal-
yses were performed using a Bruker Avance III 400 spectrometer at 100 MHz (400 MHz 1H
frequency). All experiments were run in a double resonance probe head using 4-mm sample
rotors. The 13C multiple ramped amplitude cross polarization/magic angle spinning (13C mul-
tiCP) NMR experiments were performed. Straw samples were packed into 4-mm rotors and a
2-mm height glass insert was put at the bottom of rotor to keep soil samples within the radio
frequency coil. The spectra were recorded at a spinning speed of 14 kHz, with a recycle delay of
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0.5s. The 90° pulse-lengths were 4.2 μs for 1H, and 4 μs for 13C[31]. The 13C NMR signals in
the 13C multiCP spectra were assigned to different functional groups following [16, 32]. After
the multiCP analysis, multiCP combined with recoupled dipolar dephasing experiments were
applied to generate a subspectrum with nonprotonated carbons such as COO/N−C = O, non-
protonated aromatics, OCqO, and mobile groups such as mobile OCH3, CCH3, and mobile
(CH2)n groups [33].

Carbon-13 cross polarization/total sideband suppression with and without dipolar
dephasing. Qualitative composition information was obtained with good sensitivity by 13C
cross polarization/total sideband suppression (CP/TOSS). The NMR experiments were con-
ducted at a spinning speed of 5 kHz and a CP time of 1 ms, with a 1H 90° pulse length of 4 μs
and a recycle delay of 1 s. Four-pulse total suppression of sidebands [32] was used before detec-
tion, and two-pulse phase-modulated decoupling was applied for optimum resolution. The
corresponding subspectrum with signals of nonprotonated carbons and carbons of mobile
groups such as rotating CH3 was obtained by

13C CP/TOSS combined with 40-μs dipolar
dephasing. The relative abundances of different carbon functional groups were obtained by
integrating signal intensities with various chemical shift regions, and they are reported as the
percentage of the total signal region from 0 to 220 ppm. The CP/TOSS NMR spectra are gener-
ally assigned to eight dominant carbon groups [33–36]; they are: (1) alkyl C (0–44 ppm); (2)
Methoxyl/N-alkyl (44–64 ppm); (3) O-alkyl C (64–93 ppm); (4) anomeric C (93–113 ppm); (5)
aromatic C (113–142 ppm); (6) aromatic C-O (142–164 ppm); (7) carboxyl/amide C (164–
188 ppm); and (8) ketone/aldehyde C (188–220 ppm).

Carbon-13 chemical shift anisotropy (CSA) filter. To separate the signals of anomeric
carbons (O–C–O) from those of aromatic carbons, both of which may resonate approximately
between 90 and 120 ppm, the aromatic-C signals were selectively suppressed by a five-pulse 13C
CSA filter with a CSA-filter time of 35 μs [36, 37]. To select the signals of nonprotonated O–C–
O (ketal) carbons, which may extend to 120 ppm, this CSA filter was combined with a dipolar
dephasing time of 40 μs. In a complementary experiment, selected spectra of protonated
anomerics (O–CH–O, acetals) were obtained by CSA filtering after short CP. The details of this
technique have been described elsewhere [36, 37].

Spectral editing of immobile CH2 and CH. The combined spectrum of these chemical
groups was obtained with good sensitivity in a simple spectral-editing experiment. First, a CP/
TOSS spectrum was recorded using a short CP of 40 μs. It showed predominantly protonated
carbons in immobile segments, but residual peaks of quaternary carbons resulted from two-
bond magnetization transfer. Second, a CP/TOSS spectrum was acquired using a short CP of
40-μs dipolar dephasing. It contained only the residual signals of quaternary carbons or mobile
segments (including CH3 groups with>50% efficiency). This residual spectrum was then sub-
tracted from the first CP/TOSS spectrum. The resulting difference spectrum represents immo-
bile CH2 and CH carbons, with a small CH3 contribution [37]. The details of this technique
have been described elsewhere [37].

Data analysis. The decomposition of wheat straw was expressed in percentage of mass,
carbon and nitrogen loss in wheat straw residues from the original materials. The decomposi-
tion process was simulated using a modification of the model proposed by Berg and Ekbohm
[38, 39] and Berg et al.[40]:

y ¼ y0ð1 � a � e�ktÞ ð1Þ

where y is the fraction of the initial mass, C or N remaining at time t (months), k the decompo-
sition rate constant (d-1), a is the fraction of the initial mass, C, or N of the material that is sub-
ject to loss, and y0 is the asymptote value. The half-lives of the C or N lost from wheat straw
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residues were calculated using the formula: t1/2 = ln2/ki = 0.693/ki, where ki is the decomposing
rate constant of C or N fraction [9].

Statistical analyses were performed using the Statistical Package for Social Science (SPSS
18.0). Analysis of variance and least significant difference tests were performed to determine
the statistical significance (p = 0.05) of the mass loss and C and N released from wheat straw
residues at different incubation periods under anaerobic and aerobic conditions.

Results

Time-dependent mass loss from wheat straw
During the incubation period, the residual mass of wheat straw sharply decreased in the first 3
months and then slowly decreased from 3 to 12 months under both the anaerobic and aerobic
conditions (Fig 1). The losses of wheat straw mass in the first 3 months were 46.2% and 53.7%
of its initial mass under anaerobic and aerobic conditions, respectively. Wheat straw mass loss
in the anaerobic condition was 3.8% to 16.1% slower than that in the aerobic condition during
the entire incubation period. During the first month, the cumulative mass loss of wheat straw
in the aerobic condition was 36.6% of the initial mass, which was significantly higher (p<0.05)
than that in the anaerobic condition (20.5%). This difference in mass loss between the anaero-
bic and aerobic conditions was less during the incubation period from 3 to 12 months, with a
difference of only 4.2% between the two treatments at 12 months.

The decomposition rate constants (k) of wheat straw in the anaerobic and aerobic condi-
tions were 0.014 d-1 and 0.022 d-1, respectively, and the half lives (t1/2) of wheat straw decom-
position in the anaerobic and aerobic condition were 122.2 d and 72.8 d, respectively (Table 1).
These results indicated that wheat straw decomposition in the anaerobic condition was slower
than in the aerobic condition.

Time-dependent carbon and nitrogen loss from wheat straw
The loss of carbon from wheat straw was higher from 0 to 6 months than that from 6 to 12
months. Carbon lost from wheat straw in the first 6 months accounted for 69.9% and 71.4% of
the original carbon mass in the anaerobic and aerobic condition (Fig 2a), respectively. About
73% of carbon was lost from the wheat straw in both the anaerobic and aerobic conditions

Fig 1. Temporal variation of the residual mass percent of wheat straw.

doi:10.1371/journal.pone.0158172.g001
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during the 12-month incubation. The carbon loss rate constants (k) were 0.0152 d-1 and 0.0085
d-1, and the half lives (t1/2) of carbon lost from wheat straw were 114.8 d and 72.8 d under
anaerobic and aerobic conditions, respectively. This revealed that carbon loss from wheat straw
under aerobic conditions was faster than that under anaerobic conditions.

The loss of nitrogen from wheat straw in the first 3 months was higher than that in the later
9 months (Fig 2b). Nitrogen lost from wheat straw during the first 3 months of incubation
accounted for 37.8% and 42.4% of the original nitrogen mass in the anaerobic and aerobic con-
dition, respectively. The nitrogen loss rate constant (k) under anaerobic conditions (0.012 d-1)
was lower than that under aerobic conditions (0.02 d-1) (Table 2).

Time-dependent changes of cellulose, hemicelluloses and lignin in
wheat straw
The mass loss of cellulose and hemicellulose in wheat straw sharply declined from 0 to 6
months, and then it slowly declined from 6 months to 12 months under both anaerobic and
aerobic conditions (Fig 3). The remaining mass percentage of cellulose in wheat straw was
higher than that of hemicellulose under both anaerobic and aerobic conditions. The remaining
mass percentage of lignin in wheat straw increased gradually from 10.1% to 21.8% during the
entire incubation period under the anaerobic conditions, whereas under the aerobic conditions
it increased from 10.1% to 25.1% during the first 6 months, and then declined slightly in the
12th month.

Table 1. Regression models of the wheat residual mass and incubation time.

Treatments y = y0(1−a�e-kt)
y0 a k R2

Aerobic condition 36.71 66.17 0.022 0.96

Anaerobic condition 38.55 65.2 0.014 0.98

Note: y is the percentage of the initial mass remaining at time t (months); y0 is the asymptotic value when

time is1, a is the percentage of the initial mass of material subject to loss; k is the decomposition rate

constant calculated by the least-squares method of fitting the model (d-1); t is the incubation time (months);

and R2 is a correlation coefficient.

doi:10.1371/journal.pone.0158172.t001

Fig 2. Temporal variation of the remaining C (a) and N (b) as a percentage of the original mass in decomposing
wheat straw.

doi:10.1371/journal.pone.0158172.g002
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NMR Spectroscopy
The 13C multiCP NMR spectra of the original and decomposed wheat straw samples under
anaerobic and aerobic conditions are displayed in Fig 4. The 13C multiCP spectra (thin lines)
show signals from all carbon sites, while multiCP with dipolar dephasing (multiCP/DD) spec-
tra (thick lines) highlight signals from nonprotonated carbons and mobile carbons including
COO/N−C = O, aromatic C–O, nonprotonated aromatics, nonprotonated quaternary carbon
(OCqO), OCH3, CCH3 and mobile (CH2)n groups.

The spectra of C-containing functional groups were similar during the decomposition of
wheat straw from 0 to 12 months under both anaerobic and aerobic conditions (Fig 4). The
alkyl C (0–44 ppm) region showed signals from CH2 groups, such as those from long-chain
polymethylene structures (e.g., fatty acids, waxes, and biopolyesters) and terminal methyl
groups from both alkyl compounds and acetyl substituents in plant hemicellulose [41]. In the
region of 44–64 ppm, the bands assigned to the methoxyl C (O-CH3) and N-alkyl groups
(NCH) were likely derived from guaiacyl and syringyl lignin components, and/or C-N bonds
in amino acids or peptides, respectively [35]. The signals of O-alkyl C (64–93ppm) represented
the overlapping resonances of carbons in the pyranoside structure of cellulose and hemicellu-
lose [41]. The peak of anomeric C (93–113 ppm) was associated with the anomeric C-1 carbon
of cellulose and hemicellulose present in plant material [35]. The broad band around (113–
142 ppm) was attributed to the presence of lignin-derived aromatic C [42, 43].

The small peak in the region 142–162 ppm was attributed to O-aryl C, and the aromatic
C-O indicated the presence of lignin and tannin components. Finally, the sharp signal at

Table 2. Regression models of carbon and nitrogen lost fromwheat straw.

Treatments Carbon lost / Ct = C0(1−e-kCt) Nitrogen lost / Nt = N0(1−e-kNt)

C0 kC R2 N0 kN R2

Aerobic condition 2.15 0.0152 0.99 26.4 0.02 0.995

Anaerobic condition 2.31 0.0085 0.95 27.7 0.012 0.993

Note: Ct is organic carbon lost from wheat straw at time t (g); C0 is the initial potentially mineralizable carbon (g); kc is the carbon decomposition rate constant

(d-1); R2 is the correlation coefficient; Nt is nitrogen lost at time t (mg); N0 is the initial potentially mineralizable nitrogen (mg); kN is the nitrogen decomposition

rate constant calculated (d-1); R2 is the correlation coefficient.

doi:10.1371/journal.pone.0158172.t002

Fig 3. Temporal variations in the remaining mass percentage (%) of cellulose, hemicellulose, and lignin in wheat
straw residues under anaerobic (A) and aerobic (B) conditions. Notes: Error bars indicate the standard deviation of
the triplicate samples.

doi:10.1371/journal.pone.0158172.g003
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172 ppm was due to carboxyl groups (in aliphatic acids of plant and microbial origins) and/or
amide groups in amino acid moieties [44, 45]. The corresponding 13C multiCP spectra after 40-
μs dipolar dephasing (Fig 4 thick line) show only the signals from nonprotonated carbons and
carbons of mobile functional groups including COO/N-C = O, aromatic C-O, nonprotonated

Fig 4. 13CmultiCP NMR spectra (thin lines) andmultiCP/DD NMR spectra (thick lines) of original and
decomposing wheat straw at different incubation stages.

doi:10.1371/journal.pone.0158172.g004
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aromatics, OCqO, OCH3, CCH3, and mobile (CH2)n groups [32]. In agreement with the simi-
larities of their multiCP NMR spectra, the dipolar dephasing spectra of the initial and decom-
posing wheat straw for both aerobic and anaerobic conditions share many common features,
e.g., the signals of CCH3 around 22 ppm, slightly mobile CCH2C around 30 ppm, OCH3

between 50 and 60 ppm, nonprotonated aromatic C-C around 130 ppm, aromatic C-O around
150 ppm and COO/N-C = O around 173 ppm [32]. The multiCP and multiCP/DD spectra
showed the contribution of the signal from both OCH3 and NCH at 57 ppm. The resonances at
20 ppm (CH3) and 173 ppm (COO/N-C = O) reflected the presence of CH3COO in hemicellu-
lose and a possible small contribution of the N-acetyl in peptide residues [36]. The signals at 57
and 173 ppm were partially associated with proteins and peptides. Signals from OCH3 and aro-
matic C-O carbons reflected the presence of lignin. Signals in the unsaturated carbon region
between 113 and 142 were attributed to aromatic carbon in lignin or olefinic carbons in lipids
[45].

The differences of C-containing functional groups in decomposing wheat residues from 0 to
3 months were relatively higher than those from 3 to 12 months under both anaerobic and aer-
obic conditions. We selected the 3rd month as the critical time for further NMR spectral edit-
ing. Fig 5a and 5b show the nonselective cross polarization/total sideband suppression (CP/
TOSS) spectra displaying different C-containing functional groups in 3-month decomposed
wheat straw under anaerobic (left) and aerobic (right) conditions, respectively. Fig 5c and 5d
illustrate the corresponding dipolar dephasing CP/TOSS spectra showing nonprotonated car-
bons and mobile carbons. The 13C CSA filtered spectra are displayed in Fig 5e and 5f, those
with 13C CSA and short CP are depicted in Fig 5g and 5h, and the spectra with CSA and dipolar
dephasing are shown in Fig 5i and 5j. All the samples contained considerable anomeric car-
bons, whose signals resonated around 105 ppm and are distinguishable in the 13C CSA-filtered
spectra, demonstrating the existence of linked sugar rings. The spectra with the CSA filter and
dipolar dephasing of wheat straw samples, whether under anaerobic or aerobic conditions,
showed very small nonprotonated quaternary carbon (OCqO) signals above the baselines,
whereas those after the CSA filter and short CP displayed significant OCHO bands, similar to
the OCO bands in the CSA-filtered spectra, revealing that OCO groups are dominantly proton-
ated in all the samples. Compared with the CSA-filtered spectra of the 3-month decomposing
wheat straw under anaerobic conditions, smaller peaks for O–C–O (around 105 ppm) and
OCH (near 72 ppm) were observed in the 3-month decomposing wheat straw under aerobic
conditions, suggesting faster loss of carbohydrates from wheat straw under aerobic conditions.

The spectra with only CHn groups can be found in Fig 5k and 5l. These spectra for the
3-month decomposing wheat straw under anaerobic and aerobic conditions were similar,
showing signals of protonated aromatics between 113 and 142 ppm, OCHO around 105 ppm,
OCH centered around 72 ppm, OCH2 around 64 ppm, NCH between 50 and 60 ppm, CCH2C
around 30 ppm, and CCH3 around 22 ppm. However, bands between 50 and 60 ppm for the
decomposing wheat straw under anaerobic conditions were broader than those under the aero-
bic conditions, suggesting more NCH and thus more proteins or peptides.

The differences in the relative abundance of functional groups that are interpreted from the
13C multiCP NMR spectra in decomposing wheat straw residues under anaerobic and aerobic
conditions are summarized in Table 3. The main functional group of wheat straw in the mul-
tiCP spectra (Fig 4 thin line) was O-alkyl C (64–93 ppm), which accounted for 54.2% of the C
in the initial wheat straw prior to incubation, and then gradually decreased to 44.1% and 47.1%
in decomposed residues under anaerobic and aerobic conditions, respectively, after incubation
for 12 months. The percentage of NCH (44–64ppm) in decomposing wheat straw residue
increased from 9.9% to 11.9%, and then to 13.1% under anaerobic conditions, while under
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aerobic conditions it increased from 9.9% to 11.4% during the first month, and then gradually
declined to 8.6% by the end of 12 months.

The relative abundance of alkyl C (0–44 ppm) decreased in the first 1 month, gradually
increased from month 1 to month 3, and finally decreased from 3 to 12 months under both

Fig 5. Spectral editing for identification of functional groups in 3-month decomposing wheat straw
under anaerobic (left) and aerobic (right) conditions: (a, b) nonselective cross polarization/total
sideband suppression (CP/TOSS) spectra for reference, with a contact time of 1 ms at a spinning
speed of 5 kHz; (c, d) corresponding dipolar dephasing CP/TOSS spectra showing nonprotonated
carbons andmobile carbons, acquired after 40-μs of decoupling gated off; (e, f) selection of sp3-
hybridized carbon signals by a 13C chemical shift anisotropy (CSA) filter with 35-μs filter time, other
parameters as in (a); (g, h) corresponding selection of protonated sp3-hybridized C signals with a 35-
μs CSA filter and short 50-μs CP; (i, j) selection of nonprotonated or mobile sp3-hybridized C signals
with a 35-μs CSA filter and 40-μs dipolar dephasing; (k, l) selection of relatively immobile CH and CH2

signals with small residual CH3, which was achieved by finding the difference between a short-CP
spectrum and a spectrum of short CP combined with dipolar dephasing. All the spectra were
normalized to the highest peak. Recycle delays for all the spectra were 1 s and the number of scans was
6144.

doi:10.1371/journal.pone.0158172.g005

Soil Aeration Changed Chemical Composition of DecomposedWheat Straw Residue

PLOS ONE | DOI:10.1371/journal.pone.0158172 July 5, 2016 11 / 17



anaerobic and aerobic conditions. The relative abundance of aromatic C (113–142 ppm),
aromatic C-O (142–162 ppm), and COO/N-C = O (162–188 ppm) all increased under both
anaerobic and aerobic conditions over the entire incubation period. After 12 months of decom-
position, wheat straw residues showed an increase of the relative abundances of alkyl C, aro-
matic C, aromatic C-O, and COO/N-C = O but a decrease of the relative abundance of O-alkyl
C compared to that of the original wheat residues. The aromatic C-O reflected characteristic of
lignin and its residues (lignin thereafter), demonstrating that the decomposing wheat straw
was more enriched in lignin than was the original straw, likely through selective preservation.

The decomposition of wheat straw under anaerobic conditions was slower than under aero-
bic conditions. After 6 and 12 months of decomposition, the relative abundances of O-alkyl C,
NCH and alkyl C in decomposed wheat straw residues under anaerobic conditions were higher
than those under aerobic conditions, while the relative abundances of the aromatic C, aromatic
C-O and COO/N-C = O in decomposed wheat straw residues under anaerobic conditions were
lower than those under aerobic conditions.

Decomposition indices
The ratio of alkyl/O-alkyl (A/OA) has been used as an index of decomposition dynamics (Fig
6) [46]. The A/OA ratios of wheat straw residue declined slightly in the first month under aero-
bic conditions, rapidly increased from 1 month to 3 months, and then decreased gradually
from 3 months to 12 months under both anaerobic and aerobic conditions. The A/OA ratios of
wheat straw residues under anaerobic conditions were higher than those under aerobic condi-
tions in the 1th, 6th and 12th months of incubation, but it was lower than under aerobic condi-
tions after 3 months of incubation.

Discussion

Loss of mass, C and N in the wheat straw residues
The trend of mass loss of wheat straw is similar to those of previous studies on crop straw and
other plant litters [11, 47]. Decomposition rates of crop straw were higher in the initial months,
followed by lower decomposition rates in the remaining incubation stages [48, 9]. In the pres-
ent study, most of the wheat straw mass was lost during the first half year, which accounted for
54.8% and 58.7% of its original mass. This is in agreement with the results from wheat and bar-
ley decomposition trials [24, 48], and likely due to the release of CO2 into ambient enviroment,

Table 3. Temporal change of relative abundances of functional groups (%) in wheat straw obtained by multiCP NMR technique under anaerobic
and aerobic conditions.

Incubation 0–44 ppm 44–64 ppm 64–93 ppm 93–113 ppm 113–
142 ppm

142–
162 ppm

162–
188 ppm

188–
220 ppm

Time Alkyl C OCH3 NCH O-alkyl C Anomeric C Aromatic
C-C

Aromatic
C-O

COO/N-C = O C = O

(months) Ana Aer Ana Aer Ana Aer Ana Aer Ana Aer Ana Aer Ana Aer Ana Aer Ana Aer

0 12.4 12.4 4.1 4.1 9.9 9.9 54.2 54.2 13.3 13.3 3.9 3.9 1.0 1.0 1.0 1.0 0 0

1 11.8 9.6 3.2 3.1 11.9 11.4 51.6 54.3 13.4 14.1 4.8 4.7 2.0 2.2 2.0 2.2 0 0

3 19.8 19.6 3.4 3.9 12.2 7.4 43.1 39.0 11.3 10.8 6.0 7.4 2.6 2.9 2.6 2.9 0 0

6 13.0 10.9 4.0 4.0 11.9 9.2 46.1 45.1 12.7 13.4 7.0 9.0 3.3 4.0 3.3 4.0 0 0.8

12 14.6 8.3 4.3 4.0 13.1 8.6 44.1 47.1 12.3 13.7 7.0 8.9 3.2 4.6 3.2 4.6 0 0.9

Note: Ana—anaerobic conditions; Aer—aerobic conditions.

doi:10.1371/journal.pone.0158172.t003
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or the release of relatively water-soluble substances such as pectin, free amino acids, peptides,
organic acids as well as the mineral elements from the plant residue into the soil solution [14].
In this study, about 50% of the carbon and nitrogen, as well as more than 90% of hemicellulose,
were lost from wheat straw at the beginning of the incubation. The soluble substances released
into soil provided sufficient nutrients and energy for further microbial growth and decomposi-
tion of the crop residues. The slowly degradable plant components, such as lignin, accumulated
in the crop residues [11, 45]. The remaining soluble substances in the plant residues declined
to relatively low levels, and thus limited microbial growth and reduced the decomposition rate
of plant residues [14]. Plant residues with high lignin-to-carbohydrate ratios may decompose
more slowly than residues with low lignin-to-carbohydrate ratios, and high lignin to nitrogen
ratios have also been correlated with slower decomposition rates [9]. Our results indicate that
the decomposition rates declined as the ratios of lignin-to-carbohydrate increased because of
the loss of cellulose and hemicellulose. Previous studies have also found that decomposition of
crop residues promotes accumulation of lignin residues in soils, consistent with the fact that
crop residues are likely one of the main parent materials of new SOM [23].

Chemical structure alterations during decomposition of wheat straw
residues
The main alterations in chemical structures during the decomposition of wheat straw were a
decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of
alkyl C, aromatic C, aromatic C-O and COO/N-C = O functional groups. This result is consis-
tent with several previous findings that a decrease of O-alkyl C and an increase of alkyl C dur-
ing the decomposition of peats [49], forest litter [46] and crop straw [50]. Alkyl C (0–44 ppm)
intensity mainly comes from plant waxes, cutin and suberin[51]. An increase in alkyl C during
the decomposition process has been attributed to an increase in cross-linking of long chain
alkyl compounds or to the selective preservation of resistant or insoluble, aliphatic macromole-
cules [52]. Preston reported that an accumulation of alkyl C signals was also associated with
the loss of the most easily metabolizable molecules [45].

Fig 6. Temporal change of alkyl/O-alkyl ratio of wheat straw under anaerobic and aerobic conditions
during decomposition. Alkyl refers to the multi CP NMR spectra region at 0–44 ppm, O-alkyl refers to the
spectra region at 44–93 ppm.

doi:10.1371/journal.pone.0158172.g006
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The decrease in O-alkyl C (the 64–93 ppm NMR signal) in the wheat straw residues is
ascribed to the decline of polysaccharides such as cellulose and hemicelluloses [35], and it is
consistent with the observed decline in cellulose and hemicellulose concentrations. The
increase of the relative abundances of aromatic C (113–142 ppm) and aromatic C-O could be
attributed to the slower degradation and thus selective preservation of lignin or partially
degraded lignin structures [52]. These results were confirmed by the consistent increase in rela-
tive mass percentage of lignin in wheat straw residues during the process of decomposition
(Fig 3). The increase in the relative abundances of the COO/N-C = O (142–162 ppm) func-
tional groups could be explained by loss of the easily degradable carbohydrates in wheat straw
residues. These interpretations are derived from changes in the 13C multiCP and multiCP /DD
spectra (Figs 4 and 5). The results confirm our hypothesis that the chemical composition of
wheat straw residues changed during decomposition under both anaerobic and aerobic condi-
tions, potentially affecting the structure and composition of SOM and the availability of soil
nutrients.

Decomposition of wheat straw residues in response to soil aeration
Soil oxidation-reduction potential in anaerobic conditions was significantly different from that
in the aerobic condition, which influenced the active microbial species and thus impacted litter
decomposition [53]. In the present study, oxidation-reduction potentials between -150 and -50
mv, and between 150 and 250 mv were maintained under anaerobic and aerobic conditions,
respectively, by flooding and maintaining 75%~80% of the maximum water-holding capacity
of soil by irrigation. The remaining mass percentage of lignin in wheat straw residues gradually
increased (from 10.1% to 21.8%) under anaerobic conditions as the carbohydrates, including
cellulose and hemicellulose, were degraded by bacterial decomposers during the entire
12-month incubation (Fig 3). In flooded cropping systems, lignin residues may accumulate in
plant litter residues and soil because of high input rates through annual crop straw incorpo-
ration, as well as their slower decomposition under anaerobic conditions [22, 20]. For example,
soil humic acid contained more lignin derivatives in a triple-cropped irrigated lowland (anaer-
obic) rice soil than that in a nearby single-cropped aerobic rice soil [22]. This may be attributed
to the lack of soil oxygen that would limit the activity of fungi and reduce the production of lig-
nases [22]. The mass percentage of lignin remaining in decomposing wheat straw residues
under anaerobic conditions was higher by 10.5% to 20.5% than under aerobic conditions in the
12-month incubation period (Fig 3). Results from multiCP spectra also showed that the signals
of aromatic C and alkyl C in the decomposing wheat straw residues at 12 months under anaer-
obic condition were higher than under aerobic conditions (Fig 4). This is in line with our
hypothesis that the concentrations of C-containing functional groups in decomposing wheat
residues may vary depending on anaerobic and aerobic conditions. The higher percentage of
recalcitrant molecules, such as lignin, in decomposing residues under anaerobic condition
could be attributed to the slower degradation and thus accumulation of lignin or partially
degraded lignin structures in decomposed residues under anaerobic condition [22]. Lignin resi-
dues in wheat straw decomposing under anaerobic conditions may be precursors to some
SOM components such as mobile humic acid (MHA) or calcium-bound humic acid (CaHA), a
fraction that has been hypothesized to immobilize labile soil nitrogen and reduce nitrogen
availability [23].

Conclusions
Our study illustrates that soil anaerobic and aerobic conditions significantly affected the chemi-
cal structure of wheat straw residues during 12 months of decomposition. We combined the
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semi-quantitative assessment of cell wall components including lignin, hemicelluloses and cel-
lulose with quantitative NMR measurements, and independent and semi-quantitative mea-
surements of decomposition rates. The higher mass percentages of lignin and the higher
signals of aromatic C and alkyl C functional groups in residues decomposing under anaerobic
conditions compared with those under aerobic conditions were consistent with the slower
decomposition rates of aryl C and alkyl C. These differences might be related to the dynamics
of nitrogen mineralization and labile nitrogen forms in soil. However, further studies are
needed to examine the quantitative differences in the chemical structures of soil organic matter
between anaerobic and aerobic conditions, as well as in the N forms and availability.
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