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ABSTRACT
Single nucleotide polymorphisms (SNPs) that occur within CpG Islands may lead to increased
hypermethylation if a SNP allele has the potential to form a CpG dinucleotide, as well as potentially lead to
hypomethylation if a SNP allele eliminates a CpG dinucleotide. We analyzed CpG-related SNP allele
frequencies in whole genome sequences (WGS) across 5 TCGA cancer datasets, thereby exploiting a more
recent appreciation for signaling pathway degeneracy in cancer. The cancer data sets were analyzed for
SNPs in CpG islands associated with the oncogenes, HRAS and MYC, and in the CpG islands associated
with the tumor suppressor genes, APC, DCC, and RB1. We determined that one SNP allele (rs3824120) in a
CpG island associated with MYC which eliminated a CpG was more common in the cancer datasets than in
the 100Genomes databases (p < 0.01). For HRAS, 2 SNP alleles (rs112690925, rs7939028) that created
CpG’s occurred significantly less frequently in the cancer data sets than in the general SNP databases (e.g.,
rs7939028, p < 0.0002, in comparison with AllSNPs(142)). Also, one SNP allele (rs4940177) that created a
CpG in a CpG island associated with the DCC tumor suppressor gene, was more common in the cancer
datasets (p < 0.0007). To understand a broader picture of the potential of SNP alleles to create CpG’s in
CpG islands of tumor suppressor genes, we developed a scripted algorithm to assess the SNP alleles
associated with the CpG islands of 43 tumor suppressor genes. The following tumor suppressor genes
have the possibility of significant, percent increases in their CpG counts, depending on which SNP allele(s)
is present: VHL, BRCA1, BRCA2, CHEK2, PTEN and RB1.
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Introduction

Oncoproteins promote cell division while tumor suppressor pro-
teins inhibit cell division and promote differentiation. Cancer is
driven by the imbalance in the activity of these 2 types of proteins.
DNA methylation can repress the expression of these genes and
the lack of DNA methylation can lead to higher levels of expres-
sion. The cytosines in CpG dinucleotides can be methylated to
form 5-methyl-cytosine, which leads to formation of a transcrip-
tional repression complex.1 CpG islands are groups of CpG dinu-
cleotides. For a genomic region to be identified as a CpG island,
in the hg19 version of the human reference genome, the CpG
island size must be at least 200 base pairs and have a CG content
of 50% or greater. CpG islands are thus identified algorithmically
and identified by the Genome Browser (genome.ucsc.edu) for the
hg19 version of the human genome.

Single-nucleotide polymorphisms (SNPs) are single base
pair variations that occur commonly (> 1%) in the population,
that could facilitate repression if they result in a CpG, or that
could facilitate a higher level of expression if a CpG is elimi-
nated. This project assessed SNPs regions for 5 cancer data sets
of the cancer genome atlas (TCGA) (http://cancergenome.nih.
gov/), for 2 oncogenes and 3 tumor suppressor genes, to deter-
mine whether the datasets reflected a skewed distribution of
SNP alleles leading to creation or elimination of CpG’s in the

hg19 designated CpG islands for these oncogenes and tumor
suppressor genes.

We also note that, while any SNP located at a CpG dinucleo-
tide designated as a CpG by the reference genome would have
alternate alleles that can only eliminate the CpG, it is more com-
plicated to know which SNP alleles create CpG’s, an issue poten-
tially relevant to tumor suppressor gene repression. Thus, we
generated a scripted algorithm to assess the potential of all the
SNP alleles for all the CpG islands associated with 43 tumor sup-
pressor genes to generate a GpG. This algorithm has provided an
indication of which tumor suppressor genes are most vulnerable
to conversion to a state whereby a CpG island could be more
robust depending on the SNP alleles present in an individual.

Methods

Analysis of 5 TCGA cancer data sets

Five TCGA cancer datasets (http://cancergenome.nih.gov/)
were chosen where there were at least 50 samples of data avail-
able from the UCSC Cancer Genomic Hub browser: Colon ade-
nocarcinoma (COAD), esophageal (ESCA), bladder (BLCA),
head and neck (HNSC), and lung cancer (LUAD). Whole
genome sequence files (WGS) for primary solid tumors were
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selected for each cancer data set and their manifest files were
downloaded. The data processing is described in Figure 1. CpG
islands for this study were selected by CpG dinucleotide count
of 32 or above and by proximity to the transcriptional start site
of the respective genes. The CpG islands were confirmed by
visual inspection with the genome browser, and an example
CpG island is in Figure 2. The nucleotide positions (hg19 refer-
ence genome) for the CpG islands for each gene studied are in
Table 1. The manifest files indicated above were used in con-
junction with the Protocol_v5.sh script for data downloaded
and were parsed using the process “mpileup” from “samtools”
(Trust Sanger Institute), finding variants in the reads and
dumping them into a CSV file that could be further trans-
formed using the GetContext.sh script along with the PHP
script cg.php, to determine whether CpG dinucleotides were
created or destroyed by SNP allelic variants. The variants were
then matched against the All SNPs(142) database to select those
CpG alterations that were a result of SNPs, instead of apparent
mutations. The rs numbers, designating the SNPs, were then
collected in a table along with their minor allele frequencies to
allow investigation as to whether SNPs that lead to CpG
creation or elimination were associated with the cancers

represented by the above datasets (Table 2). A record of all rs
numbers that can affect the specified CpG Islands from (B) for
the 5 cancers is presented in “Samy et al. SOM Fig. 1I, RsNum-
bers and Cancer Counts.” The SNP frequency was calculated in
respect to the data sample, seen in Table 3 for the SNPs among
the cancer data sets where the minor allele occurred for at least
12 barcodes in at least one dataset. SNP minor allele frequency
was calculated using the Hardy Weinberg equation (1 D
p2C2pqCq2) under the assumption that the absence of the
SNP allele categorized the sample as homozygous dominant
(p2) and that samples with the SNP allele were either heterozy-
gous or homozygous for the recessive allele (2pqCq2). This
approach allows for the most conservative estimate of the MAF
which means deviations from the expected allele frequency
reported by 1000Genomes and the AllSNPs(142) could be even
higher if the SNP allele occurred mostly as homozygous instead
of heterozygous.

Analysis of tumor suppressor genes

While SNPs that are a part of a CpG dinucleotide can be easily
found by comparing the All SNPs(142) database and the USCS

Figure 1. Flow chart for the processing of the BAM files from CGHub for identifying SNPs at CpG positions. (A) An example manifest file used to target a specific cancer
patient’s tumor DNA sequence to be downloaded from CGHub is provided in the supporting online material (SOM), entitled “Samy et al. SOM Fig. 1A, Example Manifest
file.” This file is provided as an Excel file, for ease of inspection; and is provided as an XML file for direct use. Note: the Excel version of the manifest file cannot be directly
used for downloads. (B) Defined CpG Island regions for each gene are included in Table 1. (C) The code used to automate the downloading and recording of variants in
the patient files from TCGA is in “Samy et al. SOM Fig. 1C, Protocol_v5.” (D) The preliminary Excel files with all variants obtained from the program were combined,
labeled with the TCGA cancer abbreviation, and can be found in the “Samy et al. SOM Fig. 1D, Preliminary Excel File.” Files are separated by CpG regions in the case of
RB1, and the selected regions are in Table 1. (E) Adjacent nucleotides were added as a new column to the preliminary Excel files (present in SOM file labeled, “Samy et al.
SOM Fig. 1D, Preliminary Excel File”) using the code (F) documented as “Samy et al. SOM Fig. 1F, GetContext.” (G) The PHP script used to determine how the variants in
the DNA changed the CpG island structure is in “Samy et al. SOM Fig. 1G, cg.php.” (H) A brief summary of the algorithm guiding the script is in “Samy et al. SOM Fig. 1H,
CG.PHP Explanation.” (I) The record of all rsNumbers (SNP designations) that can affect the specified CpG Islands from Table 1 are recorded in the Excel file “Samy et al.
SOM Fig. 1I, RsNumbers and Cancer Counts.”

Figure 2. Example CpG Island (CpG countD 237) adjacent to the promoter region of MYC.
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track for CpG dinucleotides, recognizing SNPs that have the
potential to create an extra CpG dinucleotide requires testing
on a case by case basis. CpG islands within 5000 nucleotides up
and downstream that contained SNPs from the AllSNPs(142)
database were identified for a sample of 43 tumor suppressor
protein genes. SNPs which resulted in a new CpG dinucleotide
were programmatically identified and recorded. Further details
of the process and the results are in the Results section.

Results

Specific CpG alleles in TCGA cancer data sets

To determine whether any SNPs alleles in the CpG islands of
HRAS and MYC eliminated CpG’s in their associated CpG
islands we performed the processing steps in Figure 1: WGS
files from the CGHub representing 5 distinct cancer datasets
were downloaded and all SNVs that did not match the hg19
reference genome were identified and characterized as a muta-
tion or known SNP. We analyzed multiple cancer data sets
simultaneously owing to the increasing understanding and
appreciation of signaling pathways and oncoprotein function
degeneracy across many cancers.

The vast majority of the SNVs were known SNPs and the
potential mutations were not further considered. The CpG
islands are defined in Table 1, an example CpG island designa-
tion from the genome browser is shown in Figure 2, and exam-
ple processing output is shown in Table 2.

We further analyzed 5 SNPs for MYC and HRAS where a
SNP allele altered the number of CpG’s in the CpG islands for
a minimum of 12 barcodes in at least one of the 5 cancer data-
sets. A summary of the results of the above HRAS and MYC
CpG island processing is in Table 3. Only one SNP allele, for
the rs3824120 SNP, in the MYC CpG island (Table 1), elimi-
nated a CpG with a statistically significant, greater frequency of
occurrence in the cancer data sets (p < 0.02), i.e., in compari-
son to the occurrence of this SNP allele in the All SNPs(142)
database (but not in the 1000Genomes database). The minor
allele for the rs4645958 SNP, also in the MYC CpG island
(Table 1), eliminates a CpG but occurs less frequently in the
cancer datasets in comparison to both the AllSNPs(142) and
1000Genomes databases (p <0.01).

Two minor frequency SNP alleles (rs112690925, rs7939028),
within the HRAS CpG island (Table 1), created CpGs and
occurred less frequently than in the general databases, with p-
values ranging from less than .0002 to .02, depending on the
SNP and the comparison database, as indicated in Table 3.

We next determined whether there were SNP alleles in the
CpG islands of the tumor suppressor genes, APC, DCC, and
RB1 that would create CpG’s, using same processing steps indi-
cated in Figure 1. Results indicated that only one SNP,
rs4940177 in DCC, represented creation of a CpG at a fre-
quency significantly greater than the frequency of this allele in
the All SNPs(142) and the 1000G SNP databases (p < .0007).

SNP alleles in tumor suppressor gene CpG islands that
have the potential of leading to a greater CpG content

We were interested in the potential of increased CpG content in
CpG islands of tumor suppressor genes. This consideration is
based on the fact that any oncogene SNP representing a CpG,
so designated by the hg19 reference genome, must have an
alternate allele that eliminates the CpG, presumably consistent
with increased oncogene expression. However, in the case of a
tumor suppressor gene, where the interest is in the generation
of a CpG, potentially facilitating additional gene repression in
cancer development, the creation event is not guaranteed by

Table 1. CpG islands studied in this report, mapped to the hg19 version of the
human genome.

Gene Region Genomic Size CpG Count

HRAS chr11:534692-537718 3027 282
MYC chr8:128747806-128751279 3474 237
APC chr5:112043080-112043917 838 64
DCC chr18:49868378-49868759 382 32
RB1(a) chr13:48877460-48878501 1042 106
RB1(b) chr13:48890958-48891549 592 42
RB1(c) chr13:48892636-48893857 1222 85

Table 2. Example of SNV detection results within the MYC CpG island (Table 1) for 2 COAD patients after being processed as indicated in Figure 1. Y, Yes; N, No. For the
complete set for this report, see the SOM file entitled, “Samy et al. SOM Fig. 1D, Preliminary Excel Files.” rs3824120 is further characterized in Table 3 rs4645948 and
rs4645955 did not meet the standard of the alternate allele appearing at least 12 times in one of the cancer datasets.

TCGA-A6-6141

Chromosome
Position

Variant
(second nucleotide)

Reads Matching
Reference

Reads Matching
Variant

Context Originally
CpG?

Creates
a CpG?

Eliminates
a CpG? SNP

8:128747953 G/T 23 24 CGG Y N Y rs3824120
8:128748494 C/G 18 24 TCC N N N N
8:128748498 C/T 23 19 GCG Y N Y rs4645948
8:128749023 G/T 25 30 GGT N N N N
8:128749923 G/A 5 9 CGG Y N Y rs4645955
8:128749934 T/G 13 4 GTG N N N N
8:128750139 T/A 19 17 TTT N N N N

TCGA-CA-6718

Chromosome
Position

Variant
(second nucleotide)

Reads Matching
Reference

Reads Matching
Variant

Context Originally
CpG?

Creates a
CpG?

Destroys a
CpG? SNP

8:128748680 C/T 41 36 GCC N N N N
8:128748977 G/T 58 22 TGA N N N N
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simply the location of the SNP (at an hg19 indicated CpG
island) or by the other alleles of the SNP (i.e., in contrast to the
situation of interest with oncogenes). The impact of the alterna-
tive SNP alleles, if one of the alternatives were either a C or a G,
would depend on the neighboring nucleotides. Thus, we wrote
and scripted an algorithm for searching through the CpG
islands of 43 tumor suppressor genes to detect SNPs whereby a
conversion to a SNP allele different from the hg19 indicated
allele (minor frequency allele) would lead to creation of a CpG
(Samy et al. SOM, Tumor Suppressor Gene Analysis).

As an example of one tumor suppressor gene, AKAP12 has
4 CpG islands which contain SNPs (Table 4). One relevant
SNP for the tumor suppressor gene, AKAP12, in the CpG
island, CpG_132 (Table 4), is indicated in Figure 3
(rs573541357). In this case, the hg19 reference genome allele is
a T, whereas the alternative allele for this SNP is a G, thereby
creating a CpG (Figs. 3, 4; Samy et al. SOM, Tumor Suppressor
Gene Analysis).

The effects of several example SNP alleles for AKAP12, in
the CpG island, CpG_132 (Figs. 3, 4; Table 4), are indicated in
Table 5. The results for all of the CpG islands for AKAP12
(Table 4) are indicated in Table 6. Note that 24.7% of the SNPs
of the AKAP12 gene CpG islands, collectively, are vulnerable to
creating a CpG. And, note that the total CpG count for the
AKAP12 CpG islands has the potential of increasing by 9.8%.

The processing results for all 43 of the studied, tumor sup-
pressor genes are in the SOM file labeled, “Samy et al. SOM,

Tumor Suppressor Gene Analysis.” The results are summarized
in Figure 5, where the percentage of SNPs that could potentially
generate a CpG, for each gene, is indicated, along with the
potential percent increase of CpG’s, within in each gene’s desig-
nated CpG islands. The VHL tumor suppressor gene has the
greatest potential percent increase in the CpG count, due to
alternative SNP alleles. And, some notable tumor suppressor
genes with significant, potential percent increases in CpG
counts are BRCA1, BRCA2, CHEK2, PTEN and RB1.

While there are many factors that could contribute to differ-
ences in the potential for CpG methylation for a given CpG
island and tumor suppressor gene, we attempted to determine
whether CpG island methylation ranges could be consistent
with the range of available CpG’s in CpG islands associated
with tumor suppressor genes. Thus, we evaluated the range of
methylation for AKAP12, which has a wide range of CpG’s,
due to SNPs (Fig. 5); and TXNIP, which does not vary in CpG
percentage (Fig. 5). We obtained the TCGA, methylation b val-
ues for these 2 genes, for the 5 cancer data sets indicated in
Table 3, for 10 randomly selected barcodes each. For every can-
cer dataset, the AKAP12 gene had a much wider range of meth-
ylation values (Fig. 6).

Discussion

There have been numerous reports of SNPs affecting the
hypermethylation of proximal and trans-gene CpG islands,2-6

Table 3. Allele frequencies for the non-hg19 SNP alleles that occur most frequently in the indicated data sets and that create or eliminate CpG’s. Number of samples in
parentheses; MAF D minor allele frequency; bold type represents cases of statistical significance when the frequency of occurrence of the minor allele is different from
the frequency of the minor allele in one or both general SNP databases. A comprehensive set of data is in the SOM file labeled, “Samy et al. SOM Fig. 1I, RsNumbers and
Cancer Counts.”

Gene SNP
CpG Status with
minor allele

ESCA
(51)

COAD
(34)

BLCA
(44)

HNSC
(50)

LUAD
(50)

MAF
AllSNPs(142)

MAF 1000
Genomes

MYC rs38241201 Eliminates 0.1255525 0.0764519 0.120951 0.163340 0.139767 0.061102 .12
rs4645956 Eliminates 0.159832 0.0451363 0.133975 0.0834849 0.0834849 0.197883 .20
rs46459582 Eliminates 0.148243 0.0765419 0 0.0834849 0.0834849 0.186901 .19

HRAS rs1126909253 Creates 0.0711593 0.177522 0.133975 0.163340 0.175379 0.241014 .24
rs79390284 Creates 0.0606636 0.1956 0.120951 0.139767 0.175379 0.5 .24

APC rs79896135 Eliminates 0.0925148 NA 0.174277 0.0944615 0.128220 0.177716 .18
DCC rs49401775 Creates 0.495122 NA 0.573599 0.625834 0.6 0.138578 .14

RB1a No SNP alleles create or eliminate CpG’s

RB1b rs2854345 Creates 0.171583 0.188156 0.187596 0.212599 0.170327 .17

RB1c No SNP alleles create or eliminate CpG’s

1p < .02 for comparison with AllSNPs(142) only
2p < .01 for comparison with both AllSNPs(142) and 1000Genomes
3p < .01 for comparison with both AllSNPs(142) and 1000Genomes
4p < .0002 for comparison with AllSNPs(142) and p < .02 for 1000Genomes
5p < .0007 for comparison with both AllSNPs(142) and 1000Genomes

Figure 3. Example of a SNP in a CpG Island for AKAP12 that creates a CpG dinucleotide. The T indicated in the figure is the major allele; G is the minor allele, as seen in
Tables 5 and 6.
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but there has been very little, if any consideration of SNPs
within the CpG islands themselves, particularly with regard to
the creation or elimination of a CpG. While the common pre-
sumption may be that one or more CpG’s is not likely to affect
regulation in a significant manner, the work in this report
indicates both a decrease in the likelihood of a particular CpG

in cancer data sets that is consistent with increased oncopro-
tein production and a particularly dramatic increase in the
occurrence of a CpG that would be consistent with tumor sup-
pressor protein repression. The mechanisms of effect of one
CpG in a CpG island remain to be determined, however, it is
apparent that the methylation of one to 3 CpG’s can represent
medically distinct categories7-9 in mammals. It is also impor-
tant to note that signal amplification in cancer, as opposed to
the traditional idea of an on and off switch for signaling path-
ways, is likely important in a cancer phenotype.10 Thus, while
one CpG may not have a dramatic impact on expression levels
as detected by routine laboratory approaches, the potential for
a “shifting of the balance” remains important, particularly in
considering such paradigms as feed-forward mechanisms of
apoptosis, whereby a shift in transcription factor levels, as
opposed to simple presence or absence of a transcription

Figure 4. Initial nucleotide sequence of the second CpG Island in AKAP12 (CpG_132). SNPs are underlined, and the (circled) T ! G allele change is the first to create a
CpG dinucleotide.

Table 4. List of CpG Island regions for the tumor suppressor gene, AKAP12, pro-
vided as an example for generating the results of Table 5 and the results in the
SOM file labeled, “Samy et al. SOM, Table 5 related.”

Region CpG Count

chr6:151560766- 151560993 16
chr6:151561283-151562550 132
chr:6151646668- 151646958 25
chr6:151662605-151663056 42

Table 5. Excerpt of primary processing for assessment of 4 SNPs present in a CpG Island (CpG_132) adjacent to AKAP12. The first SNP indicated is represented by Fig-
ures 3, 4. Further details are present in the SOM file labeled, Samy et al. SOM, Tumor Suppressor Gene Analysis. An example of the results of the primary processing step
(for the AKAP12) is present in the SOM, labeled as “Samy et al. SOM, Table 5 related.”

Chromosome
Position

Chromosome
start position

Chromosome
end position

hg 19 reference
allele

Alternate
allele Context Original CpG? CpG created?

chr6 151561306 151561307 T T/G CTG N Y
chr6 151561352 151561353 A A/C GAC N N
chr6 151561359 151561360 C C/G/T GCT N N
chr6 151561413 151561414 G G/C AGG N Y

Figure 5. Bar-graph of the tumor suppressor set comparing the vulnerable SNP percentages and the CpG dinucleotide percent changes across all CpG Islands for the indi-
cated genes. Further detail is present in the SOM file labeled, “Samy et al. SOM, Tumor Suppressor Gene Analysis.” Also, the distance of each CpG island containing a SNP,
to the start site of transcription for each tumor suppressor gene, is provided in the SOM file labeled, “Samy et al. SOM, Transcription start site, CpG island distances.”

1576 M. D. SAMY ET AL.



factor, likely determines the difference between cell prolifera-
tion and apoptosis.11-14

It has become apparent that cancers traditionally repre-
senting different tissue types have extensive molecular over-
laps, i.e., have many molecular bases in common for the
cancer phenotype.10,15 Thus, by taking a multi-cancer
approach, it is possible to enhance statistical power when
attempting to learn of potential over-representations of bio-
markers in cancer. In this study, the most dramatic associa-
tions of CpG island SNPs and cancer were: (i) the lower
incidence of CpG forming SNPs in an HRAS CpG island;
and (ii) the over-representation of a CpG forming SNP in
the CpG island of the DCC tumor suppressor gene. These
results raise the question of whether there has been any
empirical connection with HRAS and the cancers repre-
sented by the TCGA datasets studied here? Thus, for the
following cancers, we note the indicated references: ESCA;16

COAD,17 BLCA,18 HNSC,19 and LUAD,20 including indica-
tions of elevations of HRAS protein in certain cancers,
which would be consistent with a reduced CpG content in
the CpG island. A similar question could be raised regard-
ing DCC: ESCA,21 COAD,22 BLCA,23 and HNSC,24 with the
latter reference representing lower DCC levels of expression,
again consistent with over-representation of CpG’s in the
CpG island of DCC in carcinogenesis.

The minor allele frequency for the MYC SNP, rs4645958,
eliminated a CpG and was significantly under-represented in
the cancer data sets, contrary to first expectations and contrary
to results with a second MYC SNP and the HRAS SNPs
(Table 3), discussed above. However, it bears repeating the
molecular decision that governs proliferation or apoptosis is a
balance in the levels of what are often considered pro-prolifera-
tion transcription factors that in fact, at high levels, almost uni-
versally lead to apoptosis.13 Thus, it is conceivable that this
balance is maintained, in the case of MYC, through higher lev-
els of CpG methylation in some cases, and lower levels in other
cases. There are certainly other possible explanations for the
over-representation of the rs4645958 CpG in the MYC CpG
island, for example a potential lack of relevance of MYC expres-
sion levels in certain cancers where an alternative, pro-prolifer-
ative signaling pathway could be activated.

Finally, the work above provided an indication of the poten-
tial vulnerability of certain tumor suppressor genes to the pres-
ence of increased numbers of CpG’s in the CpG islands
associated with these genes. This work has indicated a number
of genes that could represent high priorities for detailed studies
on CpG counts in the CpG islands, with the expectation that
the most tumor suppressor genes most vulnerable to CpG per-
centage increases would demonstrate higher CpG counts in
patients with certain or several different cancer types.

Figure 6. Box and Whisker plots showing the range of methylation b values for 10 randomly selected TCGA barcodes for the 5 cancer datasets studied in Table 3, for
AKAP12 and TXNIP. Further detail is present in the SOM file labeled, “Samy et al. SOM, Methylation b value analysis.”

Table 6. CpG island SNP allele effects for AKAP12. Example result from “Samy et al. SOM, Tumor Suppressor Gene Analysis,” which provides all results of minor (non-hg19)
SNP allele effects for 43 tumor suppressor genes. Note that “Vulnerable SNP fraction” and “CpG % DN change” are represented for all 43 tumor suppressor genes in
Figure 5.

Gene: AKAP12 CpG_16 CpG_132 CpG_25 CpG_42
Total Across

All CpG Islands

SNPs that could create a CpG 0 12 3 6 21
Total SNPs 5 51 14 15 85
Vulnerable SNP fraction 0 0.235294 0.214286 0.4 0.247059
Original CpG count 16 132 25 42 215
CpG DN1 range 16–16 132–144 25–28 42–48 215–236
CpG % DN1 change 0 0.090909 0.12 0.142857 0.097674
CpG island nucleotide coverage (size) 227 1267 290 451 2235
Vulnerable SNPs, fraction of CpG island size 0 0.009471 0.010345 0.013304 0.009396

1Dinucleotide
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