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Escargot in adult stem cells: How can we tease them apart?
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ABSTRACT
The homeostatic turnover of adult organs and their regenerative capacity following injury depend on a
careful balance between stem cell self-renewal (to maintain or enlarge the stem cell pool) and
differentiation (to replace lost tissue). We have recently characterized the role of the Drosophila Snail
family transcription factor escargot (esg) in testis cyst stem cells (CySCs)1,2 and intestinal stem cells (ISCs). 3,4

CySCsmutant for esg are notmaintained as stem cells, but they remain capable of differentiating normally
along the cyst cell lineage. In contrast, esg mutant CySCs that give rise to a closely related lineage, the
apical hub cells, cannot maintain hub cell identity. Similarly, Esg maintains stemness of ISCs while
regulating the terminal differentiation of progenitor cells into absorptive enterocytes or secretory
enteroendocrine cells. Therefore, our findings suggest that Esg may play a conserved and pivotal
regulatory role in adult stem cells, controlling both their maintenance and terminal differentiation. Here
we propose that this dual regulatory role is due to simultaneous control by Esg of overlapping genetic
programs and discuss the exciting challenges and opportunities that lie ahead to explore the underlying
mechanisms experimentally.
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Introduction

Stem cell self-renewal and the production of pro-
genitor cells are tightly controlled by both intrinsic
and extrinsic mechanisms. While most adult or tis-
sue stem cells divide asymmetrically to self-renew
and give rise to differentiating progeny, stem cell
divisions are not invariantly asymmetric, and the
relative abundance of cell types that derive from
them in a tissue will often be consistent with a
“neutral drift” model of stochastic symmetric or
asymmetric divisions.5,6 Moreover, in response to
diverse forms of stress (wounding, aging, metabolic
stress), stem cells can undergo dynamic waves of
symmetric self-renewing or differentiating divisions
to quickly repair damaged tissue.7-9 Furthermore,
differentiating progeny are often multipotent and
their cell fate decisions must be tightly regulated
for proper homeostasis and regeneration.

While significant progress has been made in the
identification, characterization and manipulation of
tissue stem cells in several organisms, a complete
understanding of the genetic networks that coordinate

self-renewal and differentiation decisions is still largely
lacking. A fuller picture of how decisions between
alternative fates is achieved will advance our ability to
manipulate stem cells and unleash their full potential
for regenerative medicine.

Research focused on Drosophila stem cells has been
instrumental in characterizing basic mechanisms of
stem cell regulation, including the interactions between
stem cells and their niche10-12 and the role of asymmet-
ric divisions in controlling stem cell behavior (reviewed
in13,14). In addition, more recent work has underscored
the use of Drosophila as an excellent model system to
explore the response of stem cells to various forms of
physiological, metabolic and genotoxic stress, from
infections to starvation and aging.7,15-18

In our laboratory, we have used 2 well-established
stem cell model systems in flies, the posterior midgut
epithelium and the testis, to explore how mechanisms
regulating stem cell behavior are altered in response to
aging and acute or chronic changes in metabo-
lism.16,19-22
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The adult Drosophila midgut is a simple epithelium
composed of 2 terminally differentiated cell types:
secretory enteroendocrine cells (EEs) and absorptive
enterocytes (ECs), both of which originate from intes-
tinal stem cells, or ISCs (Fig. 1a).23,24 The majority of
ISCs undergo an asymmetric self-renewing division,
generating a new ISC and a transient enteroblast (EB)
that differentiates into an EC through activation of the
Notch pathway. On the other hand, a smaller subset
of Prospero-expressing ISCs gives rise to EE cells
through asymmetric mitosis (ISCCEE) or direct dif-
ferentiation.25-28

Drosophila testes produce sperm throughout life
due to asymmetric self-renewing divisions of germline

stem cells (GSCs), which reside at the tip of the gonad
within a well-characterized niche (Fig. 1b).12 During
spermatogenesis, GSCs divide to produce a new GSC
and a differentiating daughter that will undergo a
series of mitotic divisions before committing to termi-
nal differentiation into sperm. Every GSC daughter
that progresses through spermatogenesis is encapsu-
lated by a pair of somatic cyst cells, which are in turn
generated by the asymmetric division of cyst stem cells
(CySCs) that also reside at the testis tip in contact with
GSCs. Both GSCs and CySCs depend upon a cluster of
post-mitotic somatic cells known as the hub for their
maintenance. Hub cells not only anchor GSCs and
CySCs within the niche, but they also produce and

Figure 1. (a) The Drosophila midgut epithelium. Top left: DAPI nuclear staining of the posterior midgut (PM). MT: Malpighian tubule; Pyl:
Pyloric ring; H: Hindgut. Top right: Immunostaining of a region that corresponds approximately to the area depicted in the left image.
ISC/EBs are labeled by expression of an esg-GFP reporter (esg), EEs are identified by Prospero (Pros) nuclear staining, and ECs are identi-
fied based on their polyploid nuclei (DAPI). Images by Christopher Koehler, L. Jones lab. Bottom: Cartoon representing the 4 cell types
that make up the midgut epithelium and their lineage relationships. ISCs can self-renew (solid arrow) or differentiate into EEs or ECs
(dashed arrows - see main text for details). (b) The Drosophila testis. Top left: DIC image of a testis. The inset marks the apical tip of the
gonad, where the stem cell niche resides. Top right: Immunostaining of a testis tip. Germ cells are identified based on expression of
Vasa, whereas somatic cells are labeled by expression of Traffic jam (Tj). The arrow points to the approximate location of the apical hub
(not shown). Bottom: Schematic representation of the testis apical tip, showing somatic hub cells, germline and somatic stem cells
(GSCs and CySCs, respectively) and their progeny (GB and CyC, respectively). Lineage relationships are shown only for CySCs, which can
self-renew or differentiate into CyCs or, more rarely, give rise to hub cells. (c) Abstract synthesis of our preliminary work on the role of
escargot (esg), which is simultaneously required for the maintenance of stem cells (SC - testis CySCs 2 and midgut ISC/EBs 4), while also
controlling the differentiation of their progeny into alternative fates (“a” and “b”). 1,4
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secrete factors that are essential for maintaining the
self-renewing capacity of both stem cell populations.
Hub cells are specified during development.29-31 How-
ever, using several lineage-tracing strategies, our data
suggest that under circumstances that remain to be
better understood CySCs can either become and/or
generate new hub cells in adult males.1

Regulation of Drosophila stem cells by escargot

Escargot (Esg) is a Snail family transcription factor32

that is specifically expressed in stem and progenitor
cells in various fly organs, including the testis and pos-
terior midgut. In the testis, Esg expression is largely
restricted to GSCs, CySCs and hub cells.2 In the mid-
gut, Esg is specifically expressed in ISCs and EBs and
is frequently used as a marker for these cell types.23,33

Such restricted expression in stem cells across tis-
sues is highly unusual; therefore, we sought to charac-
terize and compare the role of Esg in stem cells from
both tissues. Clonal analysis to remove Esg function
specifically from CySCs resulted in loss of stem cell
fate, differentiation into apparently normal cyst cells,2

and the generation of morphologically abnormal hub
cells.1 In the posterior midgut, loss of Esg function in
ISCs resulted in loss of stem cells and an increased
proportion of EE cells.3,4

One interesting observation from these studies is
that Esg simultaneously regulates the self-renewal
potential of the stem cell and the terminal differentia-
tion of its progeny in both systems (Fig. 1c). Moreover,
Snail 1 (Snai1), one of the mammalian homologues of
Esg, has recently been shown to play an analogous role
in the maintenance of mouse intestinal stem cells and
the fate choices made by their differentiating progeny.34

Therefore, we propose that Esg plays a highly con-
served role in the coordination between self-renewal
and differentiation in stem cells across tissues and ani-
mal species.

In order to understand the molecular mechanisms
involved in stem cell regulation by Esg, we and others
have mapped the genomic binding of Esg by DamID,4

identified putative protein interactors by co-immuno-
precipitation followed by mass spectrometry (IP/MS)2

and analyzed changes in gene expression by RNA-
sequencing in vivo3 or in cultured S2 cells by microar-
ray (S. Sandall and L. Jones, unpublished data). We
surmise, however, that the data obtained from each of
these screens includes a mixture of targets that are in

charge of maintaining stem cells in an undifferentiated
state and/or regulating differentiation decisions. On
one hand, “-omics” approaches applied to dynamic
processes, such as differentiation, are likely to generate
a mix of hits that correspond to early and late steps of
the process, due to an inescapable degree of biological
heterogeneity, with some cells further along the pro-
cess than others. In addition, Esg could regulate the
expression of stemness and differentiation genes in
pre-mitotic stem cells simultaneously. Therefore, it
will be difficult to distinguish between these phenom-
ena a priori without additional experimental data at
finer phenotypic resolution.

Teasing apart the loss of stemness from terminal
differentiation: a case for DE-cadherin

Enrichment of the cell adhesion protein Drosophila E-
cadherin (DE-cad) is characteristic of ISC/EB ‘nests’
and can be used to identify these cells in the midgut
epithelium in the absence of other specific markers
(Fig. 2a and refs.3,24). Furthermore, a cell type-specific
transcriptome profiling in the Drosophila midgut
showed that DE-cadherin mRNA is more abundant in
ISCs than in committed EBs or ECs.35

When comparing our observations on the loss of
Esg function in ISCs with those by Korzelius and col-
leagues,3 an apparent inconsistency between our
studies arose that prompted us to investigate our
findings further. Korzelius et al. observed that RNAi-
mediated depletion of Esg resulted in a significant
reduction in the expression of DE-cad in ISCs and
EBs, which is consistent with the conclusion that the
progenitor cells had been induced to differentiate
(Fig. S1D-D00 in ref.3). Our experiments, however,
revealed different results. We observed a marked
increase in the level of DE-cad expression in ISC/EBs
following the depletion of Esg by RNAi (Fig. 2a). Of
note, our results were consistent with DamID data
that had identified a distinct Esg-binding region
proximal to shotgun (shg), the locus that codes for
DE-cad (Fig. 2b). Esg is thought to act predomi-
nantly as a transcriptional repressor.32 Therefore, if
shg expression is repressed by Esg as suggested by
the DamID data, then the RNAi-mediated downre-
gulation of Esg would be expected to cause an upre-
gulation of DE-cad expression.

To reconcile this apparent inconsistency in the
data, we hypothesized that the different strengths of

FLY 55



the GAL4 ‘drivers’ used in our studies resulted in dif-
ferent rates of differentiation caused by the loss of Esg.
In other words, that the relative higher and lower

levels of DE-cad corresponded to different degrees of
ISC/EB differentiation. Korzelius et al. used the strong
esgGAL4, tubGAL80ts driver line (esgGAL4ts) to

Figure 2. (a) Immunostaining for DE-cad in posterior midguts following knockdown of Esg expression. Flies expressing a UAS-esgRNAi
transgene under control of the ISC/EB specific driver 5961-gal4GS (“esgRNAi”) and control flies carrying only the Gal4GS driver (“control”)
were kept for 4 d in food containing the inducer RU486 (10 mg/mL). Midguts were probed for GFP expression (ISC/EBs) and DE-cad, and
all nuclei were stained with DAPI (as indicated). Scale bars D 20mm. (b) DamID data revealing a peak of Esg binding just upstream of
shotgun (shg). DamID was used to map the binding of Esg to the genome; the x-axis corresponds to genomic coordinates in chromo-
some 2R, while the y-axis corresponds to extent of binding of an Esg:dam fusion construct to DNA in midguts (see ref. 4 for details). The
yellow shade marks the Esg-bound region. Notice that the EBR contains a perfect match of the consensus Esg binding sequence. 49 (c)
Immunostaining for DE-cad in posterior midguts following different degrees of Esg knockdown. Flies carrying a UAS-esgRNAi transgene
under control of the ISC/EB specific driver 5961-gal4GS were kept for 3 d in food that contained only ethanol (EtOH control), or food con-
taining a lower (10mg/mL) or higher (25mg/mL) dose of the inducer RU486 (as indicated). The tissue was stained as in (a) and all images
were captured using the same acquisition times. Notice that these flies carried a separate esg-GFP reporter, which allows for ISC/EB
identification in flies kept in EtOH control food. Rightmost panels are zoomed regions that correspond to the yellow boxes in the adja-
cent images. Full and empty arrows point to examples of progenitor cells that express higher and lower levels of esg-GFP respectively.
Notice that cells that retain high esg-GFP expression maintain high levels of DE-cad expression. Scale bars D 40mm.
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express esgRNAi transgenes, which would induce a
more abrupt Esg knock-down and a more rapid ISC/
EB differentiation. In contrast, we utilized a relatively
weaker Geneswitch driver, 5961-gal4GS,36-38 which
would knock-down Esg more gradually and allow for
a window during which ISC/EBs express less Esg and
yet maintain stem cell identity.

We decided to test our hypothesis by modulating
GeneSwitch driver activity by using different amounts
of the inducer, RU486, in the fly food. In agreement
with our hypothesis, we found that a lower dose of
RU486 led to a noticeable accumulation of DE-cad in
ISC/EBs that have not yet significantly differentiated, as
determined by their relatively high levels of esg-GFP
expression. In contrast, a higher dose of RU486 caused
a significant decrease in DE-cad expression and an
overall decrease in esg-GFP expression (Fig. 2c), a pat-
tern similar to that reported by Korzelius et al.3 Fur-
thermore, at higher doses of RU486, we would often
observe a small number of ISC/EBs that retained their
identity (based on esg-GFP expression) and expressed
relatively high levels of DE-cad, which serve as an
internal control for the DE-cad staining and confirmed
that various degrees of differentiation can be observed
upon depletion of Esg (Fig. 2c, arrows).

The role of DE-cad in ISCs is likely complex and
context-specific, given its dual function in mediating
cell-cell adhesion and controlling cytoplasmic signal-
ing pathways (e.g. the Wnt/Wg pathway39). In flies, E-
cadherin expression has been found to be critical for
the regulation of stem cells via control of their proper
attachment to their niche40-43 (reviewed in ref.44). On
the other hand, Snail family proteins seem to repress
the expression of E-cadherin in diverse stem cell mod-
els.34,45-47 In ISC/EBs, previous work has shown that
inhibiting DE-cad expression affects the fate choice
made by ISCs42 and affects their rate of proliferation.48

Therefore, it seems plausible that stem cells may
require finely tuned levels of E-cadherin expression,
permitting proper adhesion to their niche while not
interfering with signaling pathways controlling stem
cell proliferation and differentiation.

Concluding remarks

At first glance, the positive correlation between Esg and
DE-cad expression in ISCs and ECs,35 as well as the
decrease in DE-cad expression following a more abrupt
induction of ISC differentiation3 would not support a

model in which Esg inhibits DE-cad expression. This
relationship became apparent only after a gradual induc-
tion of ISC/EB differentiation achieved through inducible
depletion of Esg using the Geneswitch system.38 These
results stress the power of inducible and scalable genetic
manipulations as a way to dissect between early, interme-
diate and later phenotypes in the continuum from com-
mitment to full differentiation. Use of such tools will
complement one-dimensional genome-wide screens that
set artificial endpoints for dynamic processes such as dif-
ferentiation. Fortunately, the cost of high throughput
screening is steadily dropping, making it possible to com-
bine “-omics” approaches with new and more refined
inducible systems for geneticmanipulation. These advan-
ces will soon make it possible to sample various stages of
a dynamic process at a genome wide level providing an
even better insight into the mechanisms regulating stem
cell behavior across tissues and species.
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