Skip to main content
. 2016 Jun 16;4(2):34. doi: 10.3390/healthcare4020034

Table 4.

Logistic regression models for opioid misuse risk (COMM 1) (n = 122).

Predictor Variables Model 1. Pain severity and interference Model 2. Add depression Model 3. Add pain location Model 4.Add depression * pain location
Variables OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI)
Total average pain severity 2 0.88 (0.60–1.29) 0.92 (0.61–1.37) 0.87 (0.58–1.31) 0.81 (0.52–1.26)
Total average pain interference 2 2.25 (1.45–3.48) 1.91 (1.21–3.01) 1.95 (1.23–3.09) 2.09 (1.26–3.47)
Depression (Yes vs. No) 3.32 (1.20–9.16) 3.32 (1.19–9.23)
Pain Location 3
  CPOL 1.00 -
  CLBP 0.64 (0.23–1.77) -
Depression * Pain Location 4
  CPOL: Depression (Yes vs. No) 10.57 (2.21–50.49)
  CLBP: Depression (Yes vs. No) 1.04 (0.25–4.41)
Chi-square change (df, p-value) 29.58 (2, <0.0001) 5.48 (1, 0.019) 0.74 (1, 0.390) 5.00 (1, 0.025)
Nagelkerke R-square 0.320 0.372 0.378 0.423

Note: OR = odds ratio; CI = confidence interval; 1 COMM = Chronic opioid Misuse Measure; 2 Brief Pain Inventory (Average Severity and interference: 0–10), odds ratio represents the change in odds of opioid misuse risk given one unit increase in average pain severity or interference; 3 CPOL: Chronic pain other location, CLBP: Chronic low back pain; 4 Wald Chi-square p = 0.031.