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ABSTRACT
Mitochondria are associated with various radiation responses, including adaptive responses, mitophagy,
the bystander effect, genomic instability, and apoptosis. We recently identified a unique radiation
response in the mitochondria of human cells exposed to low-dose long-term fractionated radiation (FR).
Such repeated radiation exposure inflicts chronic oxidative stresses on irradiated cells via the continuous
release of mitochondrial reactive oxygen species (ROS) and decrease in cellular levels of the antioxidant
glutathione. ROS-induced oxidative mitochondrial DNA (mtDNA) damage generates mutations upon DNA
replication. Therefore, mtDNA mutation and dysfunction can be used as markers to assess the effects of
low-dose radiation. In this study, we present an overview of the link between mitochondrial ROS and cell
cycle perturbation associated with the genomic instability of low-dose irradiated cells. Excess
mitochondrial ROS perturb AKT/cyclin D1 cell cycle signaling via oxidative inactivation of protein
phosphatase 2A after low-dose long-term FR. The resulting abnormal nuclear accumulation of cyclin D1
induces genomic instability in low-dose irradiated cells.
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Introduction

The main target of ionizing radiation (IR) is thought to be the
nuclear DNA (nDNA) in the cell nucleus. Double strand breaks
(DSBs) in nDNA generated by IR give rise to chromosomal aberra-
tions. In response to genotoxic stress, mammalian cells activate cel-
lular defense systems, including cell cycle checkpoints, apoptosis,
and DNA repair mechanisms.1,2 Research has therefore focused on
the effect of radiation on nDNA to elucidate DNA damage
responses (DDR) in mammalian cells. Radiation also affects cell
organelles, such as the plasma membrane, cytoskeleton, mitochon-
dria, endoplasmic reticulum, Golgi apparatus, and lysosomes.3-6

Direct evidence for the effect of IR on the cytoplasmic structures
has been obtained as bystander effects after cytoplasmic irradiation
with a particles.7,8 Mitochondria contain their own DNA and can
be directly damaged by IR. Although the whole mitochondrial
genome, apart from the D-loop control region, consists of genes,
only approximately 1% of nDNA encodes genes. Thus, mitochon-
drial DNA (mtDNA)mutations are more likely to cause functional
loss than nDNA mutations. Hence, it is of special importance to
maintainmtDNA integrity, particularly under oxidative stress con-
ditions. Mitochondria, along with the nucleus, are therefore likely
to be amajor target of IR.6

Mitochondria regulate energy supply and are shown to be a
source of endogenous reactive oxygen species (ROS) generation
through oxidative phosphorylation.9 ROS function as a second
messenger of intracellular signaling pathways for physiological pro-
cesses10-12 by modifying the cysteine residues within redox-sensi-
tive target proteins leading to reversible modification of enzymatic

activity.13,14 However, ROS accumulation at high levels inflicts oxi-
dative damage on cellular components, such as nucleic acids, pro-
teins, and lipids, and inhibits cell proliferation.15 IR triggers
genomic instability, a hallmark of cancer in irradiated cells as the
late effect of IR.16-18 Changes in the pattern of DNA methylation
are associated with cancerogenesis together with genetic muta-
tions.19,20 Mitochondrial ROS induce genomic instability in irradi-
ated cells.21-23 To control redox balance, mitochondria contain
antioxidants, such as glutathione (GSH) and manganese superox-
ide dismutase (MnSOD), which scavenge ROS.24 KRIT1, a gene
responsible for cerebral cavernous malformations regulates antiox-
idant pathway involving FoxO1 and MnSOD to maintain the
homeostasis of intracellular ROS.25 Dismutation of superoxide
anions in the mitochondria forms H2O2, either spontaneously or
through the catalytic function of MnSOD, to maintain redox
homeostasis. GSH peroxidases then further reduce H2O2 to water
using GSH as a ROS receptor.

Mitochondria regulate apoptosis after high-dose IR in nor-
mal cells. Similarly, apoptosis was induced in radiosensitive
ATM-deficient cells after low-dose long-term FR.26 In contrast,
the same low-dose long-term FR activates mitochondrial func-
tion and causes chronic oxidative stresses due to elevated mito-
chondrial ROS in normal and complemented cells expressing
ATM. So, there are different modes of mitochondrial radiation
response according to intrinsic radiation sensitivity of the irra-
diated cells.26 This review is focused on our current under-
standing of a unique radiation response of mitochondria upon
repeated low-dose IR. Mitochondrial ROS perturb cell cycle
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signaling and this is concomitant with genomic instability in
human cells after low-dose long-term FR.

Radiation responses of mitochondria

The radiation responses of mitochondria are well reviewed in
other study6 and are summarized in Figure 1. IR increases
mtDNA copy number in mammalian cells in vitro and in vivo.6

IR stimulates mitochondrial enzyme activity and gene expres-
sion to supply energy for radiation responses.6,27,28 Low-dose
IR changes the dynamics of mitochondrial morphology and
induces mitochondrial fusion to protect rat neurons.29 Mito-
chondrial fusion enables content mixing within a mitochon-
drial population including both damaged and healthy
mitochondria to protect against mitochondrial dysfunction.30-32

On the other hand, mitophagy refers to the selective removal of
damaged mitochondria by autophagy to control mitochondrial
quality.33,34 The E3 ubiquitin ligase Parkin recognizes damaged
mitochondria and promotes their clearance by mitophagy.35,36

Mitochondria are also associated with the non-targeted effects
of radiation, including the adaptive response, the bystander
effect, and genomic instability.21,22 Mitochondrial localization
of MnSOD is required for radioprotection.37-39 IR at low doses
induces NF-kappaB-mediated activation of MnSOD as a signal-
ing regulator of cell survival pathways in low-dose IR-induced
adaptive responses in mammalian cells.40,41 Constitutive active
AKT is associated with induction of NF-kappaB signaling after
chronic low-dose IR.41 Mitochondria-dependent NF-kappaB
signaling pathways also implicates in the regulation of radia-
tion-induced bystander.42 In contrast, IR at high doses results
in the breakdown of the mitochondrial membrane potential,
opening of the permeability transition pore (PTP), and release

of cytochrome c for the induction of apoptosis in irradiated
cells (Fig. 1, upper panel).43

Although the health risks associated with low-dose radiation
are currently under intensive investigation, the influences of
low-dose long-term radiation remain unclear because of a lack
of sufficient studies. We recently reported that low-dose long-
term FR induces mitochondria-mediated oxidative stresses by
increasing the generation of mitochondrial ROS in human cells
(Fig. 1, lower panel).44 Thus, mitochondrial radiation responses
change according to the radiation dose, duration of radiation
exposure. The antioxidant GSH protects cells against oxygen
toxicity mediated by mitochondrial ROS.44 However, GSH
becomes exhausted after repeated low-dose IR. The accumula-
tion of mitochondrial ROS owing to a GSH deficiency would
activate oxidative stress responses and DDR over a prolonged
period (Fig. 1, lower panel).

The role of ATM on radiation response of
mitochondria

In ataxia-telangiectasia (AT), a disease characterized by high
levels of radiosensitivity and neurodegeneration, ATM is
mutated.45 ATM is a damage sensor kinase is essential for
maintaining genome stability in response to various stresses. It
has also been identified as a redox sensor and is activated by
oxidization at a cysteine residue independent of DSBs under
oxidative stress.46,47 Lower antioxidative capacity is reported in
AT patients.48 Biogenesis of mitochondria in response to IR
was investigated in radiosensitive human ATM-deficient cells
compared with that in ATM-complemented cells. Consistent
with the results in normal fibroblasts, low-dose long-term FR
stimulated mitochondrial biogenesis with elevated ROS levels
in ATM-complemented cells. In contrast, mitochondrial bio-
genesis was not triggered by the same radiation treatments in
ATM-deficient cells.26 Thus, ATM is required for the radiation
response of mitochondria. In response to DSB, ATM is shown
to phosphorylate AMP-activated protein kinase (AMPK), which
senses the cellular AMP/ATP ratio to induce mitochondrial
biogenesis.49 ATM is associated with the induction of mitoph-
agy in response to IR and oxidative stresses.50 ATM loss leads
to defective mitophagy and increased frequency of abnormal
mitochondria with decreased mitochondrial membrane poten-
tial.50 Severe mitochondrial damage, assessed from mitochon-
drial fragmentation, was induced by low-dose long-term FR in
ATM-deficient cells, which showed highly radiosensitive phe-
notypes when subjected to low-dose long-term FR; cell death
was through mitochondria-mediated apoptosis.26 Consequently,
it became clear that the mitochondrial radiation response influ-
ences radiation sensitivity in human cells.

Mitochondria as target organelles for low-dose
radiation

mtDNA is located at the inner mitochondrial membrane close to
the sites of ROS production via the electron transport chain and
suffers more oxidative damage than nDNA.51,52 Because mtDNA
lacks histone protection and the efficient DNA repair system of
nDNA, mtDNA damage due to IR is thought to be more extensive
and persistent over time than nDNA damage. Mitochondria

Figure 1. Radiation response of mitochondria The upper panel shows the differ-
ence in the radiation response of mitochondria according to the radiation dose
after acute single radiation. The lower panel shows the mitochondrial radiation
response to low-dose long-term fractionated radiation.
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harbor base excision repair, but nucleotide excision repair is
absent.53 DNA polymerase g (Pol g) is the enzyme for replication
and repair of mtDNA. Although Pol g exhibits high base substitu-
tion fidelity with exonucleolytic proofreading,54 it has low frame-
shift fidelity for repetitive sequences longer than 4 nucleotides.55

ROS-induced DNA lesions, such as abasic sites and single- and
double-strand breaks, generate mutations upon DNA replication.
mtDNA mutations induced by ROS-mediated oxidative modifica-
tions lead to progressive electron transport chain dysfunction and
further increases in ROS production.56-58 IR permanently impairs
mitochondria by induction of mtDNA mutations, leading to over-
production of mitochondrial ROS, which are implicated in many
toxicities and disease processes as mediators of tissue injury.15

mtDNAmutations are frequently observed in various human can-
cers.59-62 Mutations in the nuclear-encoded mitochondrial gene
have also been correlated with an increased cancer risk.63,64

mtDNA validation affects the radiotherapy and chemotherapy out-
comes in cancer patients.63 Metabolic alterations associated with
mitochondrial dysfunction increase tumorigenesis. Mitochondrial
genomic instability is closely related to vascular disease, neurode-
generation, aging, and carcinogenesis.21,22,65,66 Therefore, mtDNA
mutation and mitochondrial dysfunction can be used as markers
to assess the effect of low-dose long-term FR. N-acetyL-cysteine, a
glutathione precursor, increases the intracellular levels of GSH67

and suppresses the accumulation of mitochondrial ROS.44 Thus,
increasing antioxidant capacity can prevent radiation toxicity
induced by low-dose long-term FR.

Cyclin D1 as the molecular target associated with
mitochondrial ROS-mediated genomic instability

Mitochondrial dysfunction can be communicated to the cell
nucleus via mitochondrial ROS acting as signaling molecules. Ele-
vated ROS generation stimulates stress-activated kinases and
stress-signaling in cancer cells.68 Thus, ROS have multiple roles in
tumor initiation, progression, and maintenance. We recently iden-
tified a target molecule associated with mitochondrial ROS-
induced genomic instability in low-dose long-term FR cells.44

Figure 2 depicts a link between mitochondrial ROS and cell cycle
perturbation in low-dose irradiated human cells. ROS damage to
the molecules affects cell cycling, oxidizing PP2A on cysteine resi-
dues, and downregulating PP2A activity in long-term FR cells.
This loss of PP2A activity can thus lead to a loss of negative feed-
back control of the AKT pathway,69 resulting in persistent AKT
activity in cells after long-term FR. Consequently, constitutive
AKT activation causes stabilization of nuclear cyclin D1 by inhibit-
ing the nuclear export and subsequent GSK3b-mediated degrada-
tion of cyclin D1 (Fig. 2).70,71 Nuclear cyclin D1 accumulation was
observed by low-dose long-term FR in most of PCNA-positive S-
phase cells.70,71 Abnormal nuclear cyclin D1 accumulation during
the S phase perturbs DNA replication including DNA re-replica-
tion and suppression of replication fork progression leading to
DSBs.72,73 Perturbation of cyclin D1 expression is associated with
cellular senescence and induction of genomic instability in irradi-
ated cells.70,72,74,75 Aberrant cyclin D1 expression provides a driving
force behind the development of tumorigenesis and is often
detected in premalignant andmalignant tissues. Collectively, cyclin
D1 is thought to be the molecular target associated with mitochon-
drial ROS-mediated genomic instability.

Conclusion

This review assesses the role of the radiation response of mito-
chondria in radiation-induced genomic instability. Mitochon-
dria ROS are primarily responsible for low-dose long-term
radiation and affect AKT/cyclin D1 cell cycle signaling. Oxida-
tive stress persists for prolonged periods after low-dose long-
term FR. Oxidative damage will accumulate in mtDNA and
result in mutagenesis, carcinogenesis, accelerated senescence,
and cell death. Antioxidants may therefore be useful agents for
radioprotection against mitochondrial damage induced by low-
dose long-term FR.
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