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This article examines how people depart from optimality during multiple-goal pursuit. The authors
operationalized optimality using dynamic programming, which is a mathematical model used to calculate
expected value in multistage decisions. Drawing on prospect theory, they predicted that people are
risk-averse when pursuing approach goals and are therefore more likely to prioritize the goal in the best
position than the dynamic programming model suggests is optimal. The authors predicted that people are
risk-seeking when pursuing avoidance goals and are therefore more likely to prioritize the goal in the
worst position than is optimal. These predictions were supported by results from an experimental
paradigm in which participants made a series of prioritization decisions while pursuing either 2 approach
or 2 avoidance goals. This research demonstrates the usefulness of using decision-making theories and
normative models to understand multiple-goal pursuit.
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Pursuing multiple, competing goals is a pervasive feature of
modern life. We all have to manage competing demands for our
time and are frequently faced with situations where we have to

make trade-offs. Imagine you have two projects to complete but
will only have a limited number of opportunities to work on them
before they are due. You are uncertain whether you can complete
both by the deadline. When given the opportunity to work on one
of the projects, do you (a) focus on the one that’s in the best shape
in the hope of completing at least one project on time, but risk
missing an opportunity to complete both; or (b) focus on the one
that’s in the worst shape to have a chance of completing both
projects, at the risk of completing neither? The optimal choice
provides the most efficient allocation of resources (Keeney &
Raiffa, 1976). Yet, identifying the optimal choice is complex
because it requires anticipating how actions taken now will affect
the potential for future goal attainment.

Studies that have examined multiple-goal pursuit have identified
factors that predict how people prioritize competing goals (Kernan
& Lord, 1990; Louro, Pieters, & Zeelenberg, 2007; Schmidt &
DeShon, 2007; Schmidt, Dolis, & Tolli, 2009; Schmidt & Dolis,
2009). However, this work has not examined whether people make
prioritization decisions that are optimal. Comparing observed be-
havior to an optimal criterion allows one to identify biases, which
are systematic deviations from that criterion. Biases provide in-
sight into the psychological processes that underlie decision mak-
ing (Kahneman & Tversky, 1979). The examination of decision
biases has lead to the development of highly sophisticated models
of decision making that are capable of accounting for a wide range
of empirical phenomena (Busemeyer, 2015). Identifying biases
also provides an opportunity to enhance decision making in prac-
tice. For example, decision support systems based on models of
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optimal decision making have been implemented to help investors
overcome biases to improve returns (e.g., Bhandari & Hassanein,
2012).

To address this gap, we implement a normative model of deci-
sion making during multiple-goal pursuit. Normative models pro-
vide a standard for evaluating behavior, rather than predicting the
behavior itself (Baron, 2004, 2012). Thus, they are ideal for
examining the optimality of prioritization decisions. We define the
optimal decision according to expected utility theory (von Neu-
mann & Morgenstern, 1947), as that which maximizes the ex-
pected value of an outcome (in this case, the number of goals
achieved). In the sections below, we first operationalize multiple-
goal pursuit as a multistage decision task. We then show how
dynamic programming (Bellman, 1966)—a method for calculating
the expected value of actions in multistage decision tasks—can be
used to derive a normative model of prioritization.

We then use prospect theory to make predictions about how
people depart from optimality when pursuing approach and avoid-
ance goals. An approach goal represents a desired state that the
person strives to achieve, whereas an avoidance goal represents an
undesired state that the person strives to avoid (Carver & Scheier,
1990, 1998; Elliot & Covington, 2001). According to prospect
theory (Kahneman & Tversky, 1979), people make decisions that
are risk-averse when given the opportunity to gain, yet risk-
seeking when faced with the threat of loss. However, this theory
has typically been applied to static, single-stage decisions, and
these findings do not always replicate in dynamic environments
(Hollenbeck, Ilgen, Phillips, & Hedlund, 1994; Slattery & Ganster,
2002; Thaler & Johnson, 1990). Using the normative model as a
benchmark, we examine whether people are risk-averse when
pursuing multiple approach goals, and risk-seeking when pursuing
multiple avoidance goals.

Multistage Decision Tasks

We examine departures from optimality using a multistage
decision task. A multistage decision is a task that is broken down
into a series of discrete stages (Rapoport & Wallsten, 1972). The
stages are discrete because the individual can only act on the
environment at particular times, then must wait for the action to
affect the environment (or not) before deciding on the next course
of action. There are many situations in which people have to
manage discrete tasks and can only adjust their priorities at par-
ticular times. For example, a project manager allocating resources
across multiple projects must often wait until a task is completed
before deciding whether or not to reallocate those resources. A
nurse who is simultaneously managing a number of different
patients can only implement the next stage of a treatment protocol
for each patient once the previous stage has been completed. An air
traffic controller managing competing demands from different
aircraft can only perform one task at a time and needs to make
choices regarding the order in which those tasks are done. The
normative model presented in this article can be extended to
continuous tasks, in which people can act on the environment any
time (see Lembersky, 1974; Miller, 1968). However, a discrete
task is a useful starting point for examining departures from
optimality during multiple-goal pursuit, because discrete models
provide a useful approximation for continuous processes (Buse-
meyer & Townsend, 1992; Jagacinski & Flach, 2003), and evi-

dence suggests that the same effects emerge regardless of whether
one uses a discrete or continuous task (Brehmer, 1992).

In a multistage decision task, time is conceptualized as discrete
steps, which are referred to as stages. Consider an example of a
consultant who must complete two projects within 10 weeks. Each
week, the consultant needs to decide which project gets prioritized.
Each week therefore represents a single stage, with the job of
completing both projects being broken down into 10 stages in total.
When multiple-goal pursuit is conceptualized as a multistage de-
cision task, progress toward each goal determines the environmen-
tal state. Assume that each project requires a consultant to first
consult with stakeholders, then to analyze the data, and finally to
write a report. Each project can therefore be in one of four different
states. When a project is in its initial state, none of the four tasks
will have been completed. In its final state, the report will have
been written (and the project therefore completed). Because there
are two projects and each can be in any one of the four states, there
are 16 possible environmental states (see Figure 1).

Dynamic Programming

The optimal decision according to expected utility theory
(von Neumann & Morgenstern, 1947) is to select the action
with the highest expected value. Dynamic programming is a
technique used to calculate the expected value of actions in
multistage decisions, and thus determine which decisions are
optimal (Hutchinson & McNamara, 2000). The optimal deci-
sion is determined using backward induction. Broadly, back-
ward induction involves first calculating the optimal decisions
at the final stage, because the values of the environmental states
that may eventuate after the final decision are known; then
using this information to determine the values of environmental
states at previous stages, which in turn allows the calculation of
the optimal decision at those stages. Dynamic programming is
commonly used in the animal behavior literature to determine

Figure 1. The 16 possible environmental states of a multistage decision
task in which a consultant simultaneously strives to complete two projects.
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optimal strategies for carrying out complex sequences of ac-
tions (Dall, Houston, & McNamara, 2004; Houston, Clark,
McNamara, & Mangel, 1988; McNamara & Houston, 1986).
Dynamic programming is also commonly used by decision
analysts to find optimal solutions to complex problems in the
workplace, such as how to minimize financial losses after an
earthquake (Yeo & Cornell, 2009), or how to most efficiently
collect meteorological data (Hanlon, Stefik, Small, Verlinde, &
Young, 2013).

Figure 2 shows how dynamic programming can be applied to
the example described earlier, in which a consultant has to com-
plete two projects within 10 weeks (see Busemeyer et al., 2000;
Johnson & Busemeyer, 2001, for further examples). Step 1 is to
start after the final week (i.e., Week 10) and identify the value of
every environmental state at this point in time. Step 1 in Figure 2
shows the values of each of the 16 states at the end of Week 10.
We equate value with the number of attained goals (i.e., the

number of projects completed). The state that represents complet-
ing both projects therefore has a value of two, the six states that
represent completing one project have a value of one, and the nine
states that represent neither project being completed have a value
of zero.

Step 2 involves moving backward to the beginning of Week 10.
The task in this step is to identify, for each possible environmental
state, whether it is optimal to prioritize Project A or Project B in Week
10. This task is achieved by calculating the expected values (e)
associated with prioritizing Projects A and B in Week 10 for each
environmental state. Here, the expected value of prioritizing a project
represents the number of projects that one can expect to complete by
the end of Week 10 if that project is prioritized. The optimal decision
is to prioritize the project with the highest expected value because this
maximizes the number of projects once expects to complete. The
expected value of prioritizing each project (ea) is calculated using an
expected utility equation:

Figure 2. Dynamic programming applied to a multistage decision task in which a consultant simultaneously
strives to complete two projects within 10 weeks. The probability of completing a task in a given week on the
project that is prioritized is 0.8, and the probability of completing a task on the project that is not prioritized is
0.3. In the diagrams representing Steps 2 and 4, the expected value for prioritizing Project A is shown in the
top-left corner of each square; the expected value of prioritizing Project B is shown in the bottom-right corner;
and the optimal decision is in bold.
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ea(t) � �s ps�avs(t), (1)

where ps|a is the probability of the environmental state resulting
from an action being selected (i.e., a project being prioritized), and
vs (t) is the value of that environmental state at stage t (in this case,
stage t is Week 10). Step 2 in Figure 2 shows the expected values
for prioritizing Projects A or B in Week 10 for each of the 16
possible states. In this example, we have assumed that the proba-
bility of a consultant completing a task in a given week on the
project that is prioritized is 0.8. There is also a chance that the
consultant will make progress on the project that is not prioritized
in a given week. For example, while working on one project, the
consultant may have an insight for the other project. Alternatively,
they may assign a colleague to work on the other project. We
assume that the probability of completing a task on the project that
is not prioritized is 0.3 (and that whether or not one makes progress
toward a goal is independent of progress toward the other goal).

The top-left corner of each square shows the expected value of
prioritizing Project A and the bottom-right corner shows the ex-
pected value of prioritizing Project B. The optimal decision is in
bold. Consider a consultant who, at the beginning of Week 10,
only has to write the report for Project A, but has not yet done the
data analysis for Project B. The optimal decision for the consultant
is to prioritize Project A (expected value � 0.8), because doing so
gives a higher chance of completing this project (and thus achiev-
ing one of the goals by the end of Week 10) than if he or she were
to prioritize Project B (expected value � 0.3).

At Step 3, we start repeating the cycle established in Steps 1 and
2. Step 3 involves identifying the value of each possible environ-
mental state at the end of Week 9. When there is at least one stage
remaining, the value of an environmental state is equal to the
expected value of the optimal action in the following stage (i.e., the
action with the highest expected value). Thus, the value of each
environmental state at the end of Week 9 is equal to the expected
value of the project that is optimal to prioritize in Week 10. The
value of an environmental state when there is at least one week
remaining can therefore be represented as follows:

vs(t) � maxa[es�a(t � 1)], (2)

Step 4 involves moving backward to the beginning of Week 9.
Like Step 2, this step involves calculating the expected value of
prioritizing each project in Week 9 for every possible state (and
therefore the optimal decisions) in this stage using Equation 1.
Step 4 in Figure 2 shows these expected values (and optimal
decisions in bold). The process outlined in Figure 2 continues
backward using repeated cycles of Steps 3 and 4 until the optimal
decisions have been determined for every week.

Approach and Avoidance Goals

In this section, we use prospect theory (Kahneman & Tversky,
1979) to predict departures from optimality when people pursue
approach and avoidance goals. According to prospect theory,
framing decisions as an opportunity to gain produces risk-averse
behavior, whereas framing decisions as a threat of loss produces
risk-seeking behavior. For example, people tend to have a risk-
averse preference for a disease prevention program in which 200
people are certain to be saved in favor of a program that has a 1/3
chance of saving 600 people (and a 2/3 chance of saving nobody).

However, people tend to have a risk-seeking preference for a
program that has a 1/3 chance that nobody will die (and a 2/3 that
600 people will die) in favor of a program in which 400 people are
certain to die (Tversky & Kahneman, 1981). Given that the dif-
ferent frames contain the same information about probabilities and
values, these reversals of preference as a function of framing
represent departures from the normative standard.

These arguments suggest that people may depart from optimal-
ity in predictable ways during multiple-goal pursuit. When pursu-
ing multiple approach goals (e.g., when given opportunities to
gain), prospect theory suggests that individuals should behave in a
risk-averse manner. This equates to a bias for prioritizing the goal
in the best position, because doing so maintains a chance of
attaining one goal while minimizing the risk of failing both goals.
This bias should produce a tendency to be less likely to prioritize
the goal in the worst position than is optimal. When pursuing
multiple avoidance goals (e.g., when faced with threats of loss),
individuals should behave in a risk-seeking manner. This equates
to a bias for prioritizing the goal in the worst position, because
doing so provides the best chance of attaining both goals despite
the increased risk of failing both. This bias should produce a
tendency to be more likely to prioritize the goal in the worst
position than is optimal. The preceding arguments lead to the
following prediction.

Hypothesis: When pursuing two approach goals, an individual
is less likely to prioritize the goal in the worst position than is
optimal (i.e., will demonstrate risk-averse behavior); whereas
when pursuing avoidance goals, the individual is more likely
to prioritize the goal in the worst position than is optimal (i.e.,
will demonstrate risk-seeking behavior).

Method

Participants

The sample consisted of 20 participants (13 males, seven fe-
males) with ages ranging from 19 to 61 years (M � 27.42, SD �
10.09). These individuals were recruited from a mailing list at the
University of Bristol and received £10 as compensation, as well as
a small performance incentive (explained below).

Experimental Task

We developed a task that required participants to make a series
of discrete prioritization decisions while pursuing two goals (see
Figure 3). The task was broken down into a series of trials. Each
trial represented a single multiple-goal pursuit episode. Each trial
was broken down into a series of decisions (i.e., stages) in which
the participant chose between two actions: Option A and Option B.
Each action prioritized one goal at the expense of the other,
offering an 80% chance of success in making progress (i.e., mov-
ing toward an approach goal/not moving toward an avoidance
goal) on the prioritized goal and, independently, a 20% chance of
success in making progress on the nonprioritized goal. We made
participants aware of these probabilities to ensure that departures
from optimality were actually due to risk-averse or risk-seeking
tendencies, rather than other biases that are known to influence
decisions when people are unaware of event probabilities (Camil-
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leri & Newell, 2011). Participants selected an option by pressing
the left or right arrow key. They then received immediate feedback
about the decision outcome. Participants were then prompted to
press the space bar, after which the scores would update and they
would be prompted to make the next decision. Participants’ prog-
ress through the series of decisions was displayed on the screen
and the trial ceased after a prespecified number of actions had been
carried out.

Manipulations

We manipulated goal frame, dual-goal difficulty, and relative
position using a (2 � 3 � 4) within-subjects factorial design,
producing a total of 24 unique experimental conditions. Each of
these manipulations is explained below (see the Appendix for
details of each unique condition).

Goal frame. We manipulated goal frame within-participants
across two levels: approach and avoidance. In the approach con-
dition, the participant had two approach goals: to (a) achieve a
score of 10 blue points or more and (b) achieve a score of 10 green
points or more. The goals were the same for all trials in the
approach condition. Participants began the trial with fewer points
than required and had to gain points. In the example shown in
Figure 3, Option A prioritizes the blue goal and Option B priori-
tizes the green goal. If the action was successful with respect to a
particular goal, the participant would gain a point for that goal; if
unsuccessful, the participant would not gain a point. The outcomes
of actions with respect to each goal were independent of each
other: Any action could result in gaining a point for both goals,
gaining a point for only one goal, or not gaining a point for either
goal.

In the avoidance condition, the participants’ two avoidance
goals were to (a) avoid a score of 9 blue points or less and (b) avoid

a score of 9 green points or less. Participants began the trial with
more points than required and had to minimize the loss of points.
If the action was successful with respect to a particular goal, the
participant would not lose a point for the goal; if unsuccessful, the
participant would lose a point.

In addition to their compensation for participating in the study,
all participants began the experiment with an extra £4.32 and could
gain or lose 3 pence per goal depending on the goal frame condi-
tion. The verbal instructions and incentives associated with goal
achievement/failure reinforced the goal frame manipulation. In
the approach condition, the instructions emphasized the gains
associated with goal achievement, and participants could gain
money by achieving goals. Before each trial, participants were
instructed, “If you achieve both goals, you will GAIN 6 pence.
If you achieve one goal, you will GAIN 3 pence. If you do not
achieve either goal, you will not gain any money.” After the trial,
the participant was informed that “You have gained X pence,”
where X was 0, 3, or 6. In the avoidance condition, the instructions
emphasized the losses associated with goal failure, and participants
could lose money by failing goals. Participants were instructed, “If
you fail both goals, you will LOSE 6 pence. If you fail one goal,
you will LOSE 3 pence. If you do not fail either goal, you will not
lose any money.” After the trial, the participant was informed that
“You have lost X pence.”

Dual-goal difficulty. We manipulated the difficulty of achiev-
ing both goals to produce variability in the optimal decision. When
it is easy to achieve both goals, the optimal decision is to prioritize
the goal in the worse position because it maximizes the chance of
achieving both goals by ensuring that more progress is made on the
goal that is further from achievement, while still allowing some
progress to be made on the goal that is closer to achievement.
When it is difficult to achieve both goals, the optimal decision is

Figure 3. Screen shot of the experimental task (approach condition). See the online article for the color version
of this figure.
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to prioritize the goal in the better position because it maximizes the
chance of achieving at least one goal by ensuring that most of the
progress is made on the goal that is closer to achievement. We
manipulated dual-goal difficulty by varying the probability of
achieving both goals at the beginning of each trial within partici-
pants across three levels (low vs. moderate vs. high). We produced
these three levels by varying the starting score and number of
decisions a participant could make in each trial. The probability of
achieving both goals was between .95 and .96 in the low difficulty
condition, .57 and .58 in the moderate difficulty condition, and .03
and .06 in the high difficulty condition.

Relative position. We also produced variability in the optimal
decision by manipulating the relative position (i.e., the score
difference between the two goals) at the beginning of each trial. As
the score difference increases, the optimal decision often changes
from prioritizing the goal in the worse position to prioritizing the
goal in the better position. We manipulated the relative position by
varying the score difference at the beginning of each trial within
participants across four levels (0, 1, 3, and 5).

Measures

Participant’s decision. Each decision was coded according to
whether the participant chose the option that prioritized the goal in
the better or worse position, where 1 � worse position and 0 �
better position. The dependent variable was coded in this manner
because prioritization of the goal in the worst position is a bench-
mark phenomenon in the literature (e.g., Schmidt & DeShon,
2007).

Optimal decision. The decision generated by the optimal
model (referred to as the “optimal decision”) was coded in the
same way as participants’ decisions (1 � prioritizing the goal in
the worse position was optimal, 0 � prioritizing the goal in the
better position was optimal). These decisions were calculated
using MATLAB’s Markov Decision Process toolbox (Chadès,
Chapron, Cros, Garcia, & Sabbadin, 2014) with the dynamic
programming equations as described in the introduction.

Procedure

Participants performed the task on computers in an experimental
laboratory with an experimenter present at all times. After being
presented with instructions, participants completed two practice
trials (one approach and one avoidance, both with medium dual-
goal difficulty and a starting score difference of 0). Participants
then completed all 24 experimental conditions (2 Goal Frame � 3
Dual-goal Difficulty � 4 Relative Position) six times, with a 5-min
break halfway through the experiment. Each participant therefore
completed 144 trials. The number of decisions in each trial ranged
from 11 to 24. In total, each participant made 2,556 decisions.

Participants were presented with information about the goals
and monetary incentives prior to each trial. The participants’ goals,
scores, number of decisions remaining, and the probabilities that
each action would gain or lose points were displayed on screen for
the whole trial. After each trial, the participants were presented
with feedback reminding them of whether each goal was achieved
or failed and informing them of their monetary gain or loss for that
trial. After the experiment was completed, the participant received
his or her compensation and monetary incentive. The experiment

took approximately 90 min to complete. The total number of
decisions made across all participants was 51,120 (2,556 decisions
per participant � 20 participants). However, because of technical
difficulties, data from the first experimental trial were not recorded
for two participants. The total number of decisions for which we
had data was 51,081.

Results

We analyzed decisions where participants were faced with a
choice between prioritizing the goal in the better position or the
worse position. We therefore excluded decisions in which (a) at
least one goal had already been either achieved/failed or (b) the
scores for each goal were equal. Of the remaining decisions, there
were also a small number of cases (i.e., �1%) in which there was
no optimal decision because the expected values of the two actions
were equal. These cases were also excluded from analysis. The
total number of decisions that remained was 28,165, which corre-
sponded to approximately 55% of decisions from any given trial.
For each participant decision, we also analyzed the corresponding
optimal decision. Thus, the total number of decisions analyzed was
56,330.

We hypothesized that participants would be less likely to pri-
oritize the goal in the worse position than the optimal model when
pursuing approach goals but more likely than the optimal model
when pursuing avoidance goals. The results are shown in Figure 4.
This figure shows the proportion of decisions prioritizing the goal
in the worse position as a function of goal frame (approach or
avoidance) and decision source (participant or model). We tested
for the hypothesized interaction with a logistic mixed-effects
model. This model was implemented using the lme4 package in R
(Bates, Maechler, Bolker, & Walker, 2014), by specifying a gen-
eralized linear fixed effects model with a logit link function. The

Figure 4. Interaction of goal frame (approach vs. avoidance) and decision
source (participants vs. optimal model) on prioritization.
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dependent variable in the model was whether or not the decision
prioritized the goal in the worse position (1 if yes, 0 if no). The
predictors were goal frame (1 � approach, �1 � avoidance),
decision source (1 � participant, �1 � optimal model), and the
interaction between these two variables. The model accounted for
the nested structure of the data by controlling for the random
effects of participant and trial. The analysis revealed significant
main effects of goal frame and decision source, as well as a
significant interaction between goal frame and decision source (see
Table 1). As Figure 4 illustrates, the interaction was in the pre-
dicted direction. People were less likely to prioritize the goal in the
worse position than the optimal model when pursuing approach
goals but more likely to prioritize the goal in the worse position
than the optimal model when pursuing avoidance goals.

We conducted follow-up tests to assess whether the departures
from optimality were significant in each condition. To do this, we
ran separate logistic mixed-effects models for the approach and
avoidance conditions. Each model had a single predictor—deci-
sion source. As expected, these analyses revealed that in the
approach condition, participants were significantly less likely to
prioritize the goal in the worse position than was optimal,
� � �0.46, SE � 0.01, p � .001. In the avoidance condition,
participants were significantly more likely to prioritize the goal in
the worse position than was optimal, � � 0.09, SE � 0.01, p �
.001. Thus, consistent with our hypothesis, when individuals were
pursuing two approach goals, their prioritization decisions were
biased in a risk-averse manner, whereas when they were pursuing
two avoidance goals, their decisions were biased in a risk-seeking
manner.1

Discussion

A growing body of research has focused on identifying factors
that predict how people prioritize competing goals (Kernan &
Lord, 1990; Louro et al., 2007; Schmidt & DeShon, 2007; Schmidt
et al., 2009; Schmidt & Dolis, 2009). However, previous work has
not examined whether people make prioritization decisions that are
optimal. The optimal choice at any point in time is the one that
maximizes the potential for goal achievement. Understanding how
people depart from optimality is important because it provides
insight into how prioritization decisions are made and facilitates
practical efforts to improve them (Baron, 2004, 2012). For this
reason, we developed a normative model of prioritization based on
expected utility theory and used this model to examine the impact
of one factor—goal frame—on the optimality of decisions. In the
following sections, we discuss the contributions this work makes
to the multiple-goal pursuit literature and suggest avenues for
future research. We then discuss the practical implications and
potential limitations of this work.

Departures From Optimality During Multiple
Goal Pursuit

One of the primary contributions of the current study is the
finding that people depart from optimality in predictable ways
during multiple goal pursuit. When pursuing approach goals, peo-
ple depart from optimality by underprioritizing the goal in the
worse position relative to a normative baseline. When pursuing
avoidance goals, people depart from optimality in a different
way—they overprioritize the goal in the worse position relative to
a normative baseline. Previous research in the field has revealed
variability in the tendency to prioritize the goal in the worse
position when pursuing approach goals (Kernan & Lord, 1990;
Schmidt & DeShon, 2007). Schmidt and colleagues have found
that this tendency changes as a function of dual-goal difficulty
(Schmidt & Dolis, 2009) and the volatility of the environment
(Schmidt et al., 2009). We extend this previous work by demon-
strating that prioritization depends on the goal frame itself; in our
experiment, people prioritized the goal in the worse position about
45% of the time when pursuing approach goals, and about 65% of
the time when pursuing avoidance goals. We also extend previous
work by demonstrating that these tendencies reflect biases, be-
cause they represent systematic departures from optimality. Spe-
cifically, people exhibited a risk-averse bias when pursuing ap-
proach goals, and a risk-seeking bias when pursuing avoidance
goals.

Our findings highlight the value of using theories of decision
making to understand multiple-goal pursuit. The risk-averse and
risk-seeking biases under approach and avoidance, respectively,
are consistent with prospect theory (Kahneman & Tversky, 1979).
The support for prospect theory in a dynamic environment is
significant because the theory has primarily been applied to static
tasks in which the outcomes of decisions do not accumulate over
time and individuals are not working toward any specific goal.
Only a small number of studies have tested the predictions of
prospect theory using dynamic tasks. These studies have revealed
that the biases can disappear or even reverse in dynamic environ-
ments. For example, Thaler and Johnson (1990) found that in a
two-stage gambling task in which participants had no specific goal,
people were risk-seeking when making decisions involving gains
if they had just experienced a gain (“the house money effect”). By
contrast, people were risk-averse when making decisions involving
losses if they had just experienced a loss. Hollenbeck et al. (1994)
examined risk in a dynamic work simulation task and showed that
the effect of framing depends on goal specificity. When given the
nonspecific goal to do their best, people made riskier decisions
when incentivized with gains as opposed to losses. However, when
given a specific goal, consistent with our own findings, people
made riskier decisions when incentivized with losses as opposed to
gains. These findings, together with our own results, suggest that

1 An anonymous reviewer questioned whether our results could be
influenced by the two practice trials not having been sufficient to become
acquainted with the task or the avoidance condition having been more
difficult to understand than the approach. We therefore reanalyzed the data
with the first 48 experimental trials (i.e., the first third) excluded and found
that the results have the same substantive interpretation as when these trials
are included. This finding suggests that learning did not influence the
results, as participants would have been very familiar with both conditions
by the 48th trial.

Table 1
Effects of Goal Frame and Decision Source on Prioritization

Predictor � SE p

Intercept �.38 .04 �.001
Goal Frame �.12 .01 �.001
Decision Source �.18 .01 �.001
Goal Frame � Decision Source �.26 .01 �.001
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prospect theory may generalize to dynamic environments in which
people are pursuing specific goals.

An important next step is to shift from description to explana-
tion. Our study is descriptive in the sense that it focuses on the
factors that produce departures from optimal prioritization. Ex-
planatory models are needed to describe the underlying psycho-
logical processes that generate these biases. The multiple-goal
pursuit model (Vancouver, Weinhardt, & Schmidt, 2010; Vancou-
ver, Weinhardt, & Vigo, 2014) is currently the only formal model
that explains how people make prioritization decisions during
multiple goal pursuit. There are a number of ways in which the
effects of goal framing might be explained by the multiple-goal
pursuit model. Vancouver et al. (2010) proposed that people might
perceive avoidance goals as more important than approach goals.
If so, then people should be more sensitive to the goal-performance
discrepancy for an avoidance goal than an approach goal. This
difference in sensitivity may explain why people are more likely to
prioritize the goal in the worse position when pursuing avoidance
goals than when pursuing approach goals.

Another way to explain the biases observed in the current study
might be to incorporate the law of diminishing returns within the
multiple-goal pursuit model, in the same way that the law of
diminishing returns was incorporated within prospect theory. The
law of diminishing returns suggests that the marginal utility of goal
achievement should decline with each additional goal achieved in
the approach condition. Likewise, the marginal utility of goal
failure should decline with each additional goal failed in the
avoidance condition. These declines have different implications
when pursuing approach and avoidance goals. In the approach
context, the pleasure experienced from achieving the first goal is
greater than the pleasure experienced from achieving the second
goal. Thus, when pursuing approach goals, achievement of the first
goal may be perceived as more important, making people less
likely to prioritize the goal in the worse position. In the avoidance
context, the pain experienced from failing the first goal is greater
than the pain experienced from failing the second goal. Thus, when
pursuing avoidance goals, avoiding failure of the first goal may be
perceived as most important, making people more likely to prior-
itize the goal in the worse position.

Another potential explanation is dual-goal expectancy. People
are more likely to prioritize the goal in the worse position when
they believe that they can achieve both goals (Schmidt & Dolis,
2009). It is therefore possible that, in the approach context, the
tendency to underprioritize the goal in the worse position was due
to people underestimating the likelihood of achieving both goals.
Likewise, in the avoidance context, the tendency to overprioritize
the goal in the worse position may have been due to people
overestimating the likelihood of achieving both goals.

A final potential explanation is time perception. The perception
of time available influences prioritization: People prioritize the
goal in the worse position less often as they get closer to a deadline
(Schmidt & DeShon, 2007). The perception of more time available
should therefore increase the likelihood of prioritizing the goal in
the worse position. There is some evidence to suggest that people
may underestimate the passage of time in avoidance contexts, but
overestimate time elapsed in approach contexts (Angrilli, Cheru-
bini, Pavese, & Manfredini, 1997). This disparity in the perception
of time may result from people engaging in a more resource-
intensive type of information processing under avoidance com-

pared to approach (Roskes, Elliot, Nijstad, & De Dreu, 2013),
which can in turn reduce the perception of passing time (Block,
Hancock, & Zakay, 2010).

The Usefulness of Normative Models

This normative model of prioritization is useful for understand-
ing multiple-goal pursuit because it can be used to evaluate opti-
mality in a range of different settings. We have shown that the
model can be implemented for multistage decision tasks, in which
goal pursuit was broken down into discrete stages and people made
a single prioritization decision in each stage. As described in the
introduction, multiple-goal pursuit can often be modeled as a
multistage decision task. The normative model can also be ex-
tended to tasks in which people can reprioritize continuously over
time. Identifying the optimal decisions in this type of environment
requires a continuous model that accounts for the fact that the
environment (and therefore the optimal course of action) can
change at any given point in time (see Lembersky, 1974; Miller,
1968). Previous research has found little difference in behavior on
dynamic tasks as a function of whether a task is discrete or
continuous (Brehmer, 1992). However, a continuous task may
enable the examination of other factors that produce departures
from optimality. For example, in the absence of discrete decision
points, people may vary in how often they switch priority, which
may affect the optimality of decision making. For example, an
operator who switches from monitoring one system to another too
frequently may incur unnecessarily high switch costs, because time
will be needed to get up to speed with each system. By contrast, an
operator who does not switch frequently enough may fail to notice
developing problems in other systems.

Normative models are useful for understanding decision making
because they enable the examination of biases, which are system-
atic departures from the normative model (Baron, 2004; Chapman
& Weber, 2006). Biases provide insights into the way that people
make decisions (Baron, 2012; Dobbins & Han, 2007). The nor-
mative model presented in this article provides the opportunity for
new lines of research aimed at understanding other biases that may
affect how people make decisions during multiple-goal pursuit.
Other biases that might affect multiple-goal pursuit include the
sunk-cost effect (Arkes & Blumer, 1985), the status quo bias
(Anderson, 2003), and anchoring and adjustment (the overreliance
on certain pieces of information; Tversky & Kahneman, 1974). For
example, the sunk cost effect refers to the tendency to persist at a
task in which one has already invested time or effort (Arkes &
Blumer, 1985). This tendency may bias people toward prioritizing
goals in which they have invested effort even when the potential
for goal achievement is low.

It is an open question whether the biases demonstrated here
persist under different conditions. For example, studies of single-
stage decisions have revealed mixed evidence about whether de-
cisions differ when outcome probabilities are given, as opposed to
when they must be learned—this difference is referred to as the
decision-experience gap (Camilleri & Newell, 2011; Hertwig, Bar-
ron, Weber, & Erev, 2004). The decision-experience gap exists at
least in part because, when decisions are made based on experi-
ence, rare events have less impact than they should according to
their objective probabilities (Hertwig & Erev, 2009). In the current
experiment, participants were informed of the probabilities of
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various outcomes. One question for future research is whether
people make different prioritization decisions when they must
learn the probabilities of actions having a particular effect on goal
progress. To determine the generalizability of our findings, future
research should examine whether people exhibit similar biases in
contexts where they must learn the effects of actions (see Satia &
Lave, 1973, for generalization of the normative model to this type
of environment).

Practical Implications

There are many situations in which departures from optimality
during multiple goal pursuit can have significant consequences.
For example, individuals and teams working across multiple proj-
ects need to prioritize the allocation of time and effort to meet
competing deadlines. People performing process control or sched-
uling tasks need to prioritize the allocation of physical resources to
different components of the system. Managers need to prioritize
the allocation of tangible and intangible assets (e.g., capital, fi-
nance, human resources) across different business units or ven-
tures. In each case, the suboptimal allocation of resources in-
creases the risk that the decision maker will not achieve one or
more of their goals by the deadline.

Understanding how people depart from optimality during
multiple-goal pursuit is practically useful because it can be used to
inform the development of interventions to improve the quality of
decision making during multiple goal pursuit. There are a range of
interventions in which dynamic programming can be used, includ-
ing training (e.g., McGinnis & Fernandez-Gaucherand, 1994),
decision support (e.g., Hanlon et al., 2013; Parasuraman, Masalo-
nis, & Hancock, 2000; Yeo & Cornell, 2009), and performance
management (e.g., Anderson, 2001; Pinker & Larson, 2003). For
example, dynamic programming models can be incorporated into
training simulations, and used to provide trainees with feedback
that will help them prioritize optimally. Such models can also
facilitate the development of decision support systems that im-
prove decision making on the job. Managers may influence the
way that staff prioritize the allocation of resources to competing
goals by framing those goals in approach or avoidance terms to
induce risk aversion or risk-seeking. If the goals cannot be re-
framed, managers may be able to use instructions or incentives to
change the relative importance of the goals, or adjust the difficulty
of the goals or the deadlines, to counteract these biases.

Additional Considerations

To operationalize decision optimality, it is necessary to select a
criterion by which to evaluate optimality. We used the criterion of
expected-value maximization because it provides an objective,
mathematical tool to determine the optimal decision. However,
this criterion is not the only way to define optimality. For example,
the principle of bounded rationality states that a normative model
should take into account the information processing capabilities of
the decision maker (Simon, 1955). According to this perspective,
expected-value maximization may not be a good criterion for
optimality, because processing constraints reduce the amount of
information that can be incorporated into the decision. However, it
is difficult to use the principle of bounded rationality to derive a
normative standard for optimal decision making, because the an-

alyst needs to be able to quantify the amount of information to be
processed and the capacity of the human information processor.
Despite over 60 years of research on human information process-
ing capacity, this problem has still not been solved (Gopher &
Donchin, 1986; Neal et al., 2014)

Another feature of our research that should be considered is the
use of a laboratory task and student sample. It is often assumed that
student samples lack representativeness, and the results of labora-
tory experiments lack generalizability. However, such criticisms
confuse statistical generalizability with theoretical generalizability.
The aim of this research is theoretical generalization—to test a set
of hypotheses derived from a theory. A theory can be tested in any
sample to which it applies (Highhouse, 2009). Nevertheless, rep-
licating the current study with different tasks, settings, and samples
will be necessary to identify potential boundary conditions.

Conclusion

This research demonstrates the usefulness of theory and meth-
odology from the decision-making literature for understanding
multiple-goal pursuit. We have shown how the normative models
that have been so useful for understanding basic decision making
can help us understand prioritization in dynamic, multiple-goal
environments. The finding that people depart from optimality in a
manner consistent with prospect theory suggests that basic
decision-making principles can provide insight into the complex
process of managing competing goals. Although theories of
multiple-goal pursuit have begun to integrate accounts of motiva-
tion and decision-making (Vancouver et al., 2010), we believe that
further integration will lead to a more sophisticated understanding
of prioritization. We hope that the continued integration of these
distinct theoretical traditions will provide fruitful avenues for
future research and practical efforts to enhance decision making in
the workplace.
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Appendix

Summary of Manipulations

Dual-goal difficulty Goal in better position Goal in worse position

Goal frame Level
Probability of

achieving both goals
Number of
decisions

Starting score
difference

Starting
score

Successful actions
required

Starting
score

Successful actions
required

Approach High .95 24 0 0 10 0 10
.95 23 1 1 9 0 10
.96 21 3 3 7 0 10
.96 19 5 5 5 0 10

Moderate .57 20 0 0 10 0 10
.57 19 1 1 9 0 10
.57 17 3 3 7 0 10
.58 15 5 5 5 0 10

Low .06 16 0 0 10 0 10
.05 15 1 1 9 0 10
.04 13 3 3 7 0 10
.03 11 5 5 5 0 10

Avoidance High .95 24 0 24 10 24 10
.95 23 1 24 9 23 10
.96 21 3 24 7 21 10
.96 19 5 24 5 19 10

Moderate .57 20 0 20 10 20 10
.57 19 1 20 9 19 10
.57 17 3 20 7 17 10
.58 15 5 20 5 15 10

Low .06 16 0 16 10 16 10
.05 15 1 16 9 15 10
.04 13 3 16 7 13 10
.03 11 5 16 5 11 10
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