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Abstract

We present a geometric approach for constructing shape atlases of sulcal curves on the human 

cortex. Sulci and gyri are represented as continuous open curves in , and their shapes are 

studied as elements of an infinite-dimensional sphere. This shape manifold has some nice 

properties – it is equipped with a Riemannian  metric on the tangent space and facilitates 

computational analyses and correspondences between sulcal shapes. Sulcal mapping is achieved 

by computing geodesics in the quotient space of shapes modulo rigid rotations and 

reparameterizations. The resulting sulcal shape atlas is shown to preserve important local 

geometry inherently present in the sample population. This is demonstrated in our experimental 

results for deep brain sulci, where we integrate the elastic shape model into surface registration 

framework for a population of 69 healthy young adult subjects.

 1 Introduction

A surface-based morphometric analysis of the cortex has been shown to have wide reaching 

applicability for the purpose of mental disease detection, progression, as well as prediction 

and understanding of normal and abnormal developmental behaviors. Cortical morphometry 

has three major ingredients: i) surface representation, ii) registration and alignment for 

construction of atlases, and iii) statistical analysis of deformations or warps explaining the 

variability of surface features in a given population. Surface registration aims at determining 

point-to-point correspondences between a pair of surfaces by aligning several homologous 

features on the two cortical surfaces. Theses correspondences can be achieved either 

automatically by using both local and global features as in the case of Dale et al. [2], or in a 

semi-automated manner, using expertly delineated sulcal and gyral landmarks as in the case 

of Thompson et al. [10,4]. The underlying idea in both approaches is modeling (either 

explicitly or indirectly) the sulcal and gyral patterns exclusively based on local geometric 

features. These features are usually 3D continuous space curves corresponding to the 

deepest regions of the valleys for sulci, and topmost regions of the ridges for the gyri. The 

main advantage of using explicit landmarks is the incorporationof expert anatomical 
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knowledge that improvesthe consistency in matching of homologous features. This in turn 

potentially improves statistical power in the neighborhood of the landmarks. Additionally, 

increasing the number of consistent landmarks also improves the alignment accuracy, 

thereby allowing more control in the registration process. Previously, landmark curves have 

mostly been used as boundary conditions for various cortical alignment approaches. Various 

researchers have modeled the sulci and gyri using different representations. Tao et al. [9] 

represent sulci using landmark points on curves, and build a statistical model using a 

Procrustes alignment of sulcal shapes. Vaillant et al. [11] represent cortical sulci by medial 

surfaces of cortical folds. Although, the advantage of this model is that it represents entire 

cortical folds, a limitation of this method is the use of unit speed parameterizations of active 

contours for constructing Procrustes shape averages for sulci. Furthermore, for the two 

approaches, the shapes are represented by finite features or landmarks, and thus are limited 

in the characterization of rich geometric detail that manifests in the cortical folds giving the 

sulci their shapes. Recently, there have been several interesting approaches using continuous 

representations for sulci [8,1,3]. For e.g. Auzias et al. [1] model whole sulci using 

distributions of point sets and use a LDDMM framework for registering not only the 

surfaces but full MRI volumes. Durrleman et al. [3] use currents for modeling curves and 

surfaces.

In our work, we represent sulci and gyri by parameterized three-dimensional curves. 

However, unlike previous approaches, we construct a shape space of such sulcal and gyral 

curves and build a statistical model of sulci and gyri intrinsically on the shape space. Our 

approach models the whole curve without the use of landmarks or discrete parametric 

representations and deals with functional mappings of curve instances on the shape 

manifold. The main contributions of this paper are as follows: i) an inverse-consistent 

diffeomorphic framework for matching sulcal shapes, ii) An intrinsic sulcal shape atlas 

based on the Riemannian metric on the shape manifold, and iii) integration of sulcal curve 

diffeomorphisms in driving cortical surface registrations. To our knowledge, the proposed 

framework of direct diffeomorphic three-dimensional sulcal curve mappings have not been 

used in cortical registration before. This paper is organized as follows. Section 2 outlines the 

shape modeling scheme for sulci and gyri. It also outlines the procedure for computing 

statistical shape averages for sulci and gyri for a given population. Section 3 incorporates the 

sulcal shape model in cortical surface registration, followed by results and conclusion.

 2 Diffeomorphic Shape Analysis of Sulci and Gyri

In this section, we describe the modeling scheme used to represent sulcal and gyral shape 

features. We represent the cortical valleys (sulci), and the ridges (gyri) by open curves. 

However unlike previous approaches which have used landmarks for representing the sulcal 

and gyral features, we will use continuous functions of curves for representing shapes.

 2.1 Shape Representation

Let β be a 3D, arbitrarily parameterized [5], open curve, such that . We 

represent the shape of the curve β by the function  as follows,
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(1)

Here, , , and  is the standard Euclidean inner product in . 

The quantity ∥q(s)∥ is the square-root of the instantaneous speed, and the ratio  is the 

instantaneous direction along the curve. The original curve β can be recovered upto a 

translation, using . In order to make the representation scale 

invariant, we will normalize the function q as . We now denote 

 as the space of all unitlength, elastic 

curves. On account of scale invariance, the space  becomes an infinite-dimensional unit-

sphere and represents all open elastic curves invariant to translation and uniform scaling. 

The tangent space of  is easy to define and is given as 

. 

Here each wi represents a tangent vector in the tangent space of . Due to the spherical 

nature of the shape space, any vector on the shape space can be transformed to a tangent 

vector by simply subtracting its normal component. We define a metric on the tangent space 

as follows. Given a curve , and the first order perturbations of q given by u, 

, respectively, the inner product between the tangent vectors u, v to  at q is 

defined as, . Now given two shapes q1 and q2, the translation 

and scale invariant shape distance between them is simply found by measuring the length of 

the geodesic connecting them on the sphere. We know that geodesics on a sphere are great 

circles and can be specified analytically. Thus given a tangent vector , the 

geodesic on  between the two points q1, q2  along f, for a time t is given by χt(q1; 

f) = cos (t cos−1 〈q1, q2〉) q1 + sin (t cos− 〈q1, q2〉) f where t is a subscript for time. Then the 

geodesic distance between the two shapes q1 and q2 is given by . 

The quantify  is also referred to as the velocity vector field on the geodesic path χt So far, 

we have constructed geodesics between a pair of curves directly on the sphere . In doing 

so, we implicitly assumed that the curves were rotationally aligned, as well as the 

parameterization of the curves was fixed. However the shape of a curve remains unchanged 

under rotations as well as different parameterizations of the curve. Thus in order to register 

shapes accurately, the matching should be invariant to rotations as well as 

reparameterizations. This matching is achieved by constructing the space of elastic shapes, 

and measuring the “elastic” distance between curves under certain well-defined shape-

preserving transformations as explained in the next section.

 2.2 Geodesics between Elastic Shapes

In order to match curves elastically, in addition to translation and scaling, we consider the 

following reparameterizations and group actions on the curve that preserve its shape. A rigid 
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rotation of a curve is considered as a group action by a 3 × 3 rotation matrix O3 ∈ SO(3) on 

q, and is defined as O3 · q(s) = O3q(s), ∀s ∈ [0, 2π]. A curve traveled at arbitrary speeds is 

said to be reparameterized by a non-linear differentiable map γ (with a differentiable 

inverse) also referred to as a diffeomorphism. We define  as the space of 

all orientation-preserving diffeomorphisms. Then the resulting variable speed 

parameterizations of the curve can be thought of as diffeomorphic group actions of γ ∈ D on 

the curve q. This group action is derived as follows. Let q be the representation of a curve β. 

Let α = β(γ) be a reparameterization of β by γ. Then the respective velocity vectors can be 

written as . The reparameterization q by 

γ is defined as a right action of the group D on the set C and written as . 

Thus are interested in constructing the shape space as a quotient space of , modulo shape 

preserving transformations such as rigid rotations and reparameterizations.

Altogether, the set of curves affected by the group actions above, partition the space  into 

equivalence classes. We now define the elastic shape space as the quotient space 

. The problem of finding a geodesic between two shapes in S is same 

as finding the shortest path between the equivalent classes of the given pair of shapes. Since 

the actions of the re-parametrization groups on C constitute actions by isometries, this 

problem also amounts to minimizing the length of the geodesic path, such that

(2)

where d is given by the geodesic distance. In order to optimize Eq. 2, we recognize that for a 

fixed rotation O3, the distance de can be obtained by finding the optimal reparameterization 

 between q1 and q2, whereas for a fixed γ, the distance de is calculated by finding the 

optimal rotation Ô3. Thus in order to minimize the distance in Eq. 2, we alternate between 

optimizing over O3 and γ repeatedly until the process converges. At each step, the optimal 

rotation Ô3 is given by Ô3 = USVT, where, all , and given by the singular 

decomposition of Ô3. Furthermore this decomposition is approximated using the  function 

given by . Also, at each iteration, we compute a geodesic path 

between the starting shape q1 and the target shape O3q2 · γ. Upon convergence of this 

procedure, we also obtain the tangent vector  along the geodesic path connecting the two 

shapes.

 2.3 Construction of a Statistical Sulcal Atlas

In order to construct a sulcal atlas of a large population of curves in the shape space, we 

need the notion of a shape average based on the sulcal and gyral curves. Owing to the 

nonlinearity of the shape space, the computation of an average shape is not straightforward. 

There are two well known approaches of computing statistical averages in such spaces. The 

extrinsic shape average is computed by projecting the elements of the shape space in the 

ambient linear space, where an Euclidean average is computed, and subsequently projected 

back to the shape space. On the other hand, the intrinsic average, also known as the Karcher 
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mean ([6]) is computed directly on the shape space, and makes use of distances and lengths 

that are defined strictly on the manifold. It uses the geodesics defined via the exponential 

map, and iteratively minimizes the average geodesic variance of the collection of shapes. We 

will adopt the intrinsic approach by computing the Karcher mean for a given set of shapes. 

The Karcher mean is computed by minimizing the geodesic variance for a given collection 

of shapes. In other words, given a set of shapes {qi}, i = 1, . . . , N, the Karcher mean is 

given by . This mean is computed by an 

optimization procedure that involves repeated computations of geodesics from each of the 

shapes of the population to the current estimate of the mean. Next, we describe the 

procedure of combining the nonlinear sulcal atlas along with cortical surface registration for 

mapping brains across populations.

 3 Integrating Sulcal Shapes with Cortical Surface Registration

In this section, we introduce our scheme for registering cortical surfaces. There have been 

several prominent approaches [10,4,1] for cortical registration in the neuroimaging 

community. Our method, although based on the same conceptual framework of elastic 

registration, provides a slightly different model for computing the deformation, with certain 

improvements in the implementation that increase flexibility and efficiency. A general 

outline of the process is as follows. The first stage is to establish homology of the curve data, 

which is accomplished by matching the shapes in a Riemannian shape space framework. 

Next, the surfaces and curves are conformally mapped to the sphere, establishing a common 

space where deformation will be defined. Following this, there is a rotational alignment of 

the surfaces and curves to account for the differences in spherical mapping orientations. 

Next, the spherical mean of the curves is found to define the atlas curves for the domain of 

the deformation. Finally, the elastic deformation of the atlas on the sphere is found, which 

constrained to map the atlas curves to each case's set of curves. The surfaces are 

reparameterized by this elastic deformation. The resulting surfaces then have homologous 

coordinate systems, allowing local comparisons across the group. We define a set of N 

surfaces, {M1 , ...,MN} where . We represent their mesh geometry using a set of 

simplicial complexes, {(K1, f1), ..., (KN, fN)} where Ki is a simplicial complex and 

. For each surface i, we have a set of M landmarks represented by continuous 

open curve {βi1,..., βiM} where , and the set of curves 

represent homologous regions on the set of surfaces. Additionally, the curves are discretized, 

where the j-th curve has kj vertices. The first step of the process is to establish 

correspondence between the homologus landmark curves by computing mappings 

 such that for curve j and parameter t, the set 

is a set of homologous points on the surfaces. This is accomplished by mapping the curves 

to a Riemannian manifold shape space, where reparameterizations are defined by geodesics 

to the Karcher mean of the curves in the shape space.

 3.1 Spherical Mapping and Alignment

Next, the meshes are simplified using a QEM-based method, and a set of conformal 

mappings is found from each surface to the unit sphere,  where  S2. 
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The spherical mapping of the matched curves is then , which is found using 

the barycentric coordinates of each curve vertex. A bounded interval hierarchy is used to 

efficiently search for the coincident face of each curve vertex. Once the data are mapped to 

the sphere, they are rotationally aligned to enforce a consistent orientation of the spherical 

mappings. Given an arbitrarily chosen target, each set of curves is aligned to the target by 

computing the rotation and reflection that minimizes the least-squared difference between 

the discretized curve coordinates. This is accomplished by solving the unconstrained 

orthogonal Procrustes problem using singular value decomposition, allowing reflections to 

account for the inversion between the hemispheres. For an arbitrary , 

we find an optimal alignment  and then optimally rotate the data as, , 

and .

 3.2 Spherical Curve Atlas

Once the data have been aligned on the sphere, the mean curves are computed to serve as the 

atlas curves in the surface warping. The Karcher mean on the sphere is found for each vertex 

of each curve. In this method, an initial guess is found by the normalized average of the 

points. For this point, the tangent space is defined by the gnomonic projection. A new mean 

is computed in the tangent space and then is mapped back to the sphere, repeating this 

process until convergence. We can express the curve atlas as the set , where 

 is the karcher mean of .

 3.3 Elastic Surface Warping

For surface i, the deformation of the atlas is , where  for t ∈ 

[0, 2π], j ∈ [1, M]. Six flattenings of the sphere are defined 

. For a point on the sphere, p ∈ S2, the optimal 

flattening is chosen as . The displacement field 

 is then . At non-landmark points, i.e. 

, the mapping is constrained to satisfy a small 

deformation elastic proposed by Thompson et al. [10], and is given by

(3)

The atlas mesh is defined on the sphere by tessellating the sphere with a subdivided 

octahedron [7]. This representation is advantageous for its multiscale processing and 

flattening. The flattening can be imagined as follows. First, choose one of the vertices of the 

octahedron to map the center of the grid. Then, cut the four far edges that do not contain the 

center vertex. These edges are duplicated and define the boundary of the grid, and the 

opposite vertex maps to the four corners of the grid. The deformation is computed iteratively 

using multigrid finite differences, where the octahedral subdivisions and flattenings are used 
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for prolongation and restriction operations. The solver accounts for the spherical topology of 

the domain by solving the above nonlinear model and resampling the deformed atlas by 

establishing vertex homology between the meshes.

 4 Experimental Results

Our experimental data consisted of 3T MRI acquisitions (GE) for a population of 69 healthy, 

Chinese, right-handed volunteers (30 men, 39 women; 18-33 yr) using a transverse 3D T1-

weighted fast spoiled gradient-echo (FSPGR) sequence (TR/TE = 6.8 cm; ms/2.9 ms; voxel 

size = 0.47 mm × 0.47 mm × 0.70 mm; FOV = 24.0 × 24.0 cm; matrix size = 512 × 512; flip 

angle = 10°, slice thickness = 1.4 mm, and slice gap = 0.7 mm). After preprocessing the raw 

data, and registering it stereotaxically to a standard atlas space, the cortical surfaces for these 

subjects were extracted using an automated algorithm [2]. For each of these subjects, a total 

of 27 landmark curves were manually traced. Figure 1 shows the original 27 landmark 

curves for each of the 69 subjects for both hemispheres overlaid together. Additionally, 

Figure 1 also shows the intrinsic sulcal shape averages of the 27 landmark curves, as well as 

the respective extrinsic Euclidean averages for the same. While computing the extrinsic 

average, each curve for the same landmark type was mapped to its q representation, thus 

making it scale and translation invariant. The Euclidean average of all the q functions was 

then computed after a pairwise rotational alignment. Both the Karcher mean shapes as well 

as the Euclidean averages were then mapped back to the native space in order to visualize 

them. It is observed that the intrinsic averages although smooth, have preserved important 

features along the landmarks, thus representing the average local shape geometry along the 

sulci and gyri. This also implies that the shape average has not only captured the salient 

geometric features, but has also reduced the shape variability in the population. In order to 

demonstrate this property, we plot the variance of the shape deformation for each landmark 

type as captured by the velocity vector along the geodesic path, both for Euclidean extrinsic, 

and Riemannian intrinsic averages. This quantity measures the invariant deformation 

between a pair of shapes, and only depends upon the intrinsic geometry of the shapes. For 

both of these averages, the tangent vectors were computed using the procedure outline in 

Section 2.2 and the computations were done using the elastic geodesic method for consistent 

comparisons. Figure 2 shows a comparison of the plots of  for each 

of the landmarks, taken along the length of the curve, for both Euclidean shape averages, as 

well as intrinsic shape averages. Here the  is the tangent vector from the mean shape to 

ith shape. From the color-coded map, it is observed that the intrinsic average has reduced the 

variance in terms of shape geometry deformation, and thus is a better representative of the 

population.

Next, we demonstrate results of cortical surface registration with and without the 

incorporation of the above diffeomorphic sulcal atlas in Figure 1. As an initial step, we 

compute geodesics between the average shape of the landmark, and the set of all sulci 

belonging to that landmark type, and reparameterize the set of sulci according to inverses of 

the resulting diffeomorphisms. We then follow the steps outlined in Sec. 3 in order to warp 

all the surfaces meshes to the atlas. Figure 3 shows three the lateral, axial, ventral, and 

medial views of the reconstructed cortical surface averages from the flattened 
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representations. The surface is colored by its curvedness in order to highlight the fundi of the 

sulci as well as the ridges of the gyri. It is observed that the surface with diffeomorphic 

sulcal mapping shows richer geometric detail than the traditional Euclidean reconstruction. 

As another measure of distortion, we also computed the root mean square (r.m.s.) error of 

the distance from each sample surface to the average reconstructed cortical surface with and 

without diffeomorphic sulcal matching. It is observed that the diffeomorphic method yields 

lower errors throughout the surface as compared to the Euclidean matching. Interesting, the 

diffeomorphic mapping approach has also shown considerable improvement in the frontal 

lob (Labeled as A in Figure 4) even in the absence of sulcal landmarks. The results from 

spherical alignment are also shown for comparison.

 5 Conclusion

We have presented a direct diffeomorphic approach for shape analysis of sulcal and gyral 

features and demonstrated its application in cortical surface registration. We emphasize that 

the use of the sulcal atlas is not limited to registration alone, and can be also used to study 

cortical patterns for developmental, diseased or even normative patterns. The success of our 

method on deep brain sulci also demonstrates the effectiveness in capturing the intrinsic 

shape variability of the sulci and gyri. In the future, we intend to perform extensive 

validation studies for large populations as well as apply the sulcal models for neuroimaging 

population studies.
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Fig. 1. 
Lateral, frontal, and medial views of, top row: 27 landmark sulci and gyri for 69 subjects, 

middle row: Euclidean sulcal shape averages, bottom row: Karcher shape average for each 

landmark type
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Fig. 2. 
Comparison of the geodesic variance for the entire sulcal population for each of the 27 

landmarks, both for Euclidean shape averages, as well as elastic shape averages, along the 

length of the curves
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Fig. 3. 
Lateral, axial, ventral, and medial views of the reconstructed cortical surface with Euclidean 

sulcal matching (top), and diffeomorphic sulcal matching (bottom). The surfaces are colored 

according to shape curvedness.
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Fig. 4. 
R.M.S error of the distance from each sample surface to the average reconstructed cortical 

surface with and without diffeomorphic sulcal matching shown for left hemisphere. There is 

considerable improvement in registration even where there is an absence of landmarks 

(labeled as A).
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