s1dLIOSNUBIA JoyINy sispund DN 8doin3 ¢

s1dLosnuUep JoyIny sispund DN adoin3 ¢

Europe PMC Funders Group
Author Manuscript
Curr Opin Neurol. Author manuscript; available in PMC 2017 February 01.

Published in final edited form as:
Curr Opin Neurol. 2016 August ; 29(4): 486-495. doi:10.1097/WC0.0000000000000352.

Recent advances in genetics of chorea

Niccolo E. Mencaccil! and Miryam Carecchio?34

1Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG London, United
Kingdom

2Molecular Neurogenetics Unit, IRCCS Foundation Carlo Besta Neurological Institute, Via Celoria
11, 20131 Milan, Italy

3Department of Pediatric Neurology, IRCCS Foundation Carlo Besta Neurological Institute, Via
Celoria 11, 20131 Milan, Italy

4Department of Molecular and Translational Medicine, University of Milan Bicocca, Milan, Italy

Abstract

Purpose of review—Chorea presenting in childhood and adulthood encompasses several
neurological disorders, both degenerative and non-progressive, often with a genetic basis. In this
review, we discuss how modern genomic technologies are expanding our knowledge of monogenic
choreic syndromes and advancing our insight into the molecular mechanisms responsible for
chorea.

Recent findings—A genome-wide association study in Huntington Disease identified genetic
disease-modifiers involved in controlling DNA repair mechanisms and stability of the CAG repeat
expansion. Chorea is the cardinal feature of newly recognized genetic entities, ADCY5and
PDE10A-related choreas, with onset in infancy and childhood. A phenotypic overlap between
chorea, ataxia, epilepsy, and neurodevelopmental disorders is becoming increasingly evident.

Summary—The differential diagnosis of genetic conditions presenting with chorea has
considerably widened, permitting a molecular diagnosis and an improved prognostic definition in
an expanding number of cases. The identification of Huntington Disease genetic-modifiers and
new chorea-causing gene mutations has allowed the initial recognition of converging molecular
pathways underlying medium spiny neurons degeneration and dysregulation of normal
development and activity of basal ganglia circuits. Signalling downstream of dopamine receptors
and control of cCAMP levels represent a very promising target for the development of new
aetiology-based treatments for chorea and other hyperkinetic disorders.
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Introduction

Advances

Chorea is a hyperkinetic movement disorder characterized by an excess of brief, continuous,
unpatterned involuntary movements [1]. Focal lesions of the striatum and degeneration
and/or functional dysregulation of medium spiny neurons (MSNSs), which constitute ~95%
of the striatal cells and form the striatal output projections, are considered to underlie the
pathophysiology of choreic movements [2].

A variety of acquired causes may underlie chorea (recently reviewed in [3]). However,
genetic aetiologies play a central role in the differential diagnosis of choreic syndromes.
Huntington’s disease (HD), with a prevalence of up to 1 in 10,000 subjects in Western
countries, is not only the most relevant single cause of chorea, but also the most common
monogenic neurodegenerative disorder [4]. In recent years, thanks to the advances in DNA
sequencing technologies, the list of genetic entities presenting with chorea, both
neurodegenerative and non-progressive forms, is rapidly and largely expanding (Table 1).

In this review we will summarise the most relevant recent progresses in the field of genetics
of chorea. Furthermore, we will discuss the advances in the understanding of the molecular
mechanisms of basal ganglia disorders, gained thanks to the identification of novel
monogenic choreic syndromes.

in the genetics of Huntington’s disease

Most of the current research efforts in HD genetics are aimed at identifying disease
modifiers, which may influence the disease progression and determine the age at onset
(AAO) of motor symptoms [5]. The length of the CAG expansion is well known to be the
most relevant determinant of the age at onset (AAQO), with longer repeats associated with an
earlier onset [6]. However, the CAG repeat size accounts for only ~50% of the variation in
AAO [7] and a substantial portion of the remaining variance in AAOQ is highly heritable,
strongly indicating the existence of other critical genetic determining factors [5]. Neither the
size of the non-expanded A7 T allele, nor the presence of a second smaller CAG pathological
expansion, is able to significantly influence AAO [8]. A recent study showed that a variant
(rs13102260; G>A) in the HTT promoter, located in the site that regulates binding of the
transcription factor NF-xB, exerts a bidirectional effect on HD AAO [9]. The authors
showed /n vitroand in vivothat the presence of the A allele determined a lower NF-kxB-
mediated A7 7 transcriptional activity, resulting in delayed AAO when inherited on the same
allele of the pathological expansion (reduced expression of the pathological allele). On the
contrary, the A allele was associated with an earlier AAO when located on the non-expanded
allele (reduced expression of the normal A77). An important corollary of these results is
that therapeutic strategies aimed at lowering the expression of the pathological CAG
expansion should take into account that non allele-specific silencing of /77 could bear
undesired effects by decreasing the expression of the normal allele. The most relevant
advance toward the discovery of HD genetic modifiers is the recent publication of the
genome-wide association study (GWAS) performed by the Genetic Modifiers of Huntington
Disease (GeM—HD) Consortium [10]. The authors identified two GWAS-significant loci,
one on chromosome 15 and one on chromosome 8 that significantly modified the AAO of
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motor symptoms as predicted solely by the CAG expansion length. Other suggestive
associations, though not passing the stringent GWAS-significance threshold, were observed
on chromosomes 3, 5 and 21. Genes located on chromosome 15 locus are MTMR10and
FANI and on the chromosome 8 locus are RRMZB and UBR5. Pathway analysis of the
GWAS results indicates that HD modifiers may be involved in control of DNA handling and
repair mechanisms. Supporting this view, the chromosome 3 locus centred on MLH1, a gene
previously identified in a HD mouse model as a modifier of somatic instability of the CAG
repeats [11].

Huntington’s disease-like syndromes

Around 1% of cases with a HD-like presentation does not carry pathogenic expansion in
HTT (HD-lookalikes, HDLs). These represent a genetically heterogeneous group of
progressive heredo-degenerative conditions. Mutations in both dominant and recessive genes
can result into HD mimics (recently reviewed in [12]). Amongst the autosomal dominant
causes, it is important to consider pathological expansions in the genes encoding the prion
protein (PRNP), junctophilin 3 (JPH3), TATA box-binding protein ( 7BP, also responsible
for the dominant spinocerebellar ataxia type 17), atrophin-1 (A7NZ), mutations in the
ferritin light chain gene (the cause of neuroferritinopathy, an adult-onset dominant form of
neurodegeneration with brain iron accumulation [NBIA]), and mutations in the genes
responsible for idiopathic basal ganglia calcification (SLC20A2, PDGFB, PDGFRB, XPRI)
[13-18]. Other important neurodegenerative conditions mimicking HD are
neuroacanthocytosis, caused by recessive VPS13A mutations [19], and Macleod syndrome,
an X-linked recessive disease caused by mutations in XK [20]. Most of the published cases
series indicate that a genetic diagnosis can be reached only in a small minority of HDL cases
(~1-3%) [15, 21-24]. Exceptions to this are the high prevalence of the JPH3 expansion in
patients of sub-Saharan African descent [15, 25] and the AT/ expansions in Japanese
patients [26]. Importantly, pathological C90rf72 exanucleotide repeat expansions, the most
common genetic cause of familial frontotemporal lobar degeneration and amyotrophic
lateral sclerosis [27, 28], were recently recognised as the single most prevalent cause of
HDL in Caucasians [29]. Hensman-Moss et al. assessed a UK cohort of 514 HDL patients
and identified ten subjects (1.95%) who carried the expansion. The spectrum of movement
disorders observed in these cases included variable combinations of chorea, dystonia,
myoclonus, and parkinsonian signs. Behavioural, psychiatric and cognitive difficulties were
observed in most expansion carriers. Prominent signs of upper motorneuron involvement
(but not lower motorneuron) were evident in four subjects. The C9orf72 repeat expansion
has been subsequently confirmed to be a relevant cause of HDL also in other cohorts [30,
31].

Chorea as the core feature in patients with mutations in cerebellar ataxia-

related genes

Chorea is increasingly observed in patients with pathogenic mutations in genes linked to
cerebellar ataxia (other than the aforementioned SCA17 expansion). Patients with bi-allelic
ATM mutations, the cause of ataxia-telangiectasia (A-T), may present with a broad spectrum
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of movement disorders, including chorea [32-34], isolated dystonia [35, 36], DOPA-
responsive dystonia [37], and myoclonus-dystonia [38—40]. Patients with variant A-T have
milder mutations, which allow a degree of residual protein activity [41]. Meneret and
colleagues recently reported a total of 14 consecutive adults with variant A-T, and showed
that, compared to patients with the classic presentation, they show a milder disease course
and longer survival [42]. Of relevance, patients with ATM-related chorea and dystonia may
completely lack the classic clinical features of A-T [43]. Chorea has been rarely described
also in cases with ataxia with oculomotor apraxia type 1, 2 and 4 [44-46], and Friedrich
ataxia [21, 47, 48]. Recently, recessive mutations in RNF216, a gene previously associated
with cerebellar ataxia and hypogonadotropic hypogonadism [49], were identified in two
recessive pedigrees with chorea, behavioural problems, and severe dementia [50].

Chorea secondary to NKX2-1 mutations

Mutations in NKX2-1, encoding a transcription factor essential for striatal development,
cause benign hereditary chorea (BHC) [51, 52], an autosomal dominant choreic syndrome
with onset in infancy or early childhood, relatively scarce progression of symptoms and
absence of other major neurological deficits, in particular progressive cognitive decline [53].
To date ~190 cases and ~100 NKX2-1 mutations have been reported, allowing a better
definition and an expansion of the phenotype associated with mutations in this gene [54-56].
NKX2-1 mutations lead to a complex multi-systemic disease, featuring not only chorea, but
also thyroid and pulmonary defects (brain-lung-thyroid syndrome) in ~80% of cases [54,
56]. It was recently proposed to abandon the term BHC [57] given that (i) 60% of the
identified NKX2-1 mutations are de novo (hence, the disease is not hereditary)[54]; (ii)
NKX2-I-mutated cases commonly present with a variety of neurological symptoms other
than chorea (i.e. hypotonia, neurodevelopmental delay, dystonia, myoclonus, tics and ataxia)
[54, 58-61]; (iii) patients with NKX2-1 mutations may present various degrees of non-
progressive intellectual disability, as well as behavioural and psychiatric symptoms (recently
reviewed in [62]). Furthermore, while the term BHC is often used to imply the presence of
NKX2-1 mutations, a significant number of families with BHC do not carry mutations in
this gene [63, 64]. Thorwarth and colleagues recently published an extensive clinical and
genetic study in a large cohort of BHC cases [56]. Pathogenic NKX2-1 mutations were
present in only 26.7% of cases (27/101; 17 point mutations and 10 large deletions),
indicating the existence of other undetected pathogenic variants in the NKX2-1 non-coding
regions and/or mutations in other closely functionally related genes. Intriguingly, two of the
detected deletions spared the coding region of NKXZ2-1, involving only the neighbouring
chromosomal region, which encompasses the MB/P gene. The pathogenic mechanism of
these deletions is currently not clear. The deletions may remove regulatory elements
essential for NKX2-1 transcription and critically affect NKX2-1 expression. Alternatively,
MBIP haploinsufficiency may represent a novel cause of a NKX2-1 deficiency-like
presentation [56].

Chorea secondary to ADCY5 and PDE10A mutations

Recently, mutations in ADCY5and PDE10A have been identified as important causes of
chorea. The first pathogenic ADC Y5 missense mutation (A726T) was identified in a large
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kindred with an autosomal dominant movement disorder, mainly characterized by early
onset of dyskinesias (chorea and dystonia) and facial myokymias [65]. Subsequently,

ADC Y5 mutations have been recognized as the cause of a broad range of hyperkinetic
movement disorders, mainly including chorea, but also dystonia and myoclonus [66-69]. So
far, eight different mutations (de novo or with autosomal dominant transmission) have been
reported in 27 unrelated subjects. Mutations affecting the amino acid residues R418 and
AT26 are recurrent, highlighting a particular relevance of these residues for disease
mechanisms. Looking at patients published so far, subjects with the common p.R418W
mutation seem to have a more severe presentation, with axial hypotonia and delayed motor
milestones. Furthermore, somatic mosaicism may be at least in part responsible for intra-
familial clinical variability in these subjects [67, 68]. Red flags for the diagnosis of ADCY5
related dyskinesias are (i) an onset of symptoms in the first years of life, (ii) the absence of
significant cognitive involvement, (iii) prominent facial twitches, (iv) a marked fluctuations
of symptoms (some patients presenting frank paroxysmal attacks, though without specific
triggers [70]), (v) a marked exacerbation of the dyskinesias at night and upon awakening.
Although ADCY5-related chorea is a non-degenerative condition, others and we have
observed that the clinical picture of ADCY5mutated cases can evolve, with chorea being
more evident during childhood and dystonic and myoclonic elements becoming more
prominent over the years [66, 67].

Both de novo dominant and recessive PDE10A mutations have been recently described in
patients with childhood-onset chorea. Two different de novo mutations (p.F300L and
p.F334L) were identified in three unrelated cases with a very similar clinical presentation of
childhood-onset chorea (AAQO between 5-10 years) and characteristic brain MRI showing
symmetrical T2-hyperintense bilateral striatal lesions [71]. Recessive homozygous
mutations (p.Y107C and p.A116P) were detected in two consanguineous pedigrees [72].
The phenotype in these cases was more severe, with a much earlier AAO (< 1 year), severe
dysarthria, axial hypotonia, cognitive and language development delay. Of interest, despite a
more severe neurological involvement, the MRI of the cases with recessive mutations did not
show the same abnormal signal observed in the cases with dominant mutations.

ADCY5and PDEI0A encode the main enzymes regulating the synthesis (adenyl cyclase 5;
AC5) and degradation (phosphodiesterase 10A; PDE10A) of cyclic adenosine
monophosphate (CAMP) in MSNs. AC5 activity, and consequently cAMP synthesis in
MSNSs, is promoted by the stimulation of the G protein-coupled dopamine receptors type 1
and adenosine receptors 2A. Hence dopamine and adenosine-mediated modulation of MSNs
activity largely relies on cAMP signalling [73]. /n vitroand in vivo assessment of the effect
of the identified PDE10A substitutions showed that both dominant and recessive variants
lead to a loss-of-function [71] or reduced protein levels [72]. These data, together with the
fact that ADCY5 pathogenic mutations may increase the AC5 enzymatic activity and the
synthesis of CAMP [74], suggest that increased intracellular cAMP levels in MSNs is critical
for chorea pathogenesis. Pharmacological modulation of PDE10A is a primary target in
pharmacological research of basal ganglia disorders, including HD and Parkinson disease
[75] and a phase |1 clinical study (the Amaryllis study) of a PDE10A inhibitor is currently
ongoing in HD. Importantly, the identification of loss-of-function PDEI0A mutations as a
cause of chorea suggests that pharmacological inhibition of PDE10A may not be the best
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option for the treatment of hyperkinetic movement disorders. Mutations in GNAL [76] and
GPR88[77], coding for G proteins almost exclusively expressed in MSNs and coupled with
dopamine receptors, have been recently linked to dystonia and chorea, respectively, further
implicating intracellular signalling downstream of dopamine receptors in MSNs in the
pathogenesis of chorea and other hyperkinetic movement disorders.

Chorea in carriers of epileptic encephalopathy genes

An overlap between hyperkinetic movement disorders and epileptic/neurodevelopmental
syndromes is emerging. A rapidly expanding number of mutations in genes originally
reported in severe early-onset epileptic encephalopathies are now recognised in a spectrum
of conditions ranging from isolated movement disorders (most frequently chorea, but also
dystonia and stereotypies) to more catastrophic presentations.

GNAOI mutations, first described in a type of severe epileptic encephalopathy with
developmental delay (Ohtahara syndrome; [78]), are described also in cases presenting with
a progressive choreic movement disorder, often in absence of epilepsy [79-82]. Mutations in
FOXG1, a gene which plays a crucial role in the development of the foetal telencephalon,
lead to a distinct phenotype manifesting in infancy and early childhood with microcephaly,
epilepsy, delayed milestones and severe intellectual disability without language development
(congenital Rett-like syndrome) [83]. Movement disorders have now been recognized as a
core feature of this disorder, being present in 100% of cases in a series of 28 patients
recently published [84]. Chorea is the most frequent movement disorder in FOXGI mutation
carriers (88%), followed by orolingual/facial dyskinesias, dystonia, myoclonus and
stereotypies, present in various combinations. Importantly, patients with missense mutations
(instead of severe truncating mutations) may display a milder phenotype, with independent
ambulation, spoken language, and normocephaly [84]. A single missense mutation
(p.E1483K) in SCNSA, encoding a voltage gated Na-channel subunit widely expressed in
the CNS, has recently been linked to paroxysmal kinesigenic dyskinesia and benign familial
infantile seizures [85]. This observation expands the phenotypic spectrum associated with
mutations in this gene, which also includes severe epileptic encephalopathy and a
neurodevelopmental disorder [86]. A de novo missense variant in SY'71, encoding
Synaptotagmin-1, a protein essential for synaptic vescicle fusion, has been recently
associated with severe developmental delay and an early onset, paroxysmal dyskinetic
movement disorder worsening at night (as seen in ADCY5-mutated patients), but only a
single patient has been described to date [87].

Conclusions

Chorea is observed in an expanding number of genetic diseases. Mutations in ADCY5and
PDE10A represent novel important causes of chorea, frequently featuring also myoclonus
and dystonia. Furthermore, mutations in genes classically associated with other neurological
disorders, such as ataxias, developmental delay, and epileptic encephalopathies, are
increasingly detected in patients with chorea. Vice versa, mutations in NKX2-1, the cause of
BHC, are now recognised in patients with a range of movement disorders (i.e. myoclonus,
dystonia and ataxia) other than chorea. Importantly, this substantial genetic and clinical
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overlap suggests that disruption of similar circuits and/or molecular pathways may underlie
these neurological conditions.

While individually rare, clinical recognition and molecular diagnosis of monogenic causes
of chorea is crucial to define precisely the prognosis and offer a correct genetic counselling
to patients with chorea. Furthermore, the identification of genetic HD modifiers and of a
growing number of mutations in novel genes linked to chorea is allowing the definition of
converging biological pathways likely to be essential for the survival and physiological
activity of MSNSs. Different types of disease mechanisms can affect MSNs and clinically
lead to chorea, including degenerative processes (e.g. HD and HDL), developmental
abnormalities (e.g. NKX2-1and FOXGI-related choreas) and disrupted post-receptorial
intracellular signalling (ADCY5and PDEI0A-related choreas). A better understanding of
the molecular mechanisms responsible for these conditions will be the key step to develop
specific disease-modifying treatments.
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Key points

The results of the first GWAS in Huntington’s disease identified novel
genetic modifiers of age at onset located on chromosome 8 and 15 and
suggest that DNA handling and repair mechanisms are crucial in controlling
the somatic stability of the CAG expansion.

Thanks to the discovery of mutations in ADCY5and PDE10A as novel
causes of chorea, abnormal cAMP metabolism in medium spiny neurons is
emerging as a central molecular mechanism underlying the pathogenesis of
basal ganglia disorders

The C9orf72 exanucleotide expansion has been recognised as the most
common cause of Huntington disease-like syndrome in Caucasian
populations

While mutations in NKX2-1 have been identified in patients with a range of
movement disorders other than chorea, more than to 70% of benign
hereditary chorea (BHC) cases do not have mutations in NKX2-1,
prompting to abandon the use of the term BHC to label patients with
NKX2-1 mutations.

An expanding genetic and phenotypic overlap between chorea (and other
hyperkinetic movement disorders) and other neurological syndromes,
including developmental delay, epilepsy and ataxia, is emerging.
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