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Aberrant hnRNP K expression: All roads lead to cancer
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ABSTRACT
The classification of a gene as an oncogene or a tumor suppressor has been a staple of cancer biology for
decades. However, as we delve deeper into the biology of these genes, this simple classification has become
increasingly difficult for some. In the case of heterogeneous nuclear ribonuclear protein K (hnRNP K), its role
as a tumor suppressor has recently been described in acute myeloid leukemia and demonstrated in a
haploinsufficient mouse model. In contrast, data from other clinical correlation studies suggest that hnRNP K
may be more fittingly described as an oncogene, due to its increased levels in a variety of malignancies.
hnRNP K is a multifunctional protein that can regulate both oncogenic and tumor suppressive pathways
through a bevy of chromatin-, DNA-, RNA-, and protein-mediated activates, suggesting its aberrant
expression may have broad-reaching cellular impacts. In this review, we highlight our current understanding
of hnRNP K, with particular emphasis on its apparently dichotomous roles in tumorigenesis.
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Introduction

Over the past several decades, clinical and basic science studies
have attempted to determine the critical genetic alterations that
directly influence tumorigenesis. In doing so, it has been useful
to categorize genes as either tumor suppressors (resulting from
gene loss or inactivating mutations) or oncogenes (when gene
products are overexpressed). This has allowed researchers and
clinicians to delineate the functional and clinical consequences
of many genetic alterations. However, these classifications do
not always accurately reflect the reality of aberrant gene expres-
sion. As an example, the protein p53 was first thought to be an
oncogene when it was originally discovered due to its increased
stability when mutated.1,2 However, once its cellular function
was better understood, it was proven to be a potent tumor sup-
pressor.3 Recently, its role as an oncogene (or at least having
oncogenic potential) has been reassessed following the discov-
ery that stabilized mutant p53 does in fact confer gain-of-func-
tion phenotypes.4,5 Such blurring of traditional oncogene/
tumor suppressor roles is now becoming more accepted, as evi-
denced by similar observations in the TGF-b pathway.6,7

More recently, evidence has emerged that heterogeneous
nuclear ribonucleoprotein K (hnRNP K) may be even harder to
classify as a tumor suppressor or an oncogene. This is due to the
fact that biochemical and in vitro studies have shown that
hnRNP K has the capacity to regulate both tumor suppressive
and oncogenic pathways, and both its overexpression and knock-
down results in cell proliferation and apoptotic defects.8-13 In
support of its potential oncogenic functions, clinical association
studies suggest that hnRNP K overexpression correlates with
poor clinical outcomes and advanced disease status in a variety

of malignancies, including melanoma, prostate, breast, lung, colo-
rectal, hepatocellular, and esophageal cancers.14-18 In contrast,
other clinical studies suggest reduced hnRNP K expression, due
to deletion of or mutations in the HNRNPK gene, may underpin
the pathogenesis of acute myeloid leukemia (AML).19-23 In the
case of mutation, there are further questions concerning whether
specific mutations inactivate the protein or potentially stabilize
or confer gain-of-function phenotypes, reminiscent of mutations
observed in the c-Myc protein and mutant p53 proteins,
respectively.

Given the lack of consensus between the biochemical, in
vitro, and clinical data, it is apparent that hnRNP K has more
to its story than just a simple classification as either an onco-
gene or tumor suppressor. This review will highlight aspects of
our current knowledge of hnRNP K’s role in cancer biology,
describe studies that have evaluated hnRNP K-dependent tran-
scriptional and translational activities, examine the molecular
consequence of Hnrnpk haploinsufficiency in vivo, and provide
insight into future investigations using Hnrnpk mouse models.

HnRNP K-mediated transcriptional and translational
activities regulate pathways involved
in tumorigenesis

hnRNP K is an extremely versatile and multifunctional protein
that influences transcription, translation, splicing, RNA stabil-
ity, and chromatin remodeling through its capacity to strin-
gently bind RNA and single-stranded (ss) DNA via its KH
domains.24 The roles that hnRNP K plays in these diverse cellu-
lar functions are well documented and have been reviewed
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elsewhere.25,26 Here; however, we will highlight key points to
emphasize its potential role in both oncogenic and tumor sup-
pressive pathways.

At the transcriptional level, hnRNP K has been implicated in
directly and indirectly regulating gene expression. With respect
to cancer biology, hnRNP K directly mediates the expression of
both oncogenes and tumor suppressors, such as SRC, MYC,
CDKN1A (p21), HDM2 (Mdm2 in the mouse), and EIF4E
through its direct binding to C-rich regions in the promoters of
these genes.9-12,27 In addition to this direct transcriptional gene
regulation, hnRNP K is implicated in positively influencing
gene expression through direct interaction with the TATA-
binding protein (TBP) of the RNA polymerase machinery,28,29

as well as negatively regulating gene expression through its
interactions with lincRNA-21.30,31 Furthermore, hnRNP K also
plays a critical role in chromatin remodeling by acting as a scaf-
fold protein that binds to DNA matrix attachment regions
(MARs) and thus stabilizes the chromatin.32 While this finding
suggests that hnRNP K positively influences global transcrip-
tion through its chromatin interactions, hnRNP K also interacts
with and regulates the localization of the Polycomb repressive
complex through its interaction with a core component, Eed.33

Taken as a whole, hnRNP K appears to have conflicting activat-
ing and repressive influences on gene expression. On the one
hand, hnRNP K has the ability to directly enhance or repress
transcription of specific genes, while on the other hand, it can
simultaneously enhance or diminish global gene expression.
Thus, given its proposed role in regulating critical cellular path-
ways, any change in its expression may result in significant
consequences.

In addition to transcriptionally regulating gene expression
through its direct interaction with DNA, hnRNP K also binds
to mRNA transcripts and translationally regulates protein
expression. Similar to its conflicting roles in both positively and
negatively regulating transcription, hnRNP K has the capacity
to activate or inhibit the translation of some mRNA transcripts.
For example, hnRNP K has been shown to positively stimulate
MYC translation,8,34,35 while it inhibits the translation of 15-
LOX, a key regulator of erythroid differentiation.36,37 Collec-
tively, these duplicitous and opposing mechanisms of gene reg-
ulation present a complex situation, whereby hnRNP K may
play a critical balancing act between its roles in directly and
globally activating and repressing gene expression, and simulta-
neously controlling translation of mRNA transcripts. Thus, it is
easy to envision scenarios where small changes in hnRNP K
expression (either increased or decreased) could result in dras-
tic cellular defects that impact oncogenic or tumor suppressor
pathways and directly impact tumorigenesis.

Biochemical and in vitro evidence for a direct role
of HnRNP K in tumorigenesis

Two of the classic tumor suppressor and oncogenic pathways
directly impacted by hnRNP K-mediated transcriptional and
translational activities are the p53/p21 and c-Myc pathways,
respectively.9-11 Biochemical experiments performed nearly a
decade ago provided the first evidence that hnRNP K may play
a pivotal role in tumor suppression. In these studies, hnRNP K
was shown to be phosphorylated by ATM and ATR following

DNA damage, which directly resulted in activation of p21.10,11

Building on these findings, hnRNP K was later shown to be
sumoylated in an ATR-dependent manner following UV-irra-
diation, resulting in enhanced p53-dependent transcriptional
activation of p21.38,39 These results indicate that hnRNP K may
act as a putative tumor suppressor and suggest that its loss may
directly impact tumor formation. Interestingly, hnRNP K has
recently been shown to also negatively impact the translation of
the p21 transcript by binding to its 30 UTR, although this effect
was demonstrated in the context of neuronal differentiation.40

These observations suggest that within tissue-specific contexts,
hnRNP K may have the capacity to either suppress or promote
tumorigenesis through a single pathway; however, detailed in
vivo studies are needed to test the veracity of such a notion.

In addition to controlling tumor suppressive programs,
hnRNP K has also been shown to influence the expression of
oncogenic pathways.26 As a classic example, hnRNP K directly
interacts with C-rich regions in the MYC promoter, leading to
increased c-Myc expression.9 In addition, hnRNP K is also
thought to translationally regulate c-Myc expression by binding
to these same C-rich regions in the 50 UTR of the MYC tran-
script to promote ribosomal loading and further drive c-Myc
expression.8 The transcriptional and translational hnRNP K-
mediated regulation of c-Myc suggest that hnRNP K overex-
pression may result in oncogenic phenotypes, and perhaps
most importantly, implicates hnRNP K as a potential driver of
c-Myc-dependent malignancies when the MYC gene is not
amplified or translocated.

Clinical evidence for a role of aberrant HnRNP
K in tumorigenesis

Much of the clinical data regarding hnRNP K’s role in tumori-
genesis originates from pathologic and immunohistochemical
analyses of archived patient samples. These studies revealed
that increased hnRNP K expression associated with poor clini-
cal status in melanoma, prostate, breast, lung, colorectal, hepa-
tocellular, and esophageal cancers.14-18 Given the myriad of
tumor types that overexpress hnRNP K in these studies and its
correlation with disease prognosis, these data suggest that
hnRNP K may have oncogenic functions when overexpressed.

However, in contrast to hnRNP K’s putative oncogenic roles,
HNRNPK is one of 6 genes that maps to the minimally deleted
region of the 9q21.32 locus, which is thought to harbor a hap-
loinsufficient tumor suppressor in patients with acute myeloid
leukemia (AML).19-21,23 Furthermore, TCGA recently demon-
strated that HNRNPK mutations have the capacity to act as
driving events in AML.22 However, it is currently unknown if
these HNRNPK mutations confer gain-of-function or haploin-
sufficient phenotypes.

Therefore, to more fully evaluate how hnRNP K expression
contributes to the pathogenesis of AML, we examined
HNRNPK expression in AML patients with diploid karyotypes
that carried a 9q21.32 deletion. To this end, we developed a
dual-color fluorescence in situ hybridization (FISH) assay using
bacterial artificial chromosomes containing the entire
HNRNPK gene (RP11- 101L4) and a control probe to the 9p
region (RP11-19G1). Using this FISH assay, we observed that
HNRNPK is specifically lost in a subset of malignant
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haematopoietic cells isolated from the bone marrows of de novo
AML patients but not in healthy controls (Fig. 1). Additionally,
qRT-PCR analyses revealed that deletion of the 9q21.32 locus
significantly reduced HNRNPK expression in patients with
AML.41 Critically, 8 of 12 patients had deletion of this 9q21.32
region as their sole karyotypic abnormality, suggesting reduced
HNRNPK expression directly contributes to the pathogenesis of
AML.

An in vivomodel of Hnrnpk haploinsufficiency

To directly examine if HNRNPK is, in fact, the haploinsufficient
tumor suppressor residing at the 9q21.32 locus, our laboratory
generated an Hnrnpk haploinsufficient mouse model and
recently published a manuscript that examines the role of
Hnrnpk haploinsufficiency in vivo.41 Using mouse embryo
fibroblasts (MEFs) and haematopoietic stem progenitor cells
(HSPCs) in cytokine-dependent colony formation assays, we
determined that reduced hnRNP K expression directly resulted
in an increase in cellular proliferation. Molecularly, this
increased proliferation was directly attributed to hnRNP K’s
inability to transcriptionally activate p21 when its levels were
reduced, supporting the notion that hnRNP K has tumor sup-
pressive functions.

In addition to the increased proliferation observed in colony
formation assays and in the bone marrow of these mice,
Hnrnpk haploinsufficiency also contributed to defects in mye-
loid differentiation. Similar to the hnRNP K-mediated effects
on p21, reduced hnRNP K expression also directly impacted
the expression of critical myeloid differentiation factors
C/EBP-a and -b. Molecular analyses revealed that reduced
hnRNP K levels dampened its ability to transcriptionally regu-
late the expression of these genes. Interestingly, only the
C/EBPa p42 isoform, but not p30, was significantly downregu-
lated in HnrnpkC/¡ mice. This lack of expression of the p42 iso-
form partially explains the myeloproliferative phenotype
developed by HnrnpkC/¡ mice, as previous studies have identi-
fied the p42 isoform as a critical myeloid tumor suppressor that
significantly alters myelopoiesis. Given hnRNP K’s role in

translation and the fact that both the p30 and p42 isoforms are
translated from the same mRNA, we hypothesized that hnRNP
K may influence the expression of specific C/EBPa isoforms.
This notion is supported by our finding that hnRNP K directly
interacts with the C/EBPa transcript in human leukemic cell
lines and in wild type mice. Importantly, these interactions
were significantly reduced in bone marrow cells isolated from
Hnrnpk haploinsufficient mice. Together, these clinical and
animal model data suggest that reduced hnRNP K contributes
to these leukemic phenotypes through its direct regulation of
the p53/p21- and C/EBP- pathways and support the hypothesis
that HNRNPK is the haploinsufficient tumor suppressor at the
9q21.32 locus (Fig. 2A and B).

Reduced hnRNP K expression impacts developmental
processes

With the multitude of pathways and cellular programs influ-
enced by hnRNP K, it is easy to envision how alterations in its
expression influence tumorigenesis. However, other striking
phenotypes observed in haploinsufficient Hnrnpk mice were
not related to increased cancer risk, but rather developmental
defects.41 Hnrnpk haploinsufficiency resulted in mice being
born at a sub-mendelian ratio, extreme runtedness, a propen-
sity for facial malformations, and a significant neonatal lethal
phenotype. Analogous to our observations in mice, pediatric
patients with germline HNRNPK mutations (c.953 C 1dup and
c.257G > A; respectively) have been recently described.42 These
mutations result in haploinsufficient loss of wild type hnRNP K
expression, and have been identified as causal events in the
development of a syndrome consisting of craniofacial malfor-
mations, intellectual disability, and skeletal and connective tis-
sue abnormalities. Furthermore, studies in Xenopus laevis have
shown that antisense morpholino-mediated loss of hnRNP K
expression also results in neuronal development defects.43

However, perhaps the most striking evidence that hnRNP K is
required for development stems from our observation that bi-
allelic loss of Hnrnpk results in an embryo lethal phenotype
prior to day 13.5 (E13.5).41 Given that hnRNP K has been pre-
viously shown to transcriptionally regulate Mdm2 expres-
sion,10,11 we postulated that bi-allelic Hnrnpk loss may
potentially result in an embryo-lethal phenotype that is similar
to loss of Mdm2 (i.e; an inability to negatively regulate p53-
dependent apoptosis in utero).44 However, when we generated
HnrnpkC/¡;Trp53C/¡ mice and then performed sibling matings,
we did not rescue the Hnrnpk-null embryo-lethal phenotype.
These initial observations suggest that hnRNP K’s influence on
embryonic development primarily resides in its impact on cel-
lular programs outside of the p53 pathway.

Summary and future directions

Based on recent studies, there is now accumulating evidence
that hnRNP K plays a critical role in regulating many funda-
mental cellular process that directly impact human diseases,
such as tumorigenesis and congenital defects. In the context of
malignancies, the impact that aberrant hnRNP K expression
has on disease progression is complex, as there is evidence that
hnRNP K has both oncogenic and tumor suppressive functions.

Figure 1. The HNRNPK gene is lost in a subset of de novo AML patients. (Left) Func-
tional validation of the control probe (RP11-19G1, green) to the distal arm of chro-
mosome 9p and HNRNPK probe (RP11-101L4, red) to the 9q21.32 locus using
metaphase FISH on haematopoietic cells from healthy donors. DAPI is used as a
counterstain to denote the DNA (chromosomes). (Middle). Nuclei of an interphase
haematopoietic cell isolated from the bone marrow of a healthy donor indicating
two HNRNPK alleles on chromosome 9 (two red/2 green). DAPI is used as a coun-
terstain to denote the nucleus. (Right). Nuclei of an interphase haematopoietic cell
isolated from the bone marrow of a de novo AML patient with haploinsufficient
loss of the HNRNPK gene (one red/2 green). DAPI is used as a counterstain to
denote the nucleus.
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However, determining its precise impact on cancer risk is com-
plicated by the fact that hnRNP K is capable of both strength-
ening and attenuating diametrically opposed oncogenic and
tumor suppressive pathways. With the development of an
Hnrnpk haploinsufficient mouse model, we have made initial
strides in examining the tumor suppressive functions of hnRNP
K and delineated the importance of reduced hnRNP K expres-
sion in cancer development through the p53/p21- and C/EBP-
pathways.41 As a result, this model system could become an
effective pre-clinical platform to test therapies for patients with
AML who harbor a 9q21.32 deletion. In these studies, standard
frontline therapies could be used in combination with agents
that antagonize the Mdm2-dependent degradation of p53, such
as Nutlin-3, DS-3032b, or RG7112 in order to “re-engage” the
p53 pathway.

In addition to its tumor suppressive functions, there are also
clinical association studies, as well as biochemical and in vitro
studies that strongly suggest hnRNP K may also serve as an
oncogene when overexpressed.14-18 However, to directly test
this notion, there is an absolute need for the development of
transgenic animal models that overexpress wild-type hnRNP K.
We have currently undertaken this task by generating tissue-
specific Hnrnpk transgenic mice. These model systems will
directly test whether hnRNP K is a bona fide oncogene and will
be useful in identifying the genes and cellular programs critical
for tumorigenesis when hnRNP K is overexpressed. Similar to
the Hnrnpk haploinsufficient mouse model, these mice will be
instrumental in testing and developing hnRNP K overexpres-
sion-dependent therapies.

The challenge that remains (and will be central in our func-
tional evaluation of HNRNPK mutations) is the generation of
mutant knock-in Hnrnpk mouse models. This endeavor may
prove a difficult task, as unlike the hotspot mutations observed
in genes like Tp53, IDH1, and KRAS, the HNRNPK mutation
spectrum (in cancers and in pediatric patients) is significantly
more heterogeneous.45 Thus, there is currently no clear indica-
tion as to which alteration is “the” critical mutation to initially
examine. As such, there is a need for stringent biochemical
and in vitro studies using mutant hnRNP K in order to guide
future in vivo studies of mutant hnRNP K.

Even though numerous studies have examined the func-
tional importance of hnRNP K since its discovery nearly a

generation ago,46 there remains much work to be done in order
to fully understand the role of hnRNP K in human
malignancies.
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