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Genome engineering - Matching supply with demand
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Matching supply with demand is an enormous challenge not
only for manufacturing companies, but also for biological sys-
tems. An excess of pathway activity, for example, can lead to
tumorigenesis during adulthood, whereas inadequate low activ-
ity of the same pathway can cause developmental delays or fail-
ures during embryogenesis.

The same principle can be applied to the field of genome
engineering. Here, a set of nucleases can be used to introduce
specific sequence modifications through the induction of DNA
double strand breaks (DSB) at pre-defined genomic loci. The
final genome editing outcome depends on the choice between
the endogenous, cell-autonomous DNA repair pathways.

In mammalian cells, two distinct pathways ensure repair of
DSB, non-homologous end-joining (NHEJ) and homology-
directed repair (HDR). While NHEJ does not depend on
sequence complementarities to align and ligate DSB, HDR
requires intact homologous sequences that usually locate on a
sister chromatid or elsewhere in the genome. Importantly, HDR
can also use exogenous-derived cDNA sequences (plasmids,
DNA oligonucleotides) for DSB repair. This enables site-specific
integrations of specific DNA sequences, which is of relevance for
therapeutic applications that try to restore gene function by cor-
recting mutations at the endogenous gene locus. Hence, HDR is
considered a high-fidelity DNA repair pathway, whereas NHEJ
is much more error-prone and can lead to mutations that dis-
rupt gene function. Therefore, the choice of DNA repair pathway
after DSB induction has a huge impact on the repair outcome.
However, the activities of these two repair pathways differ and
largely depend on the cell-cycle phase. The current model is that
NHEJ functions throughout the cell cycle, but is most important
in G0/G1. In contrast, HDR is only active in S and G2, and is
suppressed in G1 due to the suppression of DNA-end resection
coupled with a multistep block of BRCA2 to DNA damage sites.1

A recent study refined this activity model further: cells in G1
repair DSBs exclusively by NHEJ. Cells then gradually increase
their use of HDR as they progress from G1 to early S. The HDR
activity peaks in mid-S and gradually declines as cells move
toward late S and G2. In G2, DSBs are almost entirely repaired

by NHEJ.2 Consequently, the NHEJ pathway is largely favored
over HDR in unsynchronized cell populations. This makes it dif-
ficult to introduce well-defined genomic alterations, e.g. tagging
of endogenous loci, and there is a huge need to identify strategies
that enhance HDR-mediated genome engineering.

With the cell-cycle dependent activity profile of HDR in
mind, we thought to match supply with demand. We turned to
the RNA-programmable CRISPR-Cas9 system, which is cur-
rently the most extensively used genome editing tool due to its
ease of use and its targeting flexibility.3 In its simplest form this
system only requires the Cas9 protein and a custom-designed
single-guide RNA (sgRNA) to introduce DSB and stimulate
genome editing. To avoid Cas9-mediated DNA cleavage in G1,
which would induce NHEJ repair, we recently engineered a cell-
cycle tailored Cas9 fusion protein that is expressed during S/G2/
M, but actively degraded via the ubiquitin-proteasome system
during G1.4 In 2008, Sakaue-Sawano et al. showed that the first
110 amino acids of human Geminin are sufficient to confer
nuclear localization and cell-cycle-dependent proteolysis of fluo-
rescent reporter proteins in G1, which allowed the visualization
of spatiotemporal dynamics of cell-cycle progression.5 We
adapted this strategy and generated the Cas9-hGem(1/110) pro-
tein, whose expression is cell cycle dependent (Fig. 1). This
proofed that Cas9 can be controlled in a temporal manner by an
endogenous eukaryotic regulatory circuit. Subsequent side-by-
side comparisons of Cas9 and Cas9-hGem(1/110) in genome
editing assays revealed that the cell-cycle tailored fusion protein
significantly increased the rate of HDR at a single-copy reporter
gene locus as well as an endogenous (biallelic) non-coding RNA
locus by up to 1.87-fold and 1.42-fold, respectively.

Importantly, the steady-state protein expression level of
Cas9-hGem(1/110) was on average half of the level of Cas9.
This is expected for an S/G2/M-specific protein and supports
the idea of matching supply with demand to increase HDR. Of
note, the reduced expression level of Cas9-hGem(1/110) had
no detectable impact on NHEJ-mediated repair, as we observed
the same amount of insertions and deletions at the endogenous
non-coding RNA locus when we delivered the protein and
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sgRNA only, but omitted the repair donor plasmid. This might
be explained by the refined activity profiles of NHEJ and
HDR.2 While we did not investigate off-target effects, a previ-
ous study could show that reduced dosages of Cas9 and sgRNA
could reduce off-target modifications.6 However, another study

found that reducing expression levels of sgRNA and Cas9 in
cells is not likely to provide a simple solution for reducing off-
target effects.7 Hence, it will be interesting to investigate the
off-target effects of the newly developed Cas9-hGem(1/110)
protein in the future to see if the timing of expression has an
impact on off-target effects.

Taken together, we propose that high-resolution expression
strategies that tailor Cas9 or alternative genome-engineering
proteins to the HDR activity profile of a cell will improve HDR
rates without the need for sophisticated manipulation of cells
by drugs or additional gene targeting reagents that could cause
unpredictable effects on cell viability and/or genome integrity.
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Figure 1. A cell-cycle tailored genome editing system to enhance HDR. The NHEJ
pathway dominates DSB repair in G1 and G2 whereas HDR activity peaks in mid-S
phase. The Cas9-hGem(1/110) fusion protein is subjected to proteolytic destruction
during G1, but its expression is restored in S/G2/M. This partially synchronizes
genome editing with HDR activity and enhances rates of the latter.
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